Skip to main content

Molecular and Experimental Basis for COX Inhibition in Cancer

  • Chapter
  • First Online:
NSAIDs and Aspirin

Abstract

A growing body of evidences suggests that aspirin and nonaspirin nonsteroidal anti-inflammatory drugs (NSAIDs) cause anticancer effects, mainly in the colorectum. At therapeutic doses, these agents act through the inhibition of cyclooxygenase (COX)-1 and COX-2, and, in turn, they affect the biosynthesis of prostanoids. Interestingly, the cancer chemopreventive effect was also found with low-dose aspirin, which is used to prevent cardiovascular disease for its preferential inhibitory effect on platelet COX-1. This finding led to hypothesize that the antiplatelet effect of aspirin is involved in its cancer chemopreventive action. In fact, it has been proposed that activated platelets, in response to tissue damage, may induce a pro-inflammatory program in tumor microenvironment involving enhanced biosynthesis of COX-2-dependent prostaglandin E2, a pro-inflammatory and protumorigenic prostanoid. Selective inhibitors of COX-2 (named coxibs) significantly reduce the risk of recurrent colorectal adenomas, but they may enhance the risk of cardiovascular events, thus precluding their use as anticancer agents. Importantly, the inhibition of platelet function by low-dose aspirin my also prevent tumor metastasis. In fact, within the circulatory system, the formation of platelet aggregates surrounding tumor cells will support tumor cell survival and protection from immune elimination and promote their arrest at the endothelium and extravasation. Aspirin and other NSAIDs are able to affect proliferation and to induce apoptosis of colon cancer cells in vitro, independently from their inhibitory effect on COX-dependent prostanoid biosynthesis, at very high concentrations, often in the millimolar range, that are not reached in the systemic circulation, at therapeutic doses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thun MJ, Henley SJ, Patrono C. Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues. J Natl Cancer Inst. 2002;94:252–66.

    Article  CAS  PubMed  Google Scholar 

  2. Rigas B, Goldman IS, Levine L. Altered eicosanoid levels in human colon cancer. J Lab Clin Med. 1993;122:518–23.

    CAS  PubMed  Google Scholar 

  3. Wang D, Dubois RN. Cyclooxygenase-2: a potential target in breast cancer. Semin Oncol. 2004;31:64–73.

    Article  CAS  PubMed  Google Scholar 

  4. McLemore TL, Hubbard WC, Litterst CL, Liu MC, Miller S, McMahon NA, Eggleston JC, Boyd MR. Profiles of prostaglandin biosynthesis in normal lung and tumor tissue from lung cancer patients. Cancer Res. 1988;48:3140–7.

    CAS  PubMed  Google Scholar 

  5. Hambek M, Baghi M, Wagenblast J, Schmitt J, Baumann H, Knecht R. Inverse correlation between serum PGE2 and T classification in head and neck cancer. Head Neck. 2007;29:244–8.

    Article  PubMed  Google Scholar 

  6. Menter DG, Dubois RN. Prostaglandins in cancer cell adhesion, migration, and invasion. Int J Cell Biol. 2012;2012:723419.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Wang D, Fu L, Sun H, Guo L, DuBois RN. Prostaglandin E2 promotes colorectal cancer stem cell expansion and metastasis in mice. Gastroenterology. 2015;149:1884–95.

    Article  CAS  PubMed  Google Scholar 

  8. Wang D, DuBois RN. The role of prostaglandin E2 in tumor-associated immunosuppression. Trends Mol Med. 2016;22:1–3.

    Article  PubMed  CAS  Google Scholar 

  9. Steinbach G, Lynch PM, Phillips RK, Wallace MH, Hawk E, Gordon GB, Wakabayashi N, Saunders B, Shen Y, Fujimura T, Su LK, Levin B, Godio L, Patterson S, Rodriguez-Bigas MA, Jester SL, King KL, Schumacher M, Abbruzzese J, DuBois RN, Hittelman WN, Zimmerman S, Sherman JW, Kelloff G. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N Engl J Med. 2000;342:1946–52.

    Article  CAS  PubMed  Google Scholar 

  10. Arber N, Eagle CJ, Spicak J, Racz I, Dite P, Hajer J, et al. Celecoxib for the prevention of colorectal adenomatous polyps. N Engl J Med. 2006;355:885–95.

    Article  CAS  PubMed  Google Scholar 

  11. Bertagnolli MM, Eagle CJ, Zauber AG, Redston M, Solomon SD, Kim KM, et al. Celecoxib for the prevention of sporadic colorectal adenomas. N Engl J Med. 2006;355:873–84.

    Article  CAS  PubMed  Google Scholar 

  12. Baron JA, Sandler RS, Bresalier RS, Quan H, Riddell R, Lanas A, et al. A randomized trial of rofecoxib for the chemoprevention of colorectal adenomas. Gastroenterology. 2006;131:1674–82.

    Article  CAS  PubMed  Google Scholar 

  13. Dovizio M, Bruno A, Tacconelli S, Patrignani P. Mode of action of aspirin as a chemopreventive agent. Recent Results Cancer Res. 2013;191:39–65.

    Article  CAS  PubMed  Google Scholar 

  14. Simmons L, Botting RM, Hla T. Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacol Rev. 2004;56:387–437.

    Article  CAS  PubMed  Google Scholar 

  15. Gijón MA, Leslie CC. Regulation of arachidonic acid release and cytosolic phospholipase A2 activation. J Leukoc Biol. 1999;65:330–6.

    PubMed  Google Scholar 

  16. Dubois RN, Abramson SB, Crofford L, Gupta RA, Simon LS, Van De Putte LB, Lipsky PE. Cyclooxygenase in biology and disease. FASEB J. 1998;12:1063–73.

    CAS  PubMed  Google Scholar 

  17. Smyth EM, Grosser T, Wang M, Yu Y, FitzGerald GA. Prostanoids in health and disease. J Lipid Res. 2009;50:S423–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Funk CD. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science. 2001;294:1871–5.

    Article  CAS  PubMed  Google Scholar 

  19. Patrignani P, Patrono C. Cyclooxygenase inhibitors: from pharmacology to clinical read-outs. Biochim Biophys Acta. 2015;1851:422–32.

    Article  CAS  PubMed  Google Scholar 

  20. Kudo I, Murakami M. Prostaglandin e synthase, a terminal enzyme for prostaglandin E2 biosynthesis. J Biochem Mol Biol. 2005;38:633–8.

    Article  CAS  PubMed  Google Scholar 

  21. Joo M, Sadikot RT. PGD synthase and PGD2 in immune response. Mediators Inflamm. 2012;2012:503128.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Hirai H, Tanaka K, Yoshie O, Ogawa K, Kenmotsu K, Takamori Y, Ichimasa M, Sugamura K, Nakamura M, Takano S, Nagata K. Prostaglandin D2 selectively induces chemotaxis in T helper type 2 cells, eosinophils, and basophils via seven-transmembrane receptor CRTH2. J Exp Med. 2001;193:255–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang D, Dubois RN. The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene. 2010;29:781–8.

    Article  CAS  PubMed  Google Scholar 

  24. Backlund MG, Mann JR, Holla VR, Buchanan FG, Tai HH, Musiek ES, Milne GL, Katkuri S, DuBois RN. 15-Hydroxyprostaglandin dehydrogenase is down-regulated in colorectal cancer. J Biol Chem. 2005;280:3217–23.

    Article  CAS  PubMed  Google Scholar 

  25. Wolf I, O'Kelly J, Rubinek T, Tong M, Nguyen A, Lin BT, Tai HH, Karlan BY, Koeffler HP. 15-hydroxyprostaglandin dehydrogenase is a tumor suppressor of human breast cancer. Cancer Res. 2006;66:7818–23.

    Article  CAS  PubMed  Google Scholar 

  26. Hughes D, Otani T, Yang P, Newman RA, Yantiss RK, Altorki NK, Port JL, Yan M, Markowitz SD, Mazumdar M, Tai HH, Subbaramaiah K, Dannenberg AJ. NAD+-dependent 15-hydroxyprostaglandin dehydrogenase regulates levels of bioactive lipids in non-small cell lung cancer. Cancer Prev Res. 2008;1:241–9.

    Article  CAS  Google Scholar 

  27. Thiel A, Ganesan A, Mrena J, Junnila S, Nykänen A, Hemmes A, Tai HH, Monni O, Kokkola A, Haglund C, Petrova TV, Ristimäki A. 15-hydroxyprostaglandin dehydrogenase is down-regulated in gastric cancer. Clin Cancer Res. 2009;15:4572–80.

    Article  CAS  PubMed  Google Scholar 

  28. Moser AR, Luongo C, Gould KA, McNeley MK, Shoemaker AR, Dove WF. ApcMin: a mouse model for intestinal and mammary tumorigenesis. Eur J Cancer. 1995;31A:1061–4.

    Article  CAS  PubMed  Google Scholar 

  29. Giardiello FM, Casero Jr RA, Hamilton SR, Hylind LM, Trimbath JD, Geiman DE, Judge KR, Hubbard W, Offerhaus GJ, Yang VW. Prostanoids, ornithine decarboxylase, and polyamines in primary chemoprevention of familial adenomatous polyposis. Gastroenterology. 2004;126:425–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Buchanan FG, DuBois RN. Connecting COX-2 and wnt in cancer. Cancer Cell. 2006;9:6–8.

    Article  CAS  PubMed  Google Scholar 

  31. Massó González EL, Patrignani P, Tacconelli S, García Rodríguez LA. Variability among nonsteroidal antiinflammatory drugs in risk of upper gastrointestinal bleeding. Arthritis Rheum. 2010;62:1592–601.

    Article  PubMed  CAS  Google Scholar 

  32. Garcia Rodriguez LA, Tacconelli S, Patrignani P. Role of dose potency in the prediction of risk of myocardial infarction associated with nonsteroidal anti-inflammatory drugs in the general population. J Am Coll Cardiol. 2008;52:1628–36.

    Article  PubMed  CAS  Google Scholar 

  33. Grosser T, Fries S, FitzGerald GA. Biological basis for the cardiovascular consequences of COX-2 inhibition: therapeutic challenges and opportunities. J Clin Invest. 2006;116:4–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang D, DuBois RN. Pro-inflammatory prostaglandins and progression of colorectal cancer. Cancer Lett. 2008;267:197–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Samuelsson B, Morgenstern R, Jakobsson PJ. Membrane prostaglandin E synthase-1: a novel therapeutic target. Pharmacol Rev. 2007;59:207–24.

    Article  CAS  PubMed  Google Scholar 

  36. Jakobsson PJ, Thoren S, Morgenstern R, Samuelsson B. Identification of human prostaglandin E synthase: a microsomal, glutathione-dependent, inducible enzyme, constituting a potential novel drug target. Proc Natl Acad Sci U S A. 1999;96:7220–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sampey AV, Monrad S, Crofford LJ. Microsomal prostaglandin E synthase-1: the inducible synthase for prostaglandin E2. Arthritis Res Ther. 2005;7:114–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dixon DA, Blanco FF, Bruno A, Patrignani P. Mechanistic aspects of COX-2 expression in colorectal neoplasia. Recent Results Cancer Res. 2013;191:7–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nakanishi M, Montrose DC, Clark P, Nambiar PR, Belinsky GS, Claffey KP, Xu D, Rosenberg DW. Genetic deletion of mPGES-1 suppresses intestinal tumorigenesis. Cancer Res. 2008;68:3251–9.

    Article  CAS  PubMed  Google Scholar 

  40. Elander N, Ungerbäck J, Olsson H, Uematsu S, Akira S, Söderkvist P. Genetic deletion of mPGES-1 accelerates intestinal tumorigenesis in APC(Min/+) mice. Biochem Biophys Res Commun. 2008;372:249–53.

    Article  CAS  PubMed  Google Scholar 

  41. Nakanishi M, Gokhale V, Meuillet EJ, Rosenberg DW. mPGES-1 as a target for cancer suppression: a comprehensive invited review “Phospholipase A2 and lipid mediators”. Biochimie. 2010;92:660–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Howe LR, Subbaramaiah K, Chung WJ, Dannenberg AJ, Brown AM. Transcriptional activation of cyclooxygenase-2 in Wnt-1-transformed mouse mammary epithelial cells. Cancer Res. 1999;59:1572–7.

    CAS  PubMed  Google Scholar 

  43. Takahashi R, Amano H, Satoh T, Tabata K, Ikeda M, Kitasato H, Akira S, Iwamura M, Majima M. Roles of microsomal prostaglandin E synthase-1 in lung metastasis formation in prostate cancer RM9 cells. Biomed Pharmacother. 2014;68:71–7.

    Article  CAS  PubMed  Google Scholar 

  44. Hanaka H, Pawelzik SC, Johnsen JI, Rakonjac M, Terawaki K, Rasmuson A, Sveinbjörnsson B, Schumacher MC, Hamberg M, Samuelsson B, Jakobsson PJ, Kogner P, Rådmark O. Microsomal prostaglandin E synthase 1 determines tumor growth in vivo of prostate and lung cancer cells. Proc Natl Acad Sci U S A. 2009;106:18757–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sonoshita M, Takaku K, Oshima M, Sugihara K, Taketo MM. Cyclooxygenase-2 expression in fibroblasts and endothelial cells of intestinal polyps. Cancer Res. 2002;62:6846–9.

    CAS  PubMed  Google Scholar 

  46. Chell SD, Witherden IR, Dobson RR, Moorghen M, Herman AA, Qualtrough D, Williams AC, Paraskeva C. Increased EP4 receptor expression in colorectal cancer progression promotes cell growth and anchorage independence. Cancer Res. 2006;66:3106–13.

    Article  CAS  PubMed  Google Scholar 

  47. Castellone MD, Teramoto H, Williams BO, Druey KM, Gutkind JS. Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-beta-catenin signaling axis. Science. 2005;310:1504–10.

    Article  CAS  PubMed  Google Scholar 

  48. Watanabe K, Kawamori T, Nakatsugi S, Ohta T, Ohuchida S, Yamamoto H, Maruyama T, Kondo K, Ushikubi F, Narumiya S, Sugimura T, Wakabayashi K. Role of the prostaglandin E receptor subtype EP1 in colon carcinogenesis. Cancer Res. 1999;59:5093–6.

    CAS  PubMed  Google Scholar 

  49. Mutoh M, Watanabe K, Kitamura T, Shoji Y, Takahashi M, Kawamori T, Tani K, Kobayashi M, Maruyama T, Kobayashi K, Ohuchida S, Sugimoto Y, Narumiya S, Sugimura T, Wakabayashi K. Involvement of prostaglandin E receptor subtype EP(4) in colon carcinogenesis. Cancer Res. 2002;62:28–32.

    CAS  PubMed  Google Scholar 

  50. Kawamori T, Kitamura T, Watanabe K, Uchiya N, Maruyama T, Narumiya S, Sugimura T, Wakabayashi K. Prostaglandin E receptor subtype EP(1) deficiency inhibits colon cancer development. Carcinogenesis. 2005;26:353–7.

    Article  CAS  PubMed  Google Scholar 

  51. Watanabe K, Kawamori T, Nakatsugi S, Ohta T, Ohuchida S, Yamamoto H, Maruyama T, Kondo K, Narumiya S, Sugimura T, Wakabayashi K. Inhibitory effect of a prostaglandin E receptor subtype EP(1) selective antagonist, ONO-8713, on development of azoxymethane-induced aberrant crypt foci in mice. Cancer Lett. 2000;156:57–61.

    Article  CAS  PubMed  Google Scholar 

  52. Ma X, Aoki T, Tsuruyama T, Narumiya S. Definition of prostaglandin E2-EP2 signals in the colon tumor microenvironment that amplify inflammation and tumor growth. Cancer Res. 2015;75:2822–32.

    Article  CAS  PubMed  Google Scholar 

  53. Dorn GW, Sens D, Chaikhouni A, Mais D, Halushka PV. Cultured human vascular smooth muscle cells with functional thromboxane A2 receptors: measurement of U46619-induced 45calcium efflux. Circ Res. 1987;60:952–6.

    Article  CAS  PubMed  Google Scholar 

  54. Pakala R, Willerson JT, Benedict CR. Effect of serotonin, thromboxane A2, and specific receptor antagonists on vascular smooth muscle cell proliferation. Circulation. 1997;96:2280–6.

    Article  CAS  PubMed  Google Scholar 

  55. FitzGerald GA. Mechanisms of platelet activation: thromboxane A2 as an amplifying signal for other agonists. Am J Cardiol. 1991;68:11B–5B.

    Article  CAS  PubMed  Google Scholar 

  56. Ali S, Davis MG, Becker MW, Dorn 2nd GW. Thromboxane A2 stimulates vascular smooth muscle hypertrophy by up-regulating the synthesis and release of endogenous basic fibroblast growth factor. J Biol Chem. 1993;268:17397–403.

    CAS  PubMed  Google Scholar 

  57. Raychowdhury MK, Yukawa M, Collins LJ, McGrail SH, Kent KC, Ware JA. Alternative splicing produces a divergent cytoplasmic tail in the human endothelial thromboxane A2 receptor. J Biol Chem. 1995;270:7011.

    Article  CAS  PubMed  Google Scholar 

  58. Breyer RM, Bagdassarian CK, Myers SA, Breyer MD. Prostanoid receptors: subtypes and signaling. Annu Rev Pharmacol Toxicol. 2001;41:661–90.

    Article  CAS  PubMed  Google Scholar 

  59. Needleman P, Wyche A, Raz A. Platelet and blood vessel arachidonate metabolism and interactions. J Clin Invest. 1979;63:345–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cogolludo A, Moreno L, Bosca L, Tamargo J, Perez-Vizcaino F. Thromboxane A2-induced inhibition of voltage-gated K+ channels and pulmonary vasoconstriction: role of protein kinase C zeta. Circ Res. 2003;93:656–63.

    Article  CAS  PubMed  Google Scholar 

  61. Ekambaram P, Lambiv W, Cazzolli R, Ashton AW, Honn KV. The thromboxane synthase and receptor signaling pathway in cancer: an emerging paradigm in cancer progression and metastasis. Cancer Metastasis Rev. 2011;30:397–408.

    Article  CAS  PubMed  Google Scholar 

  62. Pradono P, Tazawa R, Maemondo M, Tanaka M, Usui K, Saijo Y, Hagiwara K, Nukiwa T. Gene transfer of thromboxane A(2) synthase and prostaglandin I(2) synthase antithetically altered tumor angiogenesis and tumor growth. Cancer Res. 2002;62:63–6.

    CAS  PubMed  Google Scholar 

  63. Gustafsson A, Hansson E, Kressner U, Nordgren S, Andersson M, Lönnroth C, Lundholm K. Prostanoid receptor expression in colorectal cancer related to tumor stage, differentiation and progression. Acta Oncol. 2007;46:1107–12.

    Article  CAS  PubMed  Google Scholar 

  64. Sakai H, Suzuki T, Takahashi Y, Ukai M, Tauchi K, Fujii T, et al. Upregulation of thromboxane synthase in human colorectal carcinoma and the cancer cell proliferation by thromboxane A2. FEBS Lett. 2006;580:3368–74.

    Article  CAS  PubMed  Google Scholar 

  65. Shimizu T, Fujii T, Takahashi Y, Takahashi Y, Suzuki T, Ukai M, Tauchi K, Horikawa N, Tsukada K, Sakai H. Up-regulation of Kv7.1 channels in thromboxane A2-induced colonic cancer cell proliferation. Pflugers Arch. 2014;466:541–8.

    Article  CAS  PubMed  Google Scholar 

  66. Dovizio M, Tacconelli S, Ricciotti E, Bruno A, Maier TJ, Anzellotti P, Di Francesco L, Sala P, Signoroni S, Bertario L, Dixon DA, Lawson JA, Steinhilber D, FitzGerald GA, Patrignani P. Effects of celecoxib on prostanoid biosynthesis and circulating angiogenesis proteins in familial adenomatous polyposis. J Pharmacol Exp Ther. 2012;341:242–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sciulli MG, Filabozzi P, Tacconelli S, Padovano R, Ricciotti E, Capone ML, Grana M, Carnevale V, Patrignani P. Platelet activation in patients with colorectal cancer. Prostaglandins Leukot Essent Fatty Acids. 2005;72:79–83.

    Article  CAS  PubMed  Google Scholar 

  68. Labayle D, Fischer D, Vielh P, Drouhin F, Pariente A, Bories C, Duhamel O, Trousset M, Attali P. Sulindac causes regression of rectal polyps in familial adenomatous polyposis. Gastroenterology. 1991;101:635–9.

    Article  CAS  PubMed  Google Scholar 

  69. Nugent KP, Farmer KC, Spigelman AD, Williams CB, Phillips RK. Randomized controlled trial of the effect of sulindac on duodenal and rectal polyposis and cell proliferation in patients with familial adenomatous polyposis. Br J Surg. 1993;80:1618–9.

    Article  CAS  PubMed  Google Scholar 

  70. Ng K, Meyerhardt JA, Chan AT, Sato K, Chan JA, Niedzwiecki D, Saltz LB, Mayer RJ, Benson 3rd AB, Schaefer PL, Whittom R, Hantel A, Goldberg RM, Venook AP, Ogino S, Giovannucci EL, Fuchs CS. Aspirin and COX-2 inhibitor use in patients with stage III colon cancer. J Natl Cancer Inst. 2015;107:345.

    Article  PubMed  Google Scholar 

  71. FitzGerald GA, Cheng Y, Austin S. COX-2 inhibitors and the cardiovascular system. Clin Exp Rheumatol. 2001;19:S31–6.

    CAS  PubMed  Google Scholar 

  72. Bueno H, Bardají A, Patrignani P, Martín-Merino E, García-Rodríguez LA. Spanish case–control study to assess NSAID-Associated ACS risk investigators use of non-steroidal antiinflammatory drugs and type-specific risk of acute coronary syndrome. Am J Cardiol. 2010;105:1102–6.

    Article  CAS  PubMed  Google Scholar 

  73. Patrignani P, Tacconelli S, Bruno A, Sostres C, Lanas A. Managing the adverse effects of nonsteroidal anti-inflammatory drugs. Expert Rev Clin Pharmacol. 2011;4:605–21.

    Article  CAS  PubMed  Google Scholar 

  74. Chan AT. Aspirin and chemoprevention of cancer: reaching beyond the colon. Gastroenterology. 2012;143:1110–2.

    Article  PubMed  Google Scholar 

  75. Patrono C. The multifaceted clinical readouts of platelet inhibition by low-dose aspirin. J Am Coll Cardiol. 2015;66:74–85.

    Article  CAS  PubMed  Google Scholar 

  76. Algra AM, Rothwell PM. Effects of regular aspirin on long-term cancer incidence and metastasis: a systematic comparison of evidence from observational studies versus randomised trials. Lancet Oncol. 2012;13:518–27.

    Article  CAS  PubMed  Google Scholar 

  77. Cole BF, Logan RF, Halabi S, Benamouzig R, Sandler RS, Grainge MJ, Chaussade S, Baron JA. Aspirin for the chemoprevention of colorectal adenomas: meta-analysis of the randomized trials. J Natl Cancer Inst. 2009;101:256–66.

    Article  CAS  PubMed  Google Scholar 

  78. Burn J, Gerdes AM, Macrae F, Mecklin JP, Moeslein G, Olschwang S, et al. Long-term effect of aspirin on cancer risk in carriers of hereditary colorectal cancer: an analysis from the CAPP2 randomised controlled trial. Lancet. 2011;378:2081–7.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Burn J, Bishop DT, Mecklin JP, Macrae F, Möslein G, Olschwang S, et al. Effect of aspirin or resistant starch on colorectal neoplasia in the Lynch syndrome. N Engl J Med. 2008;359:2567–78.

    Article  CAS  PubMed  Google Scholar 

  80. Rothwell PM, Price JF, Fowkes FG, Zanchetti A, Roncaglioni MC, Tognoni G, Lee R, Belch JF, Wilson M, Mehta Z, Meade TW. Short-term effects of daily aspirin on cancer incidence, mortality, and non-vascular death: analysis of the time course of risks and benefits in 51 randomised controlled trials. Lancet. 2012;379:1602–12.

    Article  CAS  PubMed  Google Scholar 

  81. Cook NR, Lee IM, Zhang SM, Moorthy MV, Buring JE. Alternate-day, low-dose aspirin and cancer risk: long-term observational follow-up of a randomized trial. Ann Intern Med. 2013;159:77–85.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Rothwell PM, Wilson M, Elwin CE, Norrving B, Algra A, Warlow CP, Meade TW. Long term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomised trials. Lancet. 2010;376:1741–50.

    Article  CAS  PubMed  Google Scholar 

  83. Friis S, Riis AH, Erichsen R, Baron JA, Sørensen HT. Low-dose aspirin or nonsteroidal anti-inflammatory drug use and colorectal cancer risk: a population-based, case-control study. Ann Intern Med. 2015;163:347–55.

    Article  PubMed  Google Scholar 

  84. Movahedi M, Bishop DT, Macrae F, Mecklin JP, Moeslein G, Olschwang S, Eccles D, Evans DG, Maher ER, Bertario L, Bisgaard ML, Dunlop MG, Ho JW, Hodgson SV, Lindblom A, Lubinski J, Morrison PJ, Murday V, Ramesar RS, Side L, Scott RJ, Thomas HJ, Vasen HF, Burn J, Mathers JC. Obesity, aspirin, and risk of colorectal cancer in carriers of hereditary colorectal cancer: a prospective investigation in the CAPP2 study. J Clin Oncol. 2015;33:3591–7.

    Article  CAS  PubMed  Google Scholar 

  85. Rothwell PM, Fowkes FG, Belch JF, Ogawa H, Warlow CP, Meade TW. Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet. 2011;377:31–41.

    Article  CAS  PubMed  Google Scholar 

  86. Patrono C, García Rodríguez LA, Landolfi R, Baigent C. Low-dose aspirin for the prevention of atherothrombosis. N Engl J Med. 2005;353:2373–83.

    Article  CAS  PubMed  Google Scholar 

  87. Capone ML, Tacconelli S, Di Francesco L, Sacchetti A, Sciulli MG, Patrignani P. Pharmacodynamic of cyclooxygenase inhibitors in humans. Prostaglandins Other Lipid Mediat. 2007;82:85–94.

    Article  CAS  PubMed  Google Scholar 

  88. Patrono C, Baigent C, Hirsh J, Roth G, American College of Chest Physicians. Antiplatelet drugs: American college of chest physicians evidence-based clinical practice guidelines (8th edition). Chest. 2008;133:199S–233S.

    Article  CAS  PubMed  Google Scholar 

  89. Lecomte M, Laneuville O, Ji C, DeWitt DL, Smith WL. Acetylation of human prostaglandin endoperoxide synthase-2 (cyclooxygenase-2) by aspirin. J Biol Chem. 1994;269:13207–15.

    CAS  PubMed  Google Scholar 

  90. Patrignani P, Tacconelli S, Piazuelo E, Di Francesco L, Dovizio M, Sostres C, Marcantoni E, Guillem-Llobat P, Del Boccio P, Zucchelli M, Patrono C, Lanas A. Reappraisal of the clinical pharmacology of low-dose aspirin by comparing novel direct and traditional indirect biomarkers of drug action. J Thromb Haemost. 2014;12:1320–30.

    Article  CAS  PubMed  Google Scholar 

  91. Sharma NP, Dong L, Yuan C, Noon KR, Smith WL. Asymmetric acetylation of the cyclooxygenase-2 homodimer by aspirin and its effects on the oxygenation of arachidonic, eicosapentaenoic, and docosahexaenoic acids. Mol Pharmacol. 2010;77:979–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gilroy DW. The role of aspirin-triggered lipoxins in the mechanism of action of aspirin. Prostaglandins Leukot Essent Fatty Acids. 2005;73:203–10.

    Article  CAS  PubMed  Google Scholar 

  93. Serhan CN. Lipoxins and aspirin-triggered 15-epi-lipoxins are the first lipid mediators of endogenous anti-inflammation and resolution. Prostaglandins Leukot Essent Fatty Acids. 2005;73:141–62.

    Article  CAS  PubMed  Google Scholar 

  94. Romano M. Lipoxin and aspirin-triggered lipoxins. Scientific World Journal. 2010;10:1048–64.

    Article  CAS  PubMed  Google Scholar 

  95. Fierro IM, Kutok JL, Serhan CN. Novel lipid mediator regulators of endothelial cell proliferation and migration: aspirin-triggered-15R-lipoxin A(4) and lipoxin A(4). J Pharmacol Exp Ther. 2002;300:385–92.

    Article  CAS  PubMed  Google Scholar 

  96. Di Francesco L, López Contreras LA, Sacco A, Patrignani P. New insights into the mechanism of action of aspirin in the prevention of colorectal neoplasia. Curr Pharm Des. 2015;21:5116–26.

    Article  PubMed  CAS  Google Scholar 

  97. Evangelista V, Manarini S, Di Santo A, Capone ML, Ricciotti E, Di Francesco L, Tacconelli S, Sacchetti A, D'Angelo S, Scilimati A, Sciulli MG, Patrignani P. De novo synthesis of cyclooxygenase-1 counteracts the suppression of platelet thromboxane biosynthesis by aspirin. Circ Res. 2006;98:593–5.

    Article  CAS  PubMed  Google Scholar 

  98. Patrignani P, Filabozzi P, Patrono C. Selective cumulative inhibition of platelet thromboxane production by low-dose aspirin in healthy subjects. J Clin Invest. 1982;69:1366–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Charman WN, Charman SA, Monkhouse DC, Frisbee SE, Lockhart EA, Weisman S, Fitzgerald GA. Biopharmaceutical characterization of a low-dose (75 mg) controlled-release aspirin formulation. Br J Clin Pharmacol. 1993;36:470–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Pedersen AK, FitzGerald GA. Dose-related kinetics of aspirin. Presystemic acetylation of platelet cyclooxygenase. N Engl J Med. 1984;311:1206–11.

    Article  CAS  PubMed  Google Scholar 

  101. Altman R, Bosch B, Brune K, Patrignani P, Young C. Advances in NSAID development: evolution of diclofenac products using pharmaceutical technology. Drugs. 2015;75:859–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Patrono C, Ciabattoni G, Pinca E, Pugliese F, Castrucci G, De Salvo A, et al. Low dose aspirin and inhibition of thromboxane B2 production in healthy subjects. Thromb Res. 1980;17:317–27.

    Article  CAS  PubMed  Google Scholar 

  103. Minuz P, Fumagalli L, Gaino S, Tommasoli RM, Degan M, Cavallini C, Lecchi A, Cattaneo M, Lechi Santonastaso C, Berton G. Rapid stimulation of tyrosine phosphorylation signals downstream of G protein-coupled receptors for thromboxane A2 in human platelets. Biochem J. 2006;400:127–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ciabattoni G, Maclouf J, Catella F, FitzGerald GA, Patrono C. Radioimmunoassay of 11-dehydrothromboxane B2 in human plasma and urine. Biochim Biophys Acta. 1987;918:293–7.

    Article  CAS  PubMed  Google Scholar 

  105. Ciabattoni G, Pugliese F, Davì G, Pierucci A, Simonetti BM, Patrono C. Fractional conversion of thromboxane B2 to urinary 11-dehydrothromboxane B2 in man. Biochim Biophys Acta. 1989;992:66–70.

    Article  CAS  PubMed  Google Scholar 

  106. Catella F, FitzGerald GA. Paired analysis of urinary thromboxane B2 metabolites in humans. Thromb Res. 1987;47:647–56.

    Article  CAS  PubMed  Google Scholar 

  107. Reilly IA, FitzGerald GA. Inhibition of thromboxane formation in vivo and ex vivo: implications for therapy with platelet inhibitory drugs. Blood. 1987;69:180–6.

    CAS  PubMed  Google Scholar 

  108. Capone ML, Tacconelli S, Sciulli MG, Grana M, Ricciotti E, Minuz P, Di Gregorio P, Merciaro G, Patrono C, Patrignani P. Clinical pharmacology of platelet, monocyte, and vascular cyclooxygenase inhibition by naproxen and low-dose aspirin in healthy subjects. Circulation. 2004;109:1468–71.

    Article  CAS  PubMed  Google Scholar 

  109. FitzGerald GA, Maas RL, Lawson JA, Oates JA, Roberts LJ, Brash AR. Aspirin inhibits endogenous prostacyclin and thromboxane biosynthesis in man. Adv Prostaglandin Thromboxane Leukot Res. 1983;11:265–6.

    CAS  PubMed  Google Scholar 

  110. Meade TW. Thrombosis prevention trial: randomised trial of low-intensity oral anticoagulation with warfarin and low-dose aspirin in the primary prevention of ischaemic heart disease in men at increased risk. The Medical Research Council’s General Practice Research Framework. Lancet. 1998;351:233–41.

    Article  Google Scholar 

  111. Dovizio M, Alberti S, Guillem-Llobat P, Patrignani P. Role of platelets in inflammation and cancer: novel therapeutic strategies. Basic Clin Pharmacol Toxicol. 2014;114:118–27.

    Article  CAS  PubMed  Google Scholar 

  112. Li H, Zhu F, Boardman LA, Wang L, Oi N, Liu K, Li X, Fu Y, Limburg PJ, Bode AM, Dong Z. Aspirin prevents colorectal cancer by normalizing EGFR expression. EBioMedicine. 2015;2:447–55.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Normanno N, De Luca A, Bianco C, Strizzi L, Mancino M, Maiello MR, Carotenuto A, De Feo G, Caponigro F, Salomon DS. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene. 2006;366:2–16.

    Article  CAS  PubMed  Google Scholar 

  114. Ulrych T, Böhm A, Polzin A, Daum G, Nüsing RM, Geisslinger G, Hohlfeld T, Schrör K, Rauch BH. Release of sphingosine-1-phosphate from human platelets is dependent on thromboxane formation. J Thromb Haemost. 2011;9:790–8.

    Article  CAS  PubMed  Google Scholar 

  115. Kawamori T, Kaneshiro T, Okumura M, Maalouf S, Uflacker A, Bielawski J, Hannun YA, Obeid LM. Role for sphingosine kinase 1 in colon carcinogenesis. FASEB J. 2009;23:405–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ogretmen B, Hannun YA. Biologically active sphingolipids in cancer pathogenesis and treatment. Nat Rev Cancer. 2004;4:604–16.

    Article  CAS  PubMed  Google Scholar 

  117. Tani M, Sano T, Ito M, Igarashi Y. Mechanisms of sphingosine and sphingosine 1-phosphate generation in human platelets. J Lipid Res. 2005;46:2458–67.

    Article  CAS  PubMed  Google Scholar 

  118. Yatomi Y. Sphingosine 1-phosphate in vascular biology: possible therapeutic strategies to control vascular diseases. Curr Pharm Des. 2006;12:575–87.

    Article  CAS  PubMed  Google Scholar 

  119. Tai HH. Prostaglandin catabolic enzymes as tumor suppressors. Cancer Metastasis Rev. 2011;30:409–17.

    Article  CAS  PubMed  Google Scholar 

  120. Whittle BJ. COX-1 and COX-2 products in the gut: therapeutic impact of COX-2 inhibitors. Gut. 2000;47:320–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Patrono C, Patrignani P, García Rodríguez LA. Cyclooxygenase-selective inhibition of prostanoid formation: transducing biochemical selectivity into clinical read-outs. J Clin Invest. 2001;108:7–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kargman S, Charleson S, Cartwright M, Frank J, Riendeau D, Mancini J, Evans J, O'Neill G. Characterization of Prostaglandin G/H Synthase 1 and 2 in rat, dog, monkey, and human gastrointestinal tracts. Gastroenterology. 1996;111:445–54.

    Article  CAS  PubMed  Google Scholar 

  123. Eberhart CE, Coffey RJ, Radhika A, Giardiello FM, Ferrenbach S, DuBois RN. Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology. 1994;107:1183–8.

    Article  CAS  PubMed  Google Scholar 

  124. Kargman SL, O'Neill GP, Vickers PJ, Evans JF, Mancini JA, Jothy S. Expression of prostaglandin G/H synthase-1 and −2 protein in human colon cancer. Cancer Res. 1995;55:2556–9.

    CAS  PubMed  Google Scholar 

  125. Sano H, Kawahito Y, Wilder RL, Hashiramoto A, Mukai S, Asai K, Kimura S, Kato H, Kondo M, Hla T. Expression of cyclooxygenase-1 and −2 in human colorectal cancer. Cancer Res. 1995;55:3785–9.

    CAS  PubMed  Google Scholar 

  126. Oshima M, Dinchuk JE, Kargman SL, Oshima H, Hancock B, Kwong E, Trzaskos JM, Evans JF, Taketo MM. Suppression of intestinal polyposis in Apc delta716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell. 1996;87:803–9.

    Article  CAS  PubMed  Google Scholar 

  127. Lim SC, Cho H, Lee TB, Choi CH, Min YD, Kim SS, Kim KJ. Impacts of cytosolic phospholipase A2, 15-prostaglandin dehydrogenase, and cyclooxygenase-2 expressions on tumor progression in colorectal cancer. Yonsei Med J. 2010;51:692–99.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Myung SJ, Rerko RM, Yan M, Platzer P, Guda K, Dotson A, Lawrence E, Dannenberg AJ, Lovgren AK, Luo G, Pretlow TP, Newman RA, Willis J, Dawson D, Markowitz SD. 15-Hydroxyprostaglandin dehydrogenase is an in vivo suppressor of colon tumorigenesis. Proc Natl Acad Sci U S A. 2006;103:12098–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Smartt HJ, Greenhough A, Ordóñez-Morán P, Talero E, Cherry CA, Wallam CA, Parry L, Al Kharusi M, Roberts HR, Mariadason JM, Clarke AR, Huelsken J, Williams AC, Paraskeva C. β-catenin represses expression of the tumour suppressor 15-prostaglandin dehydrogenase in the normal intestinal epithelium and colorectal tumour cells. Gut. 2012;61:1306–14.

    Article  CAS  PubMed  Google Scholar 

  130. Shao J, Jung C, Liu C, Sheng H. Prostaglandin E2 Stimulates the beta-catenin/T cell factor-dependent transcription in colon cancer. J Biol Chem. 2005;280:26565–72.

    Article  CAS  PubMed  Google Scholar 

  131. Fink SP, Yamauchi M, Nishihara R, Jung S, Kuchiba A, Wu K, et al. Aspirin and the risk of colorectal cancer in relation to the expression of 15-hydroxyprostaglandin dehydrogenase (HPGD). Sci Transl Med. 2014;6:233re2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Sample D, Wargovich M, Fischer SM, Inamdar N, Schwartz P, Wang X, Do KA, Sinicrope FA. A dose-finding study of aspirin for chemoprevention utilizing rectal mucosal prostaglandin E(2) levels as a biomarker. Cancer Epidemiol Biomarkers Prev. 2002;11:275–9.

    CAS  PubMed  Google Scholar 

  133. Barnes CJ, Hamby-Mason RL, Hardman WE, Cameron IL, Speeg KV, Lee M. Effect of aspirin on prostaglandin E2 formation and transforming growth factor alpha expression in human rectal mucosa from individuals with a history of adenomatous polyps of the colon. Cancer Epidemiol Biomarkers Prev. 1999;8:311–5.

    CAS  PubMed  Google Scholar 

  134. DuBois RN, Radhika A, Reddy BS, Entingh AJ. Increased cyclooxygenase-2 levels in carcinogen-induced rat colonic tumors. Gastroenterology. 1996;110:1259–62.

    Article  CAS  PubMed  Google Scholar 

  135. Hao Y, Gu X, Zhao Y, Greene S, Sha W, Smoot DT, et al. Enforced expression of miR-101 inhibits prostate cancer cell growth by modulating the COX-2 pathway in vivo. Cancer Prev Res (Phila). 2011;4:1073–83.

    Article  CAS  Google Scholar 

  136. Shiff SJ, Rigas B. The role of cyclooxygenase inhibition in the antineoplastic effects of nonsteroidal antiinflammatory drugs (NSAIDs). J Exp Med. 1999;190:445–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. de Silanes Lopez I, Quesada MP, Esteller M. Aberrant regulation of messenger RNA 3’-untranslated region in human cancer. Cell Oncol. 2007;29:1–17.

    Google Scholar 

  138. Young LE, Dixon DA. Posttranscriptional regulation of cyclooxygenase 2 expression in colorectal cancer. Curr Colorectal Cancer Rep. 2010;6:60–7.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Dixon DA, Tolley ND, Bemis-Standoli K, Martinez ML, Weyrich AS, Morrow JD, Prescott SM, Zimmerman GA. Expression of COX-2 in platelet-monocyte interactions occurs via combinatorial regulation involving adhesion and cytokine signaling. J Clin Invest. 2006;116:2727–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Young LE, Sanduja S, Bemis-Standoli K, Pena EA, Price RL, Dixon DA. The mRNA binding proteins HuR and tristetraprolin regulate cyclooxygenase 2 expression during colon carcinogenesis. Gastroenterology. 2009;136:1669–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Dixon DA, Tolley ND, King PH, Nabors LB, McIntyre TM, Zimmerman GA, Prescott SM. Altered expression of the mRNA stability factor HuR promotes cyclooxygenase-2 expression in colon cancer cells. J Clin Invest. 2001;108:1657–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Dixon DA, Balch GC, Kedersha N, Anderson P, Zimmerman GA, Beauchamp RD, Prescott SM. Regulation of cyclooxygenase-2 expression by the translational silencer TIA-1. J Exp Med. 2003;198:475–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem. 2010;79:351–79.

    Article  CAS  PubMed  Google Scholar 

  144. O’Hara SP, Mott JL, Splinter PL, Gores GJ, LaRusso NF. MicroRNAs: key modulators of posttranscriptional gene expression. Gastroenterology. 2009;136:17–25.

    Article  PubMed  CAS  Google Scholar 

  145. Wiemer EA. The role of microRNAs in cancer: no small matter. Eur J Cancer. 2007;43:1529–44.

    Article  CAS  PubMed  Google Scholar 

  146. Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet. 2008;9:102–14.

    Article  CAS  PubMed  Google Scholar 

  147. Winder WW. Energy-sensing and signaling by AMP-activated protein kinase in skeletal muscle. J Appl Physiol. 1985;91:1017–28.

    Google Scholar 

  148. Inoki K, Kim J, Guan KL. AMPK and mTOR in cellular energy homeostasis and drug targets. Annu Rev Pharmacol Toxicol. 2012;52:381–400.

    Article  CAS  PubMed  Google Scholar 

  149. Hawley SA, Fullerton MD, Ross FA, Schertzer JD, Chevtzoff C, Walker KJ, Peggie MW, Zibrova D, Green KA, Mustard KJ, Kemp BE, Sakamoto K, Steinberg GR, Hardie DG. The ancient drug salicylate directly activates AMP-activated protein kinase. Science. 2012;336:918–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Din FV, Valanciute A, Houde VP, Zibrova D, Green KA, Sakamoto K, Alessi DR, Dunlop MG. Aspirin inhibits mTOR signaling, activates AMP-activated protein kinase, and induces autophagy in colorectal cancer cells. Gastroenterology. 2012;142:1504–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Shao J, Fujiwara T, Kadowaki Y, Fukazawa T, Waku T, Itoshima T, Yamatsuji T, Nishizaki M, Roth JA, Tanaka N. Overexpression of the wild-type p53 gene inhibits NF-kappaB activity and synergizes with aspirin to induce apoptosis in human colon cancer cells. Oncogene. 2000;19:726–36.

    Article  CAS  PubMed  Google Scholar 

  152. Takada Y, Singh S, Aggarwal BB. Identification of a p65 peptide that selectively inhibits NF-kappa B activation induced by various inflammatory stimuli and its role in down-regulation of NF-kappaB-mediated gene expression and up-regulation of apoptosis. J Biol Chem. 2004;279:15096–104.

    Article  CAS  PubMed  Google Scholar 

  153. Chen Z, Hagler J, Palombella VJ, Melandri F, Scherer D, Ballard D, Maniatis T. Signal-induced site-specific phosphorylation targets I kappa B alpha to the ubiquitin-proteasome pathway. Genes Dev. 1995;9:1586–97.

    Article  CAS  PubMed  Google Scholar 

  154. Yin MJ, Yamamoto Y, Gaynor RB. The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta. Nature. 1998;396:77–80.

    Article  CAS  PubMed  Google Scholar 

  155. Mann B, Gelos M, Siedow A, Hanski ML, Gratchev A, Ilyas M, Bodmer WF, Moyer MP, Riecken EO, Buhr HJ, Hanski C. Target genes of beta-catenin-T cell-factor/lymphoid-enhancer-factor signaling in human colorectal carcinomas. Proc Natl Acad Sci U S A. 1999;96:1603–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Bos CL, Kodach LL, van den Brink GR, Diks SH, van Santen MM, Richel DJ, Peppelenbosch MP, Hardwick JC. Effect of aspirin on the Wnt/beta-catenin pathway is mediated via protein phosphatase 2A. Oncogene. 2006;25:6447–56.

    Article  CAS  PubMed  Google Scholar 

  157. Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene. 2007;26:3291–310.

    Article  CAS  PubMed  Google Scholar 

  158. Pan MR, Chang HC, Hung WC. Non-steroidal anti-inflammatory drugs suppress the ERK signaling pathway via block of Ras/c-Raf interaction and activation of MAP kinase phosphatases. Cell Signal. 2008;20:1134–41.

    Article  CAS  PubMed  Google Scholar 

  159. Angel P, Karin M. The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta. 1991;1072:129–57.

    CAS  PubMed  Google Scholar 

  160. Curran T, Franza Jr BR. Fos and Jun: the AP-1 connection. Cell. 1988;55:395–7.

    Article  CAS  PubMed  Google Scholar 

  161. Dong Z, Huang C, Brown RE, Ma WY. Inhibition of activator protein 1 activity and neoplastic transformation by aspirin. J Biol Chem. 1997;272:9962–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Pinckard RN, Hawkins D, Farr RS. In vitro acetylation of plasma proteins, enzymes and DNA by aspirin. Nature. 1968;219:68–9.

    Article  CAS  PubMed  Google Scholar 

  163. Rainsford K, Schweitzer A, Brune K. Distribution of the acetyl compared with the salicyl moiety of acetylsalicylic acid: Acetylation of macromolecules in organs wherein side-effects are manifest. Biochem Pharmacol. 1983;32:1301–8.

    Article  CAS  PubMed  Google Scholar 

  164. Hawkins D, Pinckard RN, Farr RS. Acetylation of human serum albumin by acetylsalicylic acid. Science. 1968;160:780–1.

    Article  CAS  PubMed  Google Scholar 

  165. Bjornsson T, Schneider D, Berger H. Aspirin acetylates fibrinogen and enhances fibrinolysis. Fibrinolytic effect is independent of changes in plasminogen activator levels. J Pharmacol Exp Ther. 1989;250:154–61.

    CAS  PubMed  Google Scholar 

  166. Lai TS, Davies C, Greenberg CS. Human tissue transglutaminase is inhibited by pharmacologic and chemical acetylation. Protein Sci. 2010;19:229–35.

    Article  CAS  PubMed  Google Scholar 

  167. Alfonso LF, Srivenugopal KS, Arumugam TV, Abbruscato TJ, Weidanz JA, Bhat GJ. Aspirin inhibits camptothecin-induced p21CIP1 levels and potentiates apoptosis in human breast cancer cells. Int J Oncol. 2009;34:597–608.

    CAS  PubMed  Google Scholar 

  168. Gay LJ, Felding-Habermann B. Contribution of platelets to tumour metastasis. Nat Rev Cancer. 2011;11:123–34.

    Article  CAS  PubMed  Google Scholar 

  169. Boukerche H, Berthier-Vergnes O, Tabone E, Doré JF, Leung LL, McGregor JL. Platelet-melanoma cell interaction is mediated by the glycoprotein IIb-IIIa complex. Blood. 1989;74:658–63.

    CAS  PubMed  Google Scholar 

  170. Nierodzik ML, Klepfish A, Karpatkin S. Role of platelets, thrombin, integrin IIb-IIIa, fibronectin and von Willebrand factor on tumor adhesion in vitro and metastasis in vivo. Thromb Haemost. 1995;74:282–90.

    CAS  PubMed  Google Scholar 

  171. Amirkhosravi A, Amaya M, Siddiqui F, Biggerstaff JP, Meyer TV, Francis JL. Blockade of GpIIb/IIIa inhibits the release of vascular endothelial growth factor (VEGF) from tumor cell-activated platelets and experimental metastasis. Platelets. 1999;10:285–92.

    Article  CAS  PubMed  Google Scholar 

  172. Jain S, Russell S, Ware J. Platelet glycoprotein VI facilitates experimental lung metastasis in syngenic mouse models. J Thromb Haemost. 2009;7:1713–7.

    Article  CAS  PubMed  Google Scholar 

  173. Dovizio M, Maier TJ, Alberti S, Di Francesco L, Marcantoni E, Münch G, John CM, Suess B, Sgambato A, Steinhilber D, Patrignani P. Pharmacological inhibition of platelet-tumor cell cross-talk prevents platelet-induced overexpression of cyclooxygenase-2 in HT29 human colon carcinoma cells. Mol Pharmacol. 2013;84:25–40.

    Article  CAS  PubMed  Google Scholar 

  174. Ungerer M, Rosport K, Bültmann A, Piechatzek R, Uhland K, Schlieper P, Gawaz M, Münch G. Novel antiplatelet drug revacept (Dimeric Glycoprotein VI-Fc) specifically and efficiently inhibited collagen-induced platelet aggregation without affecting general hemostasis in humans. Circulation. 2011;123:1891–9.

    Article  CAS  PubMed  Google Scholar 

  175. Blann AD, Nadar SK, Lip GY. The adhesion molecule P-selectin and cardiovascular disease. Eur Heart J. 2003;24:2166–79.

    Article  CAS  PubMed  Google Scholar 

  176. Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell. 1994;76:301–14.

    Article  CAS  PubMed  Google Scholar 

  177. Mannori G, Crottet P, Cecconi O, Hanasaki K, Aruffo A, Nelson RM, Varki A, Bevilacqua MP. Differential colon cancer cell adhesion to E-, P-, and L-selectin: role of mucin-type glycoproteins. Cancer Res. 1995;55:4425–31.

    CAS  PubMed  Google Scholar 

  178. Borsig L, Wong R, Hynes RO, Varki NM, Varki A. Synergistic effects of L- and P-selectin in facilitating tumor metastasis can involve non-mucin ligands and implicate leukocytes as enhancers of metastasis. Proc Natl Acad Sci U S A. 2002;99:2193–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Leger AJ, Covic L, Kuliopulos A. Protease-activated receptors in cardiovascular diseases. Circulation. 2006;114:1070–7.

    Article  CAS  PubMed  Google Scholar 

  180. Italiano Jr JE, Richardson JL, Patel-Hett S, Battinelli E, Zaslavsky A, Short S, Ryeom S, Folkman J, Klement GL. Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. Blood. 2008;111:1227–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Ma L, Perini R, McKnight W, Dicay M, Klein A, Hollenberg MD, Wallace JL. Proteinase-activated receptors 1 and 4 counter-regulate endostatin and VEGF release from human platelets. Proc Natl Acad Sci U S A. 2005;102:216–20.

    Article  CAS  PubMed  Google Scholar 

  182. Fitzgerald DJ, Fitzgerald GA. Historical lessons in translational medicine: cyclooxygenase inhibition and P2Y12 antagonism. Circ Res. 2013;112:174–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Born G, Patrono C. Antiplatelet drugs. Br J Pharmacol. 2006;147 Suppl 1:S241–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Kahner BN, Shankar H, Murugappan S, Prasad GL, Kunapuli SP. Nucleotide receptor signaling in platelets. J Thromb Haemost. 2006;4:2317–26.

    Article  CAS  PubMed  Google Scholar 

  185. Jurasz P, Alonso-Escolano D, Radomski MW. Platelet--cancer interactions: mechanisms and pharmacology of tumour cell-induced platelet aggregation. Br J Pharmacol. 2004;143:819–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Mah-Becherel MC, Céraline J, Deplanque G, Chenard MP, Bergerat JP, Cazenave JP, Klein-Soyer C. Anti-angiogenic effects of the thienopyridine SR 25989 in vitro and in vivo in a murine pulmonary metastasis model. Br J Cancer. 2002;86:803–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Wang Y, Sun Y, Li D, Zhang L, Wang K, Zuo Y, Gartner TK, Liu J. Platelet P2Y12 is involved in murine pulmonary metastasis. PLoS One. 2013;8, e80780.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Sitia G, Aiolfi R, Di Lucia P, Mainetti M, Fiocchi A, Mingozzi F, et al. Antiplatelet therapy prevents hepatocellular carcinoma and improves survival in a mouse model of chronic hepatitis B. Proc Natl Acad Sci U S A. 2012;109:E2165–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Guillem-Llobat P, Dovizio M, Alberti S, Bruno A, Patrignani P. Platelets, cyclooxygenases, and colon cancer. Semin Oncol. 2014;41:385–96.

    Article  CAS  PubMed  Google Scholar 

  190. Gawaz M, Langer H, May AE. Platelets in inflammation and atherogenesis. J Clin Invest. 2005;115:3378–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Prescott SM. Is cyclooxygenase-2 the alpha and the omega in cancer? J Clin Invest. 2000;105:1511–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Labelle M, Begum S, Hynes RO. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell. 2011;20:576–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Mitrugno A, Williams D, Kerrigan SW, Moran N. A novel and essential role for FcyRIIa in cancer cell-induced platelet activation. Blood. 2014;123:249–60.

    Article  CAS  PubMed  Google Scholar 

  194. Liao X, Lochhead P, Nishihara R, Morikawa T, Kuchiba A, Yamauchi M, Imamura Y, Qian ZR, Baba Y, Shima K, Sun R, Nosho K, Meyerhardt JA, Giovannucci E, Fuchs CS, Chan AT, Ogino S. Aspirin use, tumor PIK3CA mutation, and colorectal-cancer survival. N Engl J Med. 2012;367:1596–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Patrignani Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bruno, A., Dovizio, M., Patrignani, P. (2016). Molecular and Experimental Basis for COX Inhibition in Cancer. In: Lanas, A. (eds) NSAIDs and Aspirin. Springer, Cham. https://doi.org/10.1007/978-3-319-33889-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33889-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33887-3

  • Online ISBN: 978-3-319-33889-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics