Skip to main content

Approaches to Scientific Modeling, and the (Non)Issue of Representation: A Case Study in Multi-model Research on Thigmotaxis and Group Thermoregulation

  • Conference paper
  • First Online:
Model-Based Reasoning in Science and Technology

Part of the book series: Studies in Applied Philosophy, Epistemology and Rational Ethics ((SAPERE,volume 27))

  • 654 Accesses

Abstract

Recent contributions to the philosophical literature on scientific modeling have tended to follow one of two approaches, on the one hand addressing conceptual, metaphysical and epistemological questions about models, or, on the other hand, emphasizing the cognitive aspects of modeling and accordingly focusing on model-based reasoning. In this paper I explore the relationship between these two approaches through a case study of model-based research on the behavior of infant rats, particularly thigmotaxis (movement based on tactile sensation) and temperature regulation in groups. A common assumption in the philosophical literature is that models represent the target phenomena they simulate. In the modeling project under investigation, however, this assumption was not part of the model-based reasoning process, arising only in a theoretical article as, I suggest, a post hoc rhetorical device. I argue that the otherwise nonexistent concern with the model-target relationship as being representational results from a kind of objectification often at play in philosophical analysis, one that can be avoided if an alternative form of objectification is adopted instead.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    MATLAB and Simulink are trademarks of the Mathworks Company, Needham, MA.

  2. 2.

    Knuuttila (2011) calls this assumption the “representational view of models” and she explores an alternative approach, although it is unclear that her account succeeds in providing a real alternative since it maintains some role for representations in modeling.

  3. 3.

    I think this insight can be applied more broadly to motivate an anti-representationalist view of scientific modeling, but this is a topic I pursue in more detail elsewhere.

References

  • Bish, R., Joshi, S., Schank, J., & Wexler, J. (2007). Mathematical modeling and computer simulation of a robotic rat pup. Mathematical and Computer Modelling, 45(2007), 981–1000.

    Article  Google Scholar 

  • Callender, C., & Cohen, J. (2006). There is no special problem about scientific representation. Theoria, 21(1), 67–85.

    Google Scholar 

  • Carruthers, P., Stich, S., & Siegal, M. (2002). The cognitive basis of science. Cambridge University Press.

    Google Scholar 

  • Chakravartty, A. (2010a). Informational versus functional theories of scientific representation. Synthese, 172, 197–213. doi:10.1007/s11229-009-9502-3

    Article  Google Scholar 

  • Chakravartty, A. (2010b). Truth and representation in science: Two inspirations from art. In R. Frigg & M.C. Hunter (Eds.), Beyond mimesis and convention (Vol. 262). doi:10.1007/978-90-481-3851-7_3 (Boston Studies in the Philosophy of Science)

  • Contessa, G. (2007). Scientific representation, interpretation, and surrogative reasoning. Philosophy of Science, 74, 48–68.

    Article  Google Scholar 

  • Elgin, C. (2004). True enough. Philosophical Issues, 14(1), 113–131.

    Article  Google Scholar 

  • Feist, G. J. (2006). The psychology of science and the origins of the scientific mind. New Haven: Yale University Press.

    Google Scholar 

  • Feist, G. J., & Gorman, M. E. (2013). Handbook of the psychology of science. Berlin: Springer.

    Google Scholar 

  • Frigg, R. (2006). Scientific representation and the semantic view of theories. Theoria, 55, 49–65.

    Google Scholar 

  • Frigg, R. (2010a). Fiction in science. In J. Woods (Ed.), Fictions and models: New essays (pp. 247–287). Munich: Philosophia Verlag.

    Google Scholar 

  • Frigg, R. (2010b). Models and fiction. Synthese, 172(2), 251–268.

    Article  Google Scholar 

  • Frigg, R. (2010c). Fiction and scientific representation. In R. Frigg & M.C. Hunter (Eds.), Beyond mimesis and convention (Vol. 262). doi:10.1007/978-90-481-3851-7_3 (Boston Studies in the Philosophy of Science)

  • Frigg, R., & Hartmann, S. (2012). Models in science. In E. N. Zalta (Ed.), The stanford encyclopedia of philosophy (Fall 2012 Edition). http://plato.stanford.edu/archives/fall2012/entries/models-science/

  • Gholson, B., Shadish, Jr., W. R., Neimeyer, R. A., & Houts, A. C. (1989). Psychology of Science: Contributions to Metascience. Cambridge: Cambridge University Press.

    Google Scholar 

  • Giere, R. (1988). Explaining science: A cognitive approach. Chicago: The University of Chicago Press.

    Google Scholar 

  • Giere, R. (1992). Cognitive models of science. Minneapolis: University of Minnesota Press.

    Google Scholar 

  • Giere, R. (1999). Using models to represent reality. In L. Magnani, N. J. Nersessian, & P. Thagard (Eds.), Model-based reasoning in scientific discovery (pp. 41–57). New York: Kluwer/Plenum.

    Chapter  Google Scholar 

  • Giere, R. (2002). Models as parts of distributed cognitive systems. In L. Magnani & N. Nersessian (Eds.), Model based reasoning: Science, technology, values (pp. 227–41). New York: Kluwer.

    Google Scholar 

  • Giere, R. (2004). How models are used to represent reality. Philosophy of Science, 71(5), 742–752.

    Article  Google Scholar 

  • Giere, R. (2005). Scientific realism: Old and new problems. Erkenntnis, 63(2), 149–165.

    Article  Google Scholar 

  • Giere, R. (2006). Scientific perspectivism. Chicago: University of Chicago Press.

    Google Scholar 

  • Giere, R. (2010). An agent-based conception of models and scientific representation. Synthese, 172, 269–281.

    Article  Google Scholar 

  • Gilbert, J. K. (2005). Visualization in science education. Berlin: Springer.

    Google Scholar 

  • Godfrey-Smith, P. (2006a). The strategy of model-based science. Biol Philos, 21, 725–740. doi:10.1007/s1053900690546

  • Godfrey-Smith, P. (2006b). Theories and models in metaphysics. Harvard Review of Philosophy, 14(2006), 4–19.

    Article  Google Scholar 

  • Godfrey-Smith, P. (2009a). Abstractions, idealizations, and evolutionary biology. In A. Barberousse, M. Morange, & T. Pradeu (Eds.), Mapping the future of biology: Evolving concepts and theories (pp. 47–56). Berlin: Springer (Boston Studies in the Philosophy of Science).

    Google Scholar 

  • Godfrey-Smith, P. (2009b). Models and fictions in science. Philosophical Studies, 143, 101–116.

    Google Scholar 

  • Kennedy, A. G. (2012). A non representationalist view of model explanation. Studies in History and Philosophy of Science, 43, 326–332.

    Article  Google Scholar 

  • Knuuttila, T. (2010). Not just underlying structures: Towards a semiotic approach to scientific representation and modeling. In: Bergman, M., et al. (Eds.), Ideas in Action: Proceedings of the Applying Peirce Conference (pp. 163–172).

    Google Scholar 

  • Knuuttila, T. (2011). Modelling and representing: An artefactual approach to model-based representation. Studies in History and Philosophy of Science, 42, 262–271.

    Article  Google Scholar 

  • MacLeod, M., & Nersessian, N. J. (2013). Building simulations from the ground-up: Modeling and theory in systems biology. Philosophy of Science, 80, 533–556.

    Article  Google Scholar 

  • Magnani, L. (2012). Scientific models are not fictions: Model-based science as epistemic warfare. In: L. Magnani & P. Li (Eds.), Philosophy and Cognitive Science (pp. 1–38). Berlin, Heidelberg: Springer (SAPERE 2).

    Google Scholar 

  • May, C. J., & Schank, J. C. (2009). The interaction of body morphology, directional kinematics, and environmental structure in the generation of neonatal rat (Rattus norvegicus) locomotor behavior. Ecological Psychology, 21(4), 308–333. doi:10.1080/10407410903320975

    Article  Google Scholar 

  • May, C. J., Schank, J. C., & Joshi, S. (2011). Modeling the influence of morphology on the movement ecology of groups of infant rats (Rattus norvegicus). Adaptive Behavior, 19(4), 280–291. doi:10.1177/1059712311413476

    Article  Google Scholar 

  • May, C. J., Schank, J. C., Joshi, S., Tran, J., Taylor, R. J., & Scott, I. (2006). Rat pups and random robots generate similar self-organized and intentional behavior. Complexity, 12(1). doi:10.1002/cplx.21049

  • Morrison, M. (2015). Reconstructing reality: Models, mathematics, and simulations. Oxford: Oxford University Press.

    Google Scholar 

  • Morrison, M., & Morgan, M. (1999). Models as mediators. Cambridge: Cambridge University Press.

    Google Scholar 

  • Nersessian, N. J. (1992). How do scientists think? Capturing the dynamics of conceptual change in science. In R. N. Giere (Ed.), Cognitive models of science (pp. 3–45). Minneapolis: University of Minnesota Press.

    Google Scholar 

  • Nersessian, N. J. (1999). Model-based reasoning in conceptual change. In L. Magnani, N. J. Nersessian, & P. Thagard (Eds.), Model-based reasoning in scientific discovery (pp. 5–22). New York: Kluwer Academic/Plenum Publishers.

    Chapter  Google Scholar 

  • Nersessian, N. J. (2002). Maxwell and “the method of physical analogy”: Model-based reasoning, generic abstraction, and conceptual change. In D. Malament (Ed.), Essays in the history and philosophy of science and mathematics (pp. 129–166). Lasalle, Il: Open Court.

    Google Scholar 

  • Nersessian, N. J. (2008). Creating scientific concepts. Cambridge: The MIT Press.

    Google Scholar 

  • Nersessian, N. J. (2009). How do engineering scientists think? Model-based simulation in biomedical engineering laboratories. Topics in Cognitive Science, 1, 730–757.

    Article  Google Scholar 

  • Nersessian, N. J. & Patton, C. (2009). Model-based reasoning in interdisciplinary engineering. In A. W. M. Meijers (Ed.), The handbook of the philosophy of technology & engineering sciences (pp. 678–718). Berlin: Springer.

    Google Scholar 

  • Osbeck, L. M., Nersessian, N. J., Malone, K. R., & Newstetter, W. C. (2013). Science as psychology: Sense-making and identity in science practice. Cambridge: Cambridge University Press.

    Google Scholar 

  • Proctor, R. W., & Capaldi, E. J. (2012). Psychology of science: Implicit and explicit processes. Oxford: Oxford University Press.

    Google Scholar 

  • Raghavan, K., & Glaser, R. (1994). Studying and teaching model-based reasoning in science. In S. Vosniadou, E. Corte, & H. Mandl (Eds.), Technology-based learning environments: Psychological and educational foundations (pp. 104–111). Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

  • Schank, J. C. (2001). Beyond reductionism: Refocusing on the individual with individual-based modeling. Complexity, 6(3), 33–40.

    Google Scholar 

  • Schank, J. C. (2008). The development of locomotor kinematics in neonatal rats: An agent-based modeling analysis in group and individual contexts. Journal of Theoretical Biology, 254(2008), 826–842. doi:10.1016/j.jtbi.2008.07.024

    Article  Google Scholar 

  • Schank, J. C., & Alberts, J. R. (1997). Self-organized huddles of rat pups modeled by simple rules of individual behavior. Journal of Theoretical Biology, 189(1), 11–25. doi:10.1006/jtbi.1997.0488

    Article  Google Scholar 

  • Schank, J. C., May, C. J., & Joshi, S. S. (2014). Models as scaffolds for understanding. In L. R. Caporael, J. R. Griesemer, & W. C. Wimsatt (Eds.), Developing scaffolds in evolution, culture, and cognition. Cambridge: MIT Press.

    Google Scholar 

  • Schank, J. C., May, C. J., Tran, J. T., & Joshi, S. S. (2004). A biorobotic investigation of norway rat pups (Rattus norvegicus) in an arena. Adaptive Behavior, 12(3–4), 161–173. (1059-7123(200409/12) 12:3–4; 161–173; 048910).

    Google Scholar 

  • Stephens, S. A., McRobbie, C. J., & Lucas, K. B. (1999). Model-based reasoning in a year 10 classroom. In Research in science education (Vol. 29, Issue 2, pp 189–208). New York: Kluwer Academic Publishers. doi:10.1007/BF02461768

    Google Scholar 

  • Suarez, M. (2003). Scientific representation: Against similarity and isomorphism. International Studies in the Philosophy of Science, 17(3), 225–244.

    Article  Google Scholar 

  • Suarez, M. (2004). An inferential conception of scientific representation. Philosophy of Science, 71(5), 767–779.

    Article  Google Scholar 

  • Suarez, M. (2010). Scientific representation. Philosophy Compass, 5(1), 91–101.

    Google Scholar 

  • Suarez, M. (2015). Deflationary representation, inference, and practice. Studies in History and Philosophy of Science Part A, 49, 36–47.

    Article  Google Scholar 

  • Thagard, P. (2012). The cognitive science of science: Explanation, discovery, and conceptual change. Cambridge: MIT Press.

    Google Scholar 

  • Toon, A. (2010). Models as make-believe. In R. Frigg & M. C. Hunter (Eds.), Beyond mimesis and convention (Vol. 262). doi:10.1007/978-90-481-3851-7_3 (Boston Studies in the Philosophy of Science)

  • Tweney, R. D. (1985). Faraday’s discovery of induction: A Cognitive Approach. In D. Gooding & F.A.J.L. James (Eds.), Faraday rediscovered: Essays on the life and work of Michael Faraday, 1791–1867. New York: Stockton Press/London: Macmillan, pp. 189-210.

    Google Scholar 

  • Tweney, R. D. (1989). Fields of enterprise: On Michael Faraday’s thought. In D. Wallace, & H. Gruber (Eds.), Creative people at work: Twelve cognitive case studies (pp. 91–106). Oxford University Press.

    Google Scholar 

  • Tweney, R. D. (2014). Metaphor and model-based reasoning in maxwell’s mathematical physics. In L. Magnani (Ed.), Model-based reasoning in science and technology: Studies in applied philosophy, epistemology and rational ethics. Berlin, Heidelberg: Springer, pp. 395–414. doi:10.1007/978-3-642-37428-9_21

    Google Scholar 

  • van Fraassen, B. (2008). Scientific representation. Oxford: Oxford University Press.

    Google Scholar 

  • Weisberg, M. (2006). Robustness analysis. Philosophy of Science, 73, 730–742. doi:10.1086/518628

    Article  Google Scholar 

  • Weisberg, M. (2007a). Who is a modeler? British Journal for Philosophy of Science, 58, 207–233.

    Article  Google Scholar 

  • Weisberg, M. (2007b). Three kinds of idealization. Journal of Philosophy, 104(12), 639–659.

    Article  Google Scholar 

  • Weisberg, M. (2013). Simulation and similarity: Using models to understand the world. Oxford University Press.

    Google Scholar 

  • Woods, J. (2014). Against fictionalism. In: L. Magnani (Ed.), Model-based reasoning in science and technology (Vol. 8). Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-37428-9_2 (Studies in Applied Philosophy, Epistemology and Rational Ethics).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilherme Sanches de Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

de Oliveira, G.S. (2016). Approaches to Scientific Modeling, and the (Non)Issue of Representation: A Case Study in Multi-model Research on Thigmotaxis and Group Thermoregulation. In: Magnani, L., Casadio, C. (eds) Model-Based Reasoning in Science and Technology. Studies in Applied Philosophy, Epistemology and Rational Ethics, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-319-38983-7_5

Download citation

Publish with us

Policies and ethics