Skip to main content

Nanofabrication by Self-Assembly

  • Chapter
  • First Online:
Nanofabrication
  • 3683 Accesses

Abstract

The nanofabrication technologies described in the previous chapters so far can be characterized as conventional technologies, in the sense that they always involve one way or another lithographic patterning and pattern transfer. They are still the same as, or not too much different from, the technologies for manufacturing integrated circuits, which originated nearly 55 years ago in 1961 when the first patent on planar integrated circuit was granted, though today’s technologies can make pattern structures a thousand times smaller. It is a “top-down” approach that complex structures are built up by patterning layers upon layers from the surface of a planar substrate. The capabilities of top-down nanofabrication technologies have been amply demonstrated in previous chapters. The smallest features which can be made by top-down approach are, however, always limited by the available fabrication tools, being either lithography or pattern transfer. On the other hand, nature has demonstrated its ability to produce extremely complex living organisms by self-organization and self-construction for billions of years, all of which are taking place at molecular level which is an order of magnitude smaller than a nanometer. One surely could ask the question why a desired nanostructure cannot be made by molecular self-assembly, which is a “bottom-up” approach where molecules autonomously “grow” into nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Whitesides, G.M., J.P. Mathias, and C.T. Seto. 1991. Molecular self-assembly and nanochemistry: A chemical strategy for the synthesis of nanostructures. Science 254: 1312.

    Article  Google Scholar 

  2. Whitesides, G.M. 1995. Self assembly and nanotechnology. In Fourth foresight conference on molecular nanotechnology.

    Google Scholar 

  3. Whitesides, G.M., and B. Grzybowski. 2002. Self-assembly at all scales. Science 295: 2418.

    Article  Google Scholar 

  4. Libbrecht, K. 2008. The enigmatic snowflakes. Physics World 21(1): 19.

    Article  Google Scholar 

  5. Andres, R., et al. 1998. The design, fabrication and electronic properties of self-assembled molecular nanostructures. In The handbook of nanostructured materials and nanotechnology, ed. H.S. Nalwa. San Diego: Academic Press.

    Google Scholar 

  6. Ulman, A. 1996. Formation and structure of self-assembled monolayers. Chemical Reviews 96: 1533–1554.

    Article  Google Scholar 

  7. Xia, Y., and G.M. Whitesides. 1998. Soft lithography. Angewandte Chemie International Edition 37: 550–575.

    Article  Google Scholar 

  8. Motesharei, K., and D.C. Myles. 1998. Molecular recognition on functionalized self-assembled monolayers of alkanethiols on gold. Journal of the American Chemical Society 120: 7328–7336.

    Article  Google Scholar 

  9. Jeoung, E., J.B. Carroll, and V.M. Rotello. 2002. Surface modification via ‘lock and key’ specific self-assembly of polyhedral oligomeric silsequioxane (POSS) derivatives to modified gold surfaces. Chemical Communications 14: 1510–1511.

    Google Scholar 

  10. Wenz, G., and P. Liepold. 2007. Self-assembly of biotin and thio-functionalized carboxymethyl celluloses on gold and molecular recognition of streptavidin detected by surface plasmon resonance. Cellulose 14(2): 89–98.

    Article  Google Scholar 

  11. Aakeröy, C.B., and K.R. Seddon. 1993. The hydrogen bond and crystal engineering. Chemical Society Reviews 22(6): 397.

    Article  Google Scholar 

  12. Barth, J.V., G. Costantini, and K. Kern. 2005. Engineering atomic and molecular nanostructures at surfaces. Nature 437: 671.

    Article  Google Scholar 

  13. Lin, N., et al. 2003. Supramolecular engineering of metal-organic networks at surfaces. In Proceedings of the 12th international conference on scanning tunneling microscopy/spectroscopy and related techniques, eds. P.M. Koenraad and M. Kemerink, 144.

    Google Scholar 

  14. Park, J., et al. 2002. Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417: 722.

    Article  Google Scholar 

  15. Pawel, P. 1983. Colloidal crystals. Contemporary Physics 24: 25.

    Article  Google Scholar 

  16. Yunker, P.J., et al. 2011. Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature 476: 308.

    Article  Google Scholar 

  17. Denkov, N.D., et al. 1992. Mechanism of formation of two-dimensional crystals from latex particles on substrates. Langmuir 8: 3183–3190.

    Article  Google Scholar 

  18. Coll, A., S. Bermejo, and L. Castañer. 2014. Self-assembly of ordered silica nanostructures by electrospray. Microelectronic Engineering 121: 68.

    Article  Google Scholar 

  19. Ganai, N., A. Saha, and S. Sengupta. 2013. Colloidal particles in a drying suspension: A phase field crystal approach. European Physical Journal E 36: 90.

    Article  Google Scholar 

  20. Takeoka, Y. 2013. Stimuli-responsive opals: Colloidal crystals and colloidal amorphous arrays for use in functional structurally colored materials. Journal of Materials Chemistry C 1: 6059–6074.

    Article  Google Scholar 

  21. Velikov, K.P., Alexander Moroz, and A. van Blaaderen. 2002. Photonic crystals of core-shell colloidal particles. Applied Physics Letters 80(1): 49.

    Article  Google Scholar 

  22. Vlasov, Y.A., et al. 2001. On-chip natural assembly of silicon photonic bandgap crystals. Nature 414: 289.

    Article  Google Scholar 

  23. Sun, S., et al. 2000. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices science 287: 1989–1992.

    Google Scholar 

  24. Anders, S., et al. 2002. Lithography and self-assembly for nanometer scale magnetism. Microelectronic Engineering 61–62: 569–575.

    Article  Google Scholar 

  25. Liddle, J.A., Y. Cui, and P. Alivisatos. 2004. Lithographically directed self-assembly of nanostructures. Journal of Vacuum Science and Technology B22(6): 3409.

    Article  Google Scholar 

  26. Juillerat, F., et al. 2005. Fabrication of large-area ordered arrays of nanoparticles on patterned substrates. Nanotechnology 16: 1311–1316.

    Article  Google Scholar 

  27. Ocola, L.E., and X.M. Lin. 2008. Templated self-assembly of 5 nm gold nanoparticles. Proceedings of the Nanotechnology Conference 1: 578.

    Google Scholar 

  28. Yin, Y., Z.-Y. Li, and Y. Xia. 2003. Template-directed growth of (100)-oriented colloidal crystals. Langmuir 19: 622–631.

    Article  Google Scholar 

  29. Wang, D., and H. Mohwald. 2004. Template-directed colloidal self-assembly—The route to ‘top-down’ nanochemical engineering. Journal of Materials Chemistry 14: 459–468.

    Article  Google Scholar 

  30. Fan, F., and K.J. Stebe. 2004. Assembly of colloidal particles by evaporation on surfaces with patterned hydrophobicity. Langmuir 20: 3062–3067.

    Article  Google Scholar 

  31. Huwiler, C., et al. 2005. Self-assembly of functionalized spherical nanoparticles on chemically patterned microstructures. Nanotechnology 16: 3045–3052.

    Article  Google Scholar 

  32. Huck, W.T.S. 2007. Self-assembly meets nanofabrication: Recent developments in microcontact printing and dip-pen nanolithography. Angewandte Chemie International Edition 46: 2754–2757.

    Article  Google Scholar 

  33. Geyer, W., et al. 2001. Electron induced chemical nanolithography with self-assembled monolayers. Journal of Vacuum Science and Technology B19(6): 2732.

    Article  Google Scholar 

  34. Tien, J., A. Terfort, and G.M. Whitesides. 1997. Microfabrication through electrostatic self-assembly. Langmuir 13: 5349–5355.

    Article  Google Scholar 

  35. McCarty, L.S., A. Winkleman, and G.M. Whitesides. 2007. Electrostatic self-assembly of polystyrene microspheres by using chemically directed contact electrification. Angewandte Chemie International Edition 46: 206–209.

    Article  Google Scholar 

  36. Trau, M., D.A. Saville, and I.A. Aksay. 1996. Field-induced layering of colloidal crystals. Science 272: 706–709.

    Article  Google Scholar 

  37. Trau, M., D.A. Saville, and I.A. Aksay. 1997. Assembly of colloidal crystals at electrode interfaces. Langmuir 13: 6375–6381.

    Article  Google Scholar 

  38. Solomentsev, Y., M. Boèhmer, and J.L. Anderson. 1997. Particle clustering and pattern formation during electrophoretic deposition: A hydrodynamic model. Langmuir 13: 6058–6068.

    Article  Google Scholar 

  39. Hayward, R.C., D.A. Saville, and I.A. Aksay. 2000. Electrophoretic assembly of colloidal crystals with optically tunable micropatterns. Nature 404: 56.

    Article  Google Scholar 

  40. Aizenberg, J., P.V. Braun, and P. Wiltzius. 2000. Patterned colloidal deposition controlled by electrostatic and capillary forces. Physical Review Letters 84(13): 2997.

    Article  Google Scholar 

  41. Lee, J., T. Isobe, and M. Senna. 1996. Preparation of ultrafine Fe3O4 particles by precipitation in the presence of PVA at high pH. Journal of Colloid and Interface Science 177: 490–494.

    Article  Google Scholar 

  42. Yellen, B.B., and G. Friedman. 2004. Programmable assembly of colloidal particles using magnetic micro-well templates. Langmuir 20: 2553–2559.

    Article  Google Scholar 

  43. Liu, M., et al. 2007. Self-assembled magnetic nanowire arrays. Applied Physics Letters 90: 103105.

    Article  Google Scholar 

  44. Yellen, B.B., G. Friedman, and A. Feinerman. 2002. Analysis of interactions of nanoparticles with magnetic templates. Journal of Applied Physics 91(10): 8552–8554.

    Article  Google Scholar 

  45. Ahniyaz, A., Y. Sakamoto, and L. Bergstrom. 2007. Magnetic field-induced assembly of oriented superlattices from maghemite nanocubes. Proceedings of the National Academy of Sciences of the United States of America 104(45): 17570–17574.

    Article  Google Scholar 

  46. Striemer, C.C., et al. 2007. Charge- and size-based separation of macromolecules using ultrathin silicon membranes. Nature 445: 05532.

    Article  Google Scholar 

  47. Aurongzeb, D. 2007. Low index faceting of Pt nanostructures on oxide surface with potential application for fuel cells. Journal of Applied Physics 102: 064302.

    Article  Google Scholar 

  48. Alaca, B.E., H. Sehitoglu, and T. Saif. 2004. Guided self-assembly of metallic nanowires and channels. Applied Physics Letters 84(23): 4669.

    Article  Google Scholar 

  49. Pease, L.F., et al. 2007. Self-formation of sub-60-nm half-pitch gratings with large areas through fracturing. Nature Nanotechnology 2(9): 545–548.

    Article  Google Scholar 

  50. Ruzette, A.-V., and L. Leibler. 2005. Block copolymers in tomorrow’s plastics. Nature Materials 4: 19.

    Article  Google Scholar 

  51. Leibler, L. 1980. Theory of microphase separation in block copolymers. Macromolecules 13(6): 1602.

    Article  Google Scholar 

  52. Park, C., J. Yoon, and E.L. Thomas. 2003. Enabling nanotechnology with self assembled block copolymer patterns. Polymer 44: 6725–6760.

    Article  Google Scholar 

  53. Xu, H., et al. 2006. Flow-enhanced epitaxial ordering of brush-like macromolecules on graphite. Langmuir 22(3): 1254–1259.

    Article  Google Scholar 

  54. Morkved, T.L., et al. 1996. Local control of microdomain orientation in diblock copolymer thin films with electric fields. Science 273(5277): 931–933.

    Article  Google Scholar 

  55. Hahm, J., and S.J. Sibener. 2000. Cylinder alignment in annular structures of microphase-separated polystyrene-b-poly(methyl methacrylate). Langmuir 16(11): 4766–4769.

    Article  Google Scholar 

  56. Edwards, E.W., et al. 2006. Long-range order and orientation of cylinder-forming block copolymers on chemically nanopatterned striped surfaces. Macromolecules 39(10): 3598–3607.

    Article  Google Scholar 

  57. Keller, A., E. Pedemonte, and F.M. Willmouth. 1970. Macro-lattice from segregated amorphous phases of a three block copolymer. Nature 225: 538.

    Article  Google Scholar 

  58. Ashok, B., M. Muthukumar, and T.P. Russell. 2001. Confined thin film diblock copolymer in the presence of an electric field. Journal of Chemical Physics 115: 1559.

    Article  Google Scholar 

  59. Cheng, J.Y., et al. 2003. Templated self-assembly of block copolymers: Effect of substrate topography. Advanced Materials 15: 1599–1602.

    Article  Google Scholar 

  60. Cheng, J.Y., A.M. Mayes, and C.A. Ross. 2004. Nanostructure engineering by templated self-assembly of block copolymers. Nature Materials 3: 823.

    Article  Google Scholar 

  61. Stoykovich, M.P., et al. 2005. Directed assembly of block copolymer blends into nonregular device-oriented structures. Science 308: 1442.

    Article  Google Scholar 

  62. Harrison, C., et al. 1998. Lithography with a mask of block copolymer microstructures. Journal of Vacuum Science and Technology B16: 544.

    Article  Google Scholar 

  63. Kihara, N., R. Yamamoto, and N. Sasao. 2012. Fabrication of 5 Tdot/in.2 bit patterned media with servo pattern using directed self assembly. Journal of Vacuum Science and Technology B 30(6): 06FH02.

    Article  Google Scholar 

  64. Hosaka, S., T. Akahane, and M. Huda. 2014. Ordering of 6-nm-sized nanodot arrays with 10-nm-pitch using self-assembled block copolymers along electron beam-drawn guide-lines. Microelectronic Engineering 123: 54.

    Article  Google Scholar 

  65. Black, C.T., et al. 2006. Highly porous silicon membrane fabrication using polymer self-assembly. Journal of Vacuum Science and Technology B24: 3188.

    Article  Google Scholar 

  66. Chan, B.T., S. Tahara, and D. Parnell. 2014. 28 nm pitch of line/space pattern transfer into silicon substrates with chemo-epitaxy Directed Self-Assembly (DSA) process flow. Microelectronic Engineering 123: 180.

    Article  Google Scholar 

  67. Chai, J., et al. 2007. Assembly of aligned linear metallic patterns on silicon. Nature Nanotechnology 2(8): 500–506.

    Article  Google Scholar 

  68. Cheng, J.Y., et al. 2002. Fabrication of nanostructures with long-range order using block copolymer lithography. Applied Physics Letters 81(19): 3657–3659.

    Article  Google Scholar 

  69. International Technology Roadmap for Semiconductors (ITRS). 2013. Available from: http://www.itrs.net/.

  70. Liu, C.-C., C.J. Thode, and P.A.R. Delgadillo. 2011. Towards an all-track 300 mm process for directed self-assembly. Journal of Vacuum Science and Technology B 29(6): 06F203.

    Google Scholar 

  71. Hinsberg, W., et al. 2010. Self-assembling materials for lithographic patterning: Overview, status and moving forward. Proceedings of SPIE 7637: 76370G-1.

    Article  Google Scholar 

  72. Bencher, C., et al. 2011. Self-assembly patterning for sub-15 nm half-pitch: A transition from lab to fab. Proceedings of SPIE 7970: 79700F-1.

    Article  Google Scholar 

  73. Welander, A.M., H. Kang, and K.O. Stuen. 2008. Rapid directed assembly of block copolymer films at elevated temperatures. Macromolecules 41(8): 2759.

    Article  Google Scholar 

  74. Sinturel, C., et al. 2013. Solvent vapor annealing of block polymer thin films. Macromolecules 46(14): 5399.

    Article  Google Scholar 

  75. Morris, M.A. 2015. Directed self-assembly of block copolymers for nanocircuitry fabrication. Microelectronic Engineering 132: 207.

    Article  Google Scholar 

  76. ANOPORE. Available from: http://www.2spi.com/.

  77. Masuda, H., and K. Fukuda. 1995. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268: 1466.

    Article  Google Scholar 

  78. Burgos, N., M.A. Paulis, and M. Montes. 2003. Preparation of Al2O3/Al monoliths by anodisation of aluminium as structured catalytic supports. Journal of Materials Chemistry 13: 1458–1467.

    Article  Google Scholar 

  79. Li, Y., et al. 2006. Fabrication of highly ordered nanoporous alumina films by stable high-field anodization. Nanotechnology 17: 5101–5105.

    Article  Google Scholar 

  80. Myung, N.V., et al. 2004. Alumina nanotemplate fabrication on silicon substrate. Nanotechnology 15: 833–838.

    Article  Google Scholar 

  81. Choi, J., et al. 2003. Perfect two-dimensional porous alumina photonic crystals with duplex oxide layers. Journal of Applied Physics 94(8): 4757.

    Article  Google Scholar 

  82. Huber, C.A., et al. 1994. Nanowire array composites. Science 263: 800.

    Article  Google Scholar 

  83. Losic, D., et al. 2005. Fabrication of gold nanorod arrays by templating from porous alumina. Nanotechnology 16: 2275.

    Article  Google Scholar 

  84. Zaraska, L., G.D. Sulka, and M. Jaskuła. 2010. Porous anodic alumina membranes formed by anodization of AA1050 alloy as templates for fabrication of metallic nanowire arrays. Surface and Coatings Technology 205(7): 2432.

    Article  Google Scholar 

  85. Gultepe, E., et al. 2007. High-throughput assembly of nanoelements in nanoporous alumina templates. Applied Physics Letters 90: 163119.

    Article  Google Scholar 

  86. Choi, S., M. Daugherty, and D. Walker. 2007. Growth and engineering of high aspect-ratio AAO templates integrated on silicon substrates. In Nanotech conference, Santa Clara, CA.

    Google Scholar 

  87. Li, C.-P., et al. 2006. Fabrication and structural characterization of highly ordered sub-100-nm planar magnetic nanodot arrays over 1 cm2 coverage area. Journal of Applied Physics 100: 074318.

    Article  Google Scholar 

  88. Poinern, G.E.J., N. Ali, and D. Fawcett. 2011. Progress in nano-engineered anodic aluminum oxide membrane development. Materials 4: 487–526.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cui, Z. (2017). Nanofabrication by Self-Assembly. In: Nanofabrication. Springer, Cham. https://doi.org/10.1007/978-3-319-39361-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39361-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39359-9

  • Online ISBN: 978-3-319-39361-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics