Skip to main content

Targeted Therapies for Hepatocellular Carcinoma

  • Chapter
  • First Online:
Hepatocellular Carcinoma

Part of the book series: Current Clinical Oncology ((CCO))

Abstract

The years of fundamental cancer biology research is now starting to pay clinical dividends, with the identification of key enzymatic steps in the growth control and angiogenesis pathways, resulting in specific chemical inhibitors and antibodies to several of the involved kinases. This has led to the FDA approval of sorafenib, a multityrosine kinase inhibitor that enhanced survival of patients with advanced hepatocellular carcinoma (HCC). Within the last 5 years, other novel, non-chemotherapy agents, evaluated as first-line agents (i.e., sunitinib, linifanib, brivanib, erlotinib plus sorafenib) or second-line agents (brivanib, everolimus, ramucirumab) in phase III studies, failed to achieve their primary endpoint (overall survival). To improve outcomes for HCC, molecular pathways leading to the pathogenesis of HCC need to be further elucidated, and biomarkers should be evaluated and integrated into clinical studies. Notably, a phase II study suggests biomarkers may potentially play a role in the selection of patients responsive to therapy. In a phase II study evaluating placebo versus tivantinib, a c-MET tyrosine kinase inhibitor, patients with MET-high tumors were responsive to tivantinib and had significantly improved median overall survival with tivantinib versus placebo. Patients with HCC and diagnostically c-MET-high tumors are prospectively being recruited into phase III studies to further evaluate the use of a biomarker to select patients and the efficacy and safety of tivantinib. This may potentially mark the next era of management of HCC-personalized medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Avila MA, Berasain C, Sangro B, Prieto J. New therapies for hepatocellular carcinoma. Oncogene. 2006;25(27):3866–84.

    Article  CAS  PubMed  Google Scholar 

  2. Chow LQ, Eckhardt SG. Sunitinib: from rational design to clinical efficacy. J Clin Oncol. 2007;25(7):884–96.

    Article  CAS  PubMed  Google Scholar 

  3. Croce CM. Oncogenes and cancer. N Engl J Med. 2008;358(5):502–11.

    Article  CAS  PubMed  Google Scholar 

  4. Lyons JF, Wilhelm S, Hibner B, Bollag G. Discovery of a novel Raf kinase inhibitor. Endocr Relat Cancer. 2001;8(3):219–25.

    Article  CAS  PubMed  Google Scholar 

  5. Sridhar SS, Hedley D, Siu LL. Raf kinase as a target for anticancer therapeutics. Mol Cancer Ther. 2005;4(4):677–85.

    Article  CAS  PubMed  Google Scholar 

  6. Adjei AA, Hidalgo M. Intracellular signal transduction pathway proteins as targets for cancer therapy. J Clin Oncol. 2005;23(23):5386–403.

    Article  CAS  PubMed  Google Scholar 

  7. Friday BB, Adjei AA. Advances in targeting the Ras/Raf/MEK/Erk mitogen-activated protein kinase cascade with MEK inhibitors for cancer therapy. Clin Cancer Res. 2008;14(2):342–6.

    Article  CAS  PubMed  Google Scholar 

  8. Malumbres M, Barbacid M. RAS oncogenes: the first 30 years. Nat Rev Cancer. 2003;3(6):459–65.

    Article  CAS  PubMed  Google Scholar 

  9. Bos JL. Ras oncogenes in human cancer: a review. Cancer Res. 1989;49(17):4682–9.

    CAS  PubMed  Google Scholar 

  10. Hwang YH, Choi JY, Kim S, et al. Over-expression of c-raf-1 proto-oncogene in liver cirrhosis and hepatocellular carcinoma. Hepatol Res. 2004;29(2):113–21.

    Article  CAS  PubMed  Google Scholar 

  11. Wan PT, Garnett MJ, Roe SM, et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell. 2004;116(6):855–67.

    Article  CAS  PubMed  Google Scholar 

  12. Calvisi DF, Ladu S, Gorden A, et al. Ubiquitous activation of Ras and Jak/Stat pathways in human HCC. Gastroenterology. 2006;130(4):1117–28.

    Article  CAS  PubMed  Google Scholar 

  13. Hopfner M, Schuppan D, Scherubl H. Growth factor receptors and related signalling pathways as targets for novel treatment strategies of hepatocellular cancer. World J Gastroenterol. 2008;14(1):1–14.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Clauss M. Molecular biology of the VEGF and the VEGF receptor family. Semin Thromb Hemost. 2000;26(5):561–9.

    Article  CAS  Google Scholar 

  15. Seeliger H, Guba M, Kleespies A, Jauch KW, Bruns CJ. Role of mTOR in solid tumor systems: a therapeutical target against primary tumor growth, metastases, and angiogenesis. Cancer Metastasis Rev. 2007;26(3–4):611–21.

    Article  PubMed  Google Scholar 

  16. Villanueva A, Chiang DY, Newell P, et al. Pivotal role of mTOR signaling in hepatocellular carcinoma. Gastroenterology. 2008;135(6):1972–83, 1983.e1-11.

    Google Scholar 

  17. Kim YD, Park CH, Kim HS, et al. Genetic alterations of Wnt signaling pathway-associated genes in hepatocellular carcinoma. J Gastroenterol Hepatol. 2008;23(1):110–8.

    Article  CAS  PubMed  Google Scholar 

  18. Jianhonb W, Qingke H, Minxin C. The role of NF-êB in hepatocellular carcinoma cell. Chinese Med J. 2003;116(5):747–52.

    Google Scholar 

  19. Rocha-Lima CM, Soares HP, Raez LE, Singal R. EGFR targeting of solid tumors. Cancer Control. 2007;14(3):295–304.

    PubMed  Google Scholar 

  20. Okamoto T, Sanda T, Asamitsu K. NF-kappa B signaling and carcinogenesis. Curr Pharm Des. 2007;13(5):447–62.

    Article  CAS  PubMed  Google Scholar 

  21. Thomas MB, Abbruzzese JL. Opportunities for targeted therapies in hepatocellular carcinoma. J Clin Oncol. 2005;23(31):8093–108.

    Article  CAS  PubMed  Google Scholar 

  22. Chao Y, Li CP, Chau GY, et al. Prognostic significance of vascular endothelial growth factor, basic fibroblast growth factor, and angiogenin in patients with resectable hepatocellular carcinoma after surgery. Ann Surg Oncol. 2003;10(4):355–62.

    Article  PubMed  Google Scholar 

  23. Eikesdal HP, Kalluri R. Drug resistance associated with antiangiogenesis therapy. Semin Cancer Biol. 2009;19:310–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Torrecilla S, Llovet JM. New molecular therapies for hepatocellular carcinoma. Clin Res Hepatol Gastroenterol. 2015;39(Suppl 1):S80–5.

    Article  CAS  PubMed  Google Scholar 

  25. Casanovas O, Hicklin DJ, Bergers G, Hanahan D. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell. 2005;8(4):299–309.

    Article  CAS  PubMed  Google Scholar 

  26. Finn RS. Emerging targeted strategies in advanced hepatocellular carcinoma. Semin Liver Dis. 2013;33(Suppl 1):S11–9.

    CAS  PubMed  Google Scholar 

  27. Mizejewski GJ. Role of integrins in cancer: survey of expression patterns. Proc Soc Exp Biol Med. 1999;222(2):124–38.

    Article  CAS  PubMed  Google Scholar 

  28. Vautier G, Bomford AB, Portmann BC, Metivier E, Williams R, Ryder SD. p53 mutations in british patients with hepatocellular carcinoma: clustering in genetic hemochromatosis. Gastroenterology. 1999;117(1):154–60.

    Article  CAS  PubMed  Google Scholar 

  29. Kazachkov Y, Khaoustov V, Yoffe B, Solomon H, Klintmalm GB, Tabor E. p53 abnormalities in hepatocellular carcinoma from United States patients: analysis of all 11 exons. Carcinogenesis. 1996;17(10):2207–12.

    Article  CAS  PubMed  Google Scholar 

  30. de Visser KE, Eichten A, Coussens LM. Paradoxical roles of the immune system during cancer development. Nat Rev Cancer. 2006;6(1):24–37.

    Article  PubMed  Google Scholar 

  31. Hato T, Goyal L, Greten TF, Duda DG, Zhu AX. Immune checkpoint blockade in hepatocellular carcinoma: current progress and future directions. Hepatology. 2014;60(5):1776–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci U S A. 2002;99(19):12293–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Blank C, Gajewski TF, Mackensen A. Interaction of PD-L1 on tumor cells with PD-1 on tumor-specific T cells as a mechanism of immune evasion: implications for tumor immunotherapy. Cancer Immunol Immunother. 2005;54(4):307–14.

    Article  CAS  PubMed  Google Scholar 

  34. Sahasrabuddhe VV, Gunja MZ, Graubard BI, et al. Nonsteroidal anti-inflammatory drug use, chronic liver disease, and hepatocellular carcinoma. J Natl Cancer Inst. 2012;104(23):1808–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Petrick JL, Sahasrabuddhe VV, Chan AT, et al. NSAID use and risk of hepatocellular carcinoma and intrahepatic cholangiocarcinoma: the liver cancer pooling project. Cancer Prev Res (Phila). 2015. pii: canprevres.0126.2015 [Epub ahead of print].

    Google Scholar 

  36. Cervello M, Montalto G. Cyclooxygenases in hepatocellular carcinoma. World J Gastroenterol. 2006;12(32):5113–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ciardiello F, Tortora G. EGFR antagonists in cancer treatment. N Engl J Med. 2008;358(11):1160–74.

    Article  CAS  PubMed  Google Scholar 

  38. Kawaguchi Y, Kono K, Mimura K, Sugai H, Akaike H, Fujii H. Cetuximab induce antibody-dependent cellular cytotoxicity against EGFR-expressing esophageal squamous cell carcinoma. Int J Cancer. 2007;120(4):781–7.

    Article  CAS  PubMed  Google Scholar 

  39. Camp ER, Summy J, Bauer TW, Liu W, Gallick GE, Ellis LM. Molecular mechanisms of resistance to therapies targeting the epidermal growth factor receptor. Clin Cancer Res. 2005;11(1):397–405.

    CAS  PubMed  Google Scholar 

  40. Munshi N, Jeay S, Li Y, Chen CR, et al. ARQ 197, a novel and selective inhibitor of the human c-MET receptor tyrosine kinase with antitumor activity. Mol Cancer Ther. 2010;9(6):1544–53.

    Article  CAS  PubMed  Google Scholar 

  41. You H, Ding W, Dang H, Jiang Y, Rountree CB. c-Met represents a potential therapeutic target for personalized treatment in hepatocellular carcinoma. Hepatology. 2011;54(3):879–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Llovet JM, Hernandez-Gea V. Hepatocellular carcinoma: reasons for phase III failure and novel perspectives on trial design. Clin Cancer Res. 2014;20(8):2072–9.

    Article  CAS  PubMed  Google Scholar 

  43. Santoro A, Rimassa L, Borbath I, et al. Tivantinib for second-line treatment of advanced hepatocellular carcinoma: a randomised, placebo-controlled phase 2 study. Lancet Oncol. 2013;14(1):55–63.

    Article  CAS  PubMed  Google Scholar 

  44. Abou-Alfa GK. Approaching the era of personalised therapy for liver cancer? Lancet Oncol. 2013;14(1):7–8.

    Google Scholar 

  45. Website for registered clinical trials, clinicaltrials.gov.

    Google Scholar 

  46. Goyal L, Muzumdar MD, Zhu AX. Targeting the HGF/c-MET pathway in hepatocellular carcinoma. Clin Cancer Res. 2013;19(9):2310–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhu AX. New agents on the horizon in hepatocellular carcinoma. Ther Adv Med Oncol. 2013;5(1):41–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Llovet JM, Villanueva A, Lachenmayer A, Finn RS. Advances in targeted therapies for hepatocellular carcinoma in the genomic era. Nat Rev Clin Oncol. 2015;12(7):408–24.

    Article  CAS  PubMed  Google Scholar 

  49. Huynh H, Nguyen TT, Chow KH, Tan PH, Soo KC, Tran E. Over-expression of the mitogen-activated protein kinase (MAPK) kinase (MEK)-MAPK in hepatocellular carcinoma: its role in tumor progression and apoptosis. BMC Gastroenterol. 2003;3:19.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Klein PJ, Schmidt CM, Wiesenauer CA, et al. The effects of a novel MEK inhibitor PD184161 on MEK-ERK signaling and growth in human liver cancer. Neoplasia. 2006;8(1):1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Amaravadi R, Thompson CB. The survival kinases Akt and Pim as potential pharmacological targets. J Clin Invest. 2005;115(10):2618–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pang RW, Poon RT. From molecular biology to targeted therapies for hepatocellular carcinoma: the future is now. Oncology. 2007;72(Suppl 1):30–44.

    Article  CAS  PubMed  Google Scholar 

  53. Peralba JM, DeGraffenried L, Friedrichs W, Fulcher L, Grünwald V, Weiss G, Hidalgo M. Pharmacodynamic evaluation of CCI-779, an inhibitor of mTOR in cancer patients. Clin Cancer Res. 2003;9(8):2887–92.

    CAS  PubMed  Google Scholar 

  54. Zhu AX, Kudo M, Assenat E, et al. Effect of everolimus on survival in advanced hepatocellular carcinoma after failure of sorafenib: the EVOLVE-1 randomized clinical trial. JAMA. 2014;312(1):57–67.

    Article  PubMed  Google Scholar 

  55. Cheng A, Kang Y, Chen Z, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2009;10(1):25–34.

    Article  CAS  PubMed  Google Scholar 

  56. Llovet J, Ricci S, Mazzaferro V, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359(4):378–90.

    Article  CAS  PubMed  Google Scholar 

  57. Lencioni R, Kudo M, Ye SL, et al. GIDEON (Global Investigation of therapeutic DEcisions in hepatocellular carcinoma and Of its treatment with sorafeNib): second interim analysis. Int J Clin Pract. 2014;68(5):609–17.

    Article  CAS  PubMed  Google Scholar 

  58. You L, He B, Xu Z, et al. Inhibition of Wnt-2-mediated signaling induces programmed cell death in non-small-cell lung cancer cells. Oncogene. 2004;23(36):6170–4.

    Article  CAS  PubMed  Google Scholar 

  59. Emami KH, Nguyen C, Ma H, et al. A small molecule inhibitor of betacatenin/CREB-binding protein transcription [corrected]. Proc Natl Acad Sci USA. 2004;101(34):12682–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. You L, He B, Uematsu K, et al. Inhibition of Wnt-1 signaling induces apoptosis in betacatenin-deficient mesothelioma cells. Cancer Res. 2004;64(10):3474–8.

    Article  CAS  PubMed  Google Scholar 

  61. Yount S, Cella D, Webster K, et al. Assessment of patient-reported clinical outcome in pancreatic and other hepatobiliary cancers: the FACT hepatobiliary symptom index. J Pain Symptom Manag. 2002;24(1):32–44.

    Article  Google Scholar 

  62. Wei W, Chua MS, Grepper S, So SK. Blockade of Wnt-1 signaling leads to anti-tumor effects in hepatocellular carcinoma cells. Mol Cancer. 2009;8:76.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Delgado ER, Yang J, So J, et al. Identification and characterization of a novel small-molecule inhibitor of β-catenin signaling. Am J Pathol. 2014;184(7):2111–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ganten TM, Koschny R, Haas TL, et al. Proteasome inhibition sensitizes hepatocellular carcinoma cells, but not human hepatocytes, to TRAIL. Hepatology. 2005;42(3):588–97.

    Article  CAS  PubMed  Google Scholar 

  65. Zang Y, Thomas SM, Chan ET, et al. The next generation proteasome inhibitors carfilzomib and oprozomib activate prosurvival autophagy via induction of the unfolded protein response and ATF4. Autophagy. 2012;8(12):1873–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Siegel AB, Cohen EI, Ocean A, et al. Phase II trial evaluating the clinical and biologic effects of bevacizumab in unresectable hepatocellular carcinoma. J Clin Oncol. 2008;26(18):2992–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Spratlin JL, Cohen RB, Eadens M, et al. Phase I pharmacologic and biologic study of ramucirumab (IMC-1121B), a fully human immunoglobulin G1 monoclonal antibody targeting the vascular endothelial growth factor receptor-2. J Clin Oncol. 2010;28(5):780–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhu AX, Park JO, Ryoo BY, et al. Ramucirumab versus placebo as second-line treatment in patients with advanced hepatocellular carcinoma following first-line therapy with sorafenib (REACH): a randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol. 2015;16(7):859–70.

    Article  CAS  PubMed  Google Scholar 

  69. van Geel RM, Beijnen JH, Schellens JH. Concise drug review: pazopanib and axitinib. The Oncologist. 2012;17(8):1081–9.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Llovet JM, Villanueva A, Lachenmayer A, Finn RS. Advances in targeted therapies for hepatocellular carcinoma in the genomic era. Nat Rev Clin Oncol. 2015;12(8):436.

    Article  PubMed  Google Scholar 

  71. John L, Cowey CL. The rapid emergence of novel therapeutics in advanced malignant melanoma. Dermatol Ther (Heidelb). 2015;5(3):151–69.

    Google Scholar 

  72. El-Khoueiry AB, Melero I, Crocenzi TS, et al. Phase I/II safety and antitumor activity of nivolumab in patients with advanced hepatocellular carcinoma (HCC): CA209-040. Prersented a the American Society of Clinical Oncology (ASCO) Annual Meeting in Chicago, Illinois. J Clin Oncol 33, 2015 (suppl; abstr LBA101).

    Google Scholar 

  73. Wilhelm S, Chien DS. BAY 43-9006: preclinical data. Curr Pharm Des. 2002;8(25):2255–7.

    Article  CAS  PubMed  Google Scholar 

  74. Wilhelm SM, Carter C, Tang L, et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004;64(19):7099–109.

    Article  CAS  PubMed  Google Scholar 

  75. Carlomagno F, Anaganti S, Guida T, et al. BAY 43-9006 inhibition of oncogenic RET mutants. J Natl Cancer Inst. 2006;98(5):326–34.

    Article  CAS  PubMed  Google Scholar 

  76. National Comprehensive Cancer Network (NCCN) Clinical practice guidelines in oncology: hepatobiliary cancers version 2. 2015. Accessed online at: http://www.nccn.org/professionals/physician_gls/pdf/hepatobiliary.pdf.

  77. Akutsu N, Sasaki S, Takagi H, et al. Development of hypertension within 2 weeks of initiation of sorafenib for advanced hepatocellular carcinoma is a predictor of efficacy. Int J Clin Oncol. 2015;20(1):105–10.

    Article  CAS  PubMed  Google Scholar 

  78. Li Y, Gao ZH, Qu XJ. The adverse effects of sorafenib in patients with advanced cancers. Basic Clin Pharmacol Toxicol. 2015;116(3):216–21.

    Article  CAS  Google Scholar 

  79. Azad NS, Aragon-Ching JB, Dahut WL, et al. Hand-foot skin reaction increases with cumulative sorafenib dose and with combination anti-vascular endothelial growth factor therapy. Clin Cancer Res. 2009;15(4):1411–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lacouture ME, Wu S, Robert C, et al. Evolving strategies for the management of hand-foot skin reaction associated with the multitargeted kinase inhibitors sorafenib and sunitinib. Oncologist. 2008;13(9):1001–11.

    Article  CAS  PubMed  Google Scholar 

  81. Chu D, Lacouture ME, Fillos T, Wu S. Risk of hand-foot skin reaction with sorafenib: a systematic review and meta-analysis. Acta Oncol. 2008;47(2):176–86.

    Article  CAS  PubMed  Google Scholar 

  82. Bruix J, Takayama T, Mazzaferro V, et al. STORM: A phase III randomized, double-blind, placebo-controlled trial of adjuvant sorafenib after resection or ablation to prevent recurrence of hepatocellular carcinoma (HCC) J Clin Oncol. 2014 ASCO annual meeting abstracts. Vol 32, No 15_suppl (May 20 Supplement), 2014: Abstract 4006.

    Google Scholar 

  83. Cheng AL, Kang YK, Lin DY, et al. Sunitinib versus sorafenib in advanced hepatocellular cancer: results of a randomized phase III trial. J Clin Oncol. 2013;31(32):4067–75.

    Article  CAS  PubMed  Google Scholar 

  84. Cainap C, Qin S, Huang WT, et al. Linifanib versus sorafenib in patients with advanced hepatocellular carcinoma: results of a randomized phase III trial. J Clin Oncol. 2015;33(2):172–9.

    Article  CAS  PubMed  Google Scholar 

  85. Nakamura I, Zakharia K, Banini BA, et al. Brivanib attenuates hepatic fibrosis in vivo and stellate cell activation in vitro by inhibition of FGF, VEGF and PDGF signaling. PLoS ONE. 2014;9(4):e92273.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Huynh H, Ngo VC, Fargnoli J, et al. Brivanib alaninate, a dual inhibitor of vascular endothelial growth factor receptor and fibroblast growth factor receptor tyrosine kinases, induces growth inhibition in mouse models of human hepatocellular carcinoma. Clin Cancer Res. 2008;14(19):6146–53.

    Article  CAS  PubMed  Google Scholar 

  87. Johnson PJ, Qin S, Park JW, et al. Brivanib versus sorafenib as first-line therapy in patients with unresectable, advanced hepatocellular carcinoma: results from the randomized phase III BRISK-FL study. J Clin Oncol. 2013;31(28):3517–24.

    Article  CAS  PubMed  Google Scholar 

  88. Llovet JM, Decaens T, Raoul JL, et al. Brivanib in patients with advanced hepatocellular carcinoma who were intolerant to sorafenib or for whom sorafenib failed: results from the randomized phase III BRISK-PS study. J Clin Oncol. 2013;31(28):3509–16.

    Article  CAS  PubMed  Google Scholar 

  89. Brave SR, Ratcliffe K, Wilson Z, et al. Assessing the activity of cediranib, a VEGFR-2/3 tyrosine kinase inhibitor, against VEGFR-1 and members of the structurally related PDGFR family. Mol Cancer Ther. 2011;10(5):861–73.

    Article  CAS  PubMed  Google Scholar 

  90. Hurwitz HI, Dowlati A, Saini S, et al. Phase I trial of pazopanib in patients with advanced cancer. Clin Cancer Res. 2009;15(12):4220–7.

    Article  CAS  PubMed  Google Scholar 

  91. Chuma M, Terashita K, Sakamoto N. New molecularly targeted therapies against advanced hepatocellular carcinoma: From molecular pathogenesis to clinical trials and future directions. Hepatol Res. 2014. doi:10.1111/hepr.12459. [Epub ahead of print].

    Google Scholar 

  92. Bruix J, Tak WY, Gasbarrini A, et al. Regorafenib as second-line therapy for intermediate or advanced hepatocellular carcinoma: multicentre, open-label, phase II safety study. Eur J Cancer. 2013;49(16):3412–9.

    Article  CAS  PubMed  Google Scholar 

  93. Li T, Dong ZR, Guo ZY, et al. Aspirin enhances IFN-α-induced growth inhibition and apoptosis of hepatocellular carcinoma via JAK1/STAT1 pathway. Cancer Gene Ther. 2013;20(6):366–74.

    Article  CAS  PubMed  Google Scholar 

  94. Xiong ZP, Yang SR, Liang ZY, et al. Association between vascular endothelial growth factor and metastasis after transcatheter arterial chemoembolization in patients with hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int. 2004;3(3):386–90.

    CAS  PubMed  Google Scholar 

  95. Sergio A, Cristofori C, Cardin R, et al. Transcatheter arterial chemoembolization (TACE) in hepatocellular carcinoma (HCC): the role of angiogenesis and invasiveness. Am J Gastroenterol. 2008;103(4):914–21.

    Article  PubMed  Google Scholar 

  96. Kudo M, Imanaka K, Chida N, et al. Phase III study of sorafenib after transarterial chemoembolisation in Japanese and Korean patients with unresectable hepatocellular carcinoma. Eur J Cancer. 2011;47(14):2117–27.

    Article  CAS  PubMed  Google Scholar 

  97. Zhu AX, Rosmorduc O, Evans TR, Ross PJ, et al. SEARCH: a phase III, randomized, double-blind, placebo-controlled trial of sorafenib plus erlotinib in patients with advanced hepatocellular carcinoma. J Clin Oncol. 2015;33(6):559–66.

    Article  CAS  PubMed  Google Scholar 

  98. Michielsen PP, Francque SM, van Dongen JL. Viral hepatitis and hepatocellular carcinoma. World J Surg Oncol. 2005;3:27.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Yin J, Li N, Han Y, et al. Effect of antiviral treatment with nucleotide/nucleoside analogs on postoperative prognosis of hepatitis B virus-related hepatocellular carcinoma: a two-stage longitudinal clinical study. J Clin Oncol. 2013;31(29):3647–55.

    Article  CAS  PubMed  Google Scholar 

  100. Weinstein IB. Cancer. Addiction to oncogenes—the Achilles heal of cancer. Science. 2002;297(5578):63–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian I. Carr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kralian, S., Carr, B.I. (2016). Targeted Therapies for Hepatocellular Carcinoma. In: Carr, B. (eds) Hepatocellular Carcinoma. Current Clinical Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-34214-6_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34214-6_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34212-2

  • Online ISBN: 978-3-319-34214-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics