Skip to main content

Nanofabrication by Scanning Probes

  • Chapter
  • First Online:
Nanofabrication
  • 3607 Accesses

Abstract

As described in Chaps. 24, both photons and charged beams are capable of delineating sub-100 nm patterns. However, one question has been missing, that is, at what cost? To break into sub-100 nm scale, many “tricks,” apart from short wavelength and high NA, have to be used in photon-based lithography, and very sophisticated electron or ion optical systems are required in charged beam based lithography. For low-cost nanoscale patterning technologies, scanning probe lithography (SPL) is definitely an alternative to expensive photon or charged beam techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ringger, M., et al. 1985. Nanometer lithography with the scanning tunnelling microscope. Applied Physics Letters 46(9): 832.

    Article  Google Scholar 

  2. Cremer, P.S. 2011. Surface patterning: More than just scratching the surface. Journal of the American Chemical Society 133: 167–169.

    Article  Google Scholar 

  3. Tseng, A.A. (ed.). 2011. Tip-based nanofabrication: Fundamentals and applications. New York: Springer.

    Google Scholar 

  4. Salaita, K., et al. 2006. Massively parallel dip–pen nanolithography with 55000-pen two-dimensional arrays. Angewandte Chemie International Edition 45: 7220–7223.

    Article  Google Scholar 

  5. Srituravanich, W., et al. 2008. Flying plasmonic lens in the near field for high-speed nanolithography. Nature Nanotechnology 3: 733.

    Article  Google Scholar 

  6. Binnig, G., and H. Rohrer. 1982. Scanning tunnelling microscopy. Helvetica Physica Acta 55(6): 26–735.

    Google Scholar 

  7. Binnig, G., C.F. Quate, and C. Gerber. 1986. Atomic force microscope. Physical Review Letters 56(9): 930.

    Article  Google Scholar 

  8. West, P., and A. Ross. 2006. An introduction to atomic force microscopy modes. Santa Clara, CA: Pacific Nanotechnology, Inc.

    Google Scholar 

  9. Pohl, D.W., W. Denk, and M. Lanz. 1984. Optical stethoscopy: Image recording with resolution λ/20. Applied Physics Letters 44(7): 651–653.

    Article  Google Scholar 

  10. Fowler, R.H., and L.W. Nordheim. 1928. Electron emission in intense electric fields. Proceedings of the Royal Society of London A119: 173.

    Google Scholar 

  11. Cui, Z., and L. Tong. 1993. Optimum geometry and space-charge effects in vacuum microelectronic devices. IEEE Transactions on Electron Devices 40(2): 448.

    Article  Google Scholar 

  12. Soh, H.T., K.W. Guarini, and C.F. Quate. 2010. Resist exposure using field-emitted electrons. In Scanning probe lithography. Kluwer Academic.

    Google Scholar 

  13. McCord, M.A., and R.F.W. Pease. 1988. Lift-off metallization using poly(methyl methacrylate) exposed with a scanning tunnelling microscope. Journal of Vacuum Science and Technology B6(1): 293.

    Article  Google Scholar 

  14. Wilder, K., et al. 1998. Electron beam and scanning probe lithography: A comparison. Journal of Vacuum Science and Technology B16(6): 3864.

    Article  Google Scholar 

  15. Mayer, T.M., D.P. Adams, and B.M. Marder. 1996. Field emission characteristics of the scanning tunnelling microscope for nanolithography. Journal of Vacuum Science and Technology B14(4): 2438.

    Article  Google Scholar 

  16. Kaestner, Marcus, Manuel Hofer, and I.W. Rangelow. 2013. Nanolithography by scanning probes on calixarene molecular glass resist using mix-and-match lithography. Journal of Micro/Nanolithography MEMS and MOEMS 12(3): 031111.

    Article  Google Scholar 

  17. Kaestner, Marcus, Tzvetan Ivanov, and A. Schuh. 2014. Scanning probes in nanostructure fabrication. Journal of Vacuum Science and Technology B 32(6): 06F101-1.

    Google Scholar 

  18. Betzig, E., et al. 1996. Near-field scanning optical microscopy (NSOM)—Development and biophysical applications. Biophysical Journal 49(1): 269–279.

    Article  Google Scholar 

  19. Froehlich, F.F., T.D. Milster, and R. Uber. 1993. High-resolution optical lithography with a near-field scanning subwavelength aperture. Proceedings of SPIE 1751: 312–320.

    Article  Google Scholar 

  20. Leggett, G.J. 2006. Scanning near-field photolithography—Surface photochemistry with nanoscale spatial resolution. Chemical Society Reviews 35: 1150–1161.

    Article  Google Scholar 

  21. Smolyaninov, I., D.L. Mazzoni, and C.C. Davis. 1995. Near-field direct-write ultraviolet lithography and shear force microscopic studies of the lithographic process. Applied Physics Letters 67(26): 3859.

    Article  Google Scholar 

  22. Riehn, R., et al. 2003. Near-field optical lithography of a conjugated polymer. Applied Physics Letters 82: 526.

    Article  Google Scholar 

  23. Novotny, L., R.X. Bian, and X.S. Xie. 1997. Theory of nanometric optical tweezers. Physical Review Letters 79: 645–648.

    Article  Google Scholar 

  24. Royer, P., et al. 2004. Near-field optical patterning and structuring based on local-field enhancement at the extremity of a metal tip. Philosophical Transactions of the Royal Society of London A362: 821–842.

    Google Scholar 

  25. Sun, S., and G.J. Leggett. 2004. Matching the resolution of electron beam lithography by scanning near-field photolithography. Nano Letters 4(8): 1381–1384.

    Article  Google Scholar 

  26. Kramer, S., R.R. Fuierer, and C.B. Gorman. 2003. Scanning probe lithography using self-assembled monolayers. Chemical Review 103(11): 4367–4418.

    Article  Google Scholar 

  27. Day, H.C., and D.R. Allee. 1993. Selective area oxidation of silicon with a scanning force microscope. Applied Physics Letters 62(21): 2691.

    Article  Google Scholar 

  28. Garcia, R., R.V. Martinez, and J. Martinez. 2006. Nano-chemistry and scanning probe nanolithographies. Chemical Society Reviews 35: 29–38.

    Article  Google Scholar 

  29. Avouris, P., T. Hertel, and R. Martel. 1997. Atomic force microscope tip-induced local oxidation of silicon: Kinetics, mechanism, and nanofabrication. Applied Physics Letters 71(2): 285.

    Article  Google Scholar 

  30. Stievenard, D., P.A. Fontaine, and E. Dubois. 1997. Nanooxidation using a scanning probe microscope: An analytical model based on field induced oxidation. Applied Physics Letters 70(24): 3272.

    Article  Google Scholar 

  31. Dagata, J.A., et al. 1990. Modification of hydrogen-passivated silicon by a scanning tunneling microscope operating in air. Applied Physics Letters 56: 2001.

    Article  Google Scholar 

  32. Fontaine, P.A., E. Dubois, and D. Stievenard. 1998. Characterization of scanning tunneling microscopy and atomic force microscopy-based techniques for nanolithography on hydrogen-passivated silicon. Journal of Applied Physics 84(4): 1776.

    Article  Google Scholar 

  33. Snow, E.S., et al. 1998. A metal/oxide tunneling transistor. Applied Physics Letters 72: 3071.

    Article  Google Scholar 

  34. Muller, E.W., and T.T. Tsong. 1969. Field ion microscopy principle and applications. New York: Elsevier.

    Google Scholar 

  35. Mamin, H.J., et al. 1991. Gold deposition from a scanning tunneling microscope tip. Journal of Vacuum Science and Technology B9(2): 1398.

    Article  Google Scholar 

  36. Tsong, T.T. 1978. Field ion image formation. Surface Science 70: 211–233.

    Article  Google Scholar 

  37. Chang, C.S., W.B. Su, and T.T. Tsong. 1994. Field evaporation between a gold tip and a gold surface in the scanning tunneling microscope configuration. Physical Review Letters 72(4): 574.

    Article  Google Scholar 

  38. Houel, A., et al. 2002. Direct patterning of nanostructures by field-induced deposition from a scanning tunneling microscope tip. Journal of Vacuum Science and Technology B20(6): 2337.

    Article  Google Scholar 

  39. Cui, Z., and L. Tong. 1988. A new approach to simulating liquid metal ion sources. Journal of Vacuum Science and Technology B6(6): 2104.

    Google Scholar 

  40. McCord, M.A., and D.D. Awschalom. 1990. Direct deposition of magnetic dots using a scanning tunneling microscope. Applied Physics Letters 57(20): 2153.

    Article  Google Scholar 

  41. Koinuma, M., and K. Uosaki. 1996. AFM tip induced selective electrochemical etching and metal deposition on p-GaAs(100) surface. Surface Science 357–358: 565–570.

    Article  Google Scholar 

  42. Piner, R.D., et al. 1999. Dip-pen nanolithography. Science 283: 661–663.

    Article  Google Scholar 

  43. Xia, Y., and G.M. Whitesides. 1998. Soft lithography. Angewandte Chemie International Edition 37: 550.

    Article  Google Scholar 

  44. Mehregany, M., and Y.C. Tai. 1991. Surface micromachined mechanism and micromotors. Journal of Micromechanics and Microengineering 1: 73.

    Article  Google Scholar 

  45. Ginger, D.S., H. Zhang, and C.A. Mirkin. 2004. The evolution of dip-pen nanolithography. Angewandte Chemie International Edition 43: 30–45.

    Article  Google Scholar 

  46. Hu, Huan, Parsian K. Mohseni, and L. Pan. 2013. Fabrication of arbitrarily shaped silicon and silicon oxide nanostructures using tip-based nanofabrication. Journal of Vacuum Science and Technology B 31(6): 06FJ01-1.

    Google Scholar 

  47. Nagahara, L.A., T. Thundat, and S.M. Lindsay. 1990. Nanolithography on semiconductor surfaces under an etching solution. Applied Physics Letters 57(3): 270.

    Article  Google Scholar 

  48. Ye, J.H., et al. 1995. Local modification of n-Si(100) surface in aqueous solutions under anodic and cathodic potential polarization with an in situ scanning tunneling microscope. Journal of Vacuum Science and Technology B13: 1423.

    Article  Google Scholar 

  49. Thomson, R.E., J. Moreland, and A. Roshko. 1994. Surface modification of YBa2Cu3O7-delta thin films using the scanning tunneling microscope: Five methods. Nanotechnology 5: 57.

    Article  Google Scholar 

  50. Kaneshiro, C., and T. Okumura. 1997. Nanoscale etching of GaAs surfaces in electrolytic solutions by hole injection from a scanning tunneling microscope tip. Journal of Vacuum Science and Technology B15: 1595.

    Article  Google Scholar 

  51. Shedd, G.M., and P.E. Russell. 1990. The scanning tunneling microscope as a tool for nanofabrication. Nanotechnology 1: 67–80.

    Article  Google Scholar 

  52. Li, Y.Z., et al. 1989. Writing nanometer-scale symbols in gold using the scanning tunneling microscope. Applied Physics Letters 54: 1424.

    Article  Google Scholar 

  53. Schneir, J., et al. 1987. Creating and observing surface features with a scanning tunneling microscope. Proceedings of SPIE 897: 16.

    Article  Google Scholar 

  54. Kondo, S., et al. 1995. Surface modification mechanism of materials with scanning tunneling microscope. Journal of Applied Physics 78: 155.

    Article  Google Scholar 

  55. Zulfakri, B., et al. 2008. Formation of dot arrays with a pitch of 20 nm × 20 nm for patterned media using 30 keV EB drawing on thin calixarene resist. Nanotechnology 19(2): 025301.

    Article  Google Scholar 

  56. Mamin, H.J., and D. Rugar. 1992. Thermomechanical writing with an atomic force microscope tip. Applied Physics Letters 61: 1003.

    Article  Google Scholar 

  57. Basu, A.S., S. McNamara, and Y.B. Gianchandani. 2004. Scanning thermal lithography maskless, submicron thermochemical patterning of photoresist by ultracompliant probes. Journal of Vacuum Science and Technology B22(6): 3217.

    Article  Google Scholar 

  58. Vettiger, P., et al. 2000. The millipede—More than one thousand tips for future AFM data storage. IBM Journal of Research and Development 44: 323.

    Article  Google Scholar 

  59. Magno, R., and B.R. Bennett. 1997. Nanostructure patterns written in III–V semiconductors by an atomic force microscope. Applied Physics Letters 70: 1855.

    Article  Google Scholar 

  60. Filho, H.D.F., et al. 2004. Metal layer mask patterning by force microscopy lithography. Materials Science and Engineering B112: 194.

    Article  Google Scholar 

  61. Muller, M., et al. 2004. Controlled structuring of mica surfaces with the tip of an atomic force microscope by mechanically induced local etching. Surface and Interface Analysis 36: 189.

    Article  Google Scholar 

  62. Hu, S., et al. 1998. Fabrication of silicon and metal nanowires and dots using mechanical atomic force lithography. Journal of Vacuum Science and Technology B16: 2822.

    Article  Google Scholar 

  63. Chen, Y., J. Hsu, and H. Lin. 2005. Fabrication of metal nanowires by atomic force microscopy nanoscratching and lift-off process. Nanotechnology 16: 1112–1115.

    Article  Google Scholar 

  64. Jones, A.G., et al. 2006. Highly tunable, high-throughput nanolithography based on strained regioregular conducting polymer films. Applied Physics Letters 89: 013119.

    Article  Google Scholar 

  65. Zhou, D., et al. 2002. Use of atomic force microscopy for making addresses in DNA coatings. Langmuir 18: 8278.

    Article  Google Scholar 

  66. Xu, S., and G. Liu. 1997. Nanometer-scale fabrication by simultaneous nanoshaving and molecular self-assembly. Langmuir 13: 127–129.

    Article  Google Scholar 

  67. Quate, C.F. 1997. Scanning probes as a lithography tool for nanostructures. Surface Science 386: 259.

    Article  Google Scholar 

  68. Barrett, R.C., and C.F. Quate. 1991. High speed, large-scale imaging with the atomic force microscope. Journal of Vacuum Science and Technology B9: 302.

    Article  Google Scholar 

  69. Manalis, S.R., S.C. Minne, and C.F. Quate. 1996. Atomic force microscopy for high speed imaging using cantilevers with an integrated actuator and sensor. Applied Physics Letters 68(6): 871.

    Article  Google Scholar 

  70. Liang, Pan, et al. 2011. Maskless plasmonic lithography at 22 nm resolution. Scientific Reports 1: 175.

    Google Scholar 

  71. Marrian, C.R.K., E.A. Dobisz, and J.A. Dagata. 1992. Electron-beam lithography with the scanning tunnelling microscope. Journal of Vacuum Science and Technology B10(6): 2877.

    Article  Google Scholar 

  72. Park, S.W., et al. 1995. Nanometer scale lithography at high scanning speeds with the atomic force microscope using spin on glass. Applied Physics Letters 67(16): 2415.

    Article  Google Scholar 

  73. Wilder, K., et al. 1999. Nanometer-scale patterning and individual current-controlled lithography using multiple scanning probes. Review of Scientific Instruments 70(6): 2822.

    Article  Google Scholar 

  74. Despont, M., et al. 2000. VLSI-NEMS chip for parallel AFM data storage. Sensors and Actuators 80: 100–107.

    Article  Google Scholar 

  75. Mearian, L. 2010. Intel, Micron to announce world’s densest flash memory. Computerworld: 31, January.

    Google Scholar 

  76. Tseng, A.A., A. Notargiacomo, and T.P. Chen. 2005. Nanofabrication by scanning probe microscope lithography: A review. Journal of Vacuum Science and Technology B23(3): 877.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cui, Z. (2017). Nanofabrication by Scanning Probes. In: Nanofabrication. Springer, Cham. https://doi.org/10.1007/978-3-319-39361-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39361-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39359-9

  • Online ISBN: 978-3-319-39361-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics