Advertisement

The Laurencia Paradox: An Endless Source of Chemodiversity

  • Maria Harizani
  • Efstathia IoannouEmail author
  • Vassilios RoussisEmail author
Chapter
Part of the Progress in the Chemistry of Organic Natural Products book series (POGRCHEM, volume 102)

Abstract

Nature, the most prolific source of biological and chemical diversity, has provided mankind with treatments for health problems since ancient times and continues to be the most promising reservoir of bioactive chemicals for the development of modern drugs. In addition to the terrestrial organisms that still remain a promising source of new bioactive metabolites, the marine environment, covering approximately 70% of the Earth’s surface and containing a largely unexplored biodiversity, offers an enormous resource for the discovery of novel compounds. According to the MarinLit database, more than 27,000 metabolites from marine macro- and microorganisms have been isolated to date providing material and key structures for the development of new products in the pharmaceutical, food, cosmeceutical, chemical, and agrochemical sectors. Algae, which thrive in the euphotic zone, were among the first marine organisms that were investigated as sources of food, nutritional supplements, soil fertilizers, and bioactive metabolites.

Red algae of the genus Laurencia are accepted unanimously as one of the richest sources of new secondary metabolites. Their cosmopolitan distribution, along with the chemical variation influenced to a significant degree by environmental and genetic factors, have resulted in an endless parade of metabolites, often featuring multiple halogenation sites.

The present contribution, covering the literature until August 2015, offers a comprehensive view of the chemical wealth and the taxonomic problems currently impeding chemical and biological investigations of the genus Laurencia. Since mollusks feeding on Laurencia are, in many cases, bioaccumulating, and utilize algal metabolites as chemical weaponry against natural enemies, metabolites of postulated dietary origin of sea hares that feed on Laurencia species are also included in the present review. Altogether, 1047 secondary metabolites, often featuring new carbocyclic skeletons, have been included.

The chapter addresses: (1) the “Laurencia complex”, the botanical description and the growth and population dynamics of the genus, as well as its chemical diversity and ecological relations; (2) the secondary metabolites, which are organized according to their chemical structures and are classified into sesquiterpenes, diterpenes, triterpenes, acetogenins, indoles, aromatic compounds, steroids, and miscellaneous compounds, as well as their sources of isolation which are depicted in tabulated form, and (3) the biological activity organized according to the biological target and the ecological functions of Laurencia metabolites.

Keywords

Laurencia Marine red algae Secondary metabolites Halogenation Laurencia complex” “Corps en cerise” Isolation Biological activity Ecological function Laurencia-feeding mollusks 

References

  1. 1.
    WHO (2013) WHO traditional medicine strategy: 2014–2023. World Health Organization, GenevaGoogle Scholar
  2. 2.
    Farnsworth NR, Akerele O, Bingel AS, Soejarto DD, Guo Z (1985) Medicinal plants in therapy. Bull World Health Org 63:965Google Scholar
  3. 3.
    Pascolutti M, Quinn RJ (2014) Natural products as lead structures: chemical transformations to create lead-like libraries. Drug Discov Today 19:215CrossRefGoogle Scholar
  4. 4.
    Cragg GM, Newman DJ (2005) International collaboration in drug discovery and development from natural sources. Pure Appl Chem 77:1923Google Scholar
  5. 5.
    Bergmann W, Burke DC (1955) Contribution to the study of marine products. XXXIX. The nucleosides of sponges. III. Spongothymidine and spongouridine. J Org Chem 20:1501CrossRefGoogle Scholar
  6. 6.
    MarinLit (2015) http://pubs.rsc.org/marinlit. Royal Society of Chemistry, LondonGoogle Scholar
  7. 7.
    Sze P (1993) A biology of the algae. Wm. C Brown Publishers, Dubuque, IAGoogle Scholar
  8. 8.
    Darley WM (1982) Algal biology: a physiological approach. In: Wilkinson JF (ser ed) Basic microbiology, vol 9. Blackwell Scientific Publications, Oxford, UKGoogle Scholar
  9. 9.
    Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR (2015) Marine natural products. Nat Prod Rep 32:116, and previous reviews in this seriesGoogle Scholar
  10. 10.
    Erickson KL (1983) Constituents of Laurencia. In: Scheuer PJ (ed) Marine natural products: chemical and biological perspectives, vol V. Academic Press, New York, p 131CrossRefGoogle Scholar
  11. 11.
    Kladi M, Vagias C, Roussis V (2004) Volatile halogenated metabolites from marine algae. Phytochem Rev 3:337CrossRefGoogle Scholar
  12. 12.
    Wang BG, Gloer JB, Ji NY, Zhao JC (2013) Halogenated organic molecules of Rhodomelaceae origin: chemistry and biology. Chem Rev 113:3632CrossRefGoogle Scholar
  13. 13.
    Ji NY, Wang BG (2014) Nonhalogenated organic molecules from Laurencia algae. Phytochem Rev 13:653CrossRefGoogle Scholar
  14. 14.
    Gribble GW (2010) Naturally occurring organohalogen compounds – a comprehensive update. In: Kinghorn AD, Falk H, Kobayashi J (eds) Progress in the chemistry of organic natural products, vol 91. Springer, Wien, and previous reviews in this seriesGoogle Scholar
  15. 15.
    Guiry MD in Guiry MD, Guiry GM (2015) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org. August 2015
  16. 16.
    Cabrita MT, Vale C, Pilar A (2010) Halogenated compounds from marine algae. Mar Drugs 8:2301CrossRefGoogle Scholar
  17. 17.
    Cassano V, Oliveira MC, Gil-Rodríguez MC, Sentíes A, Díaz-Larrea J, Fujii MT (2012) Molecular support for the establishment of the new genus Laurenciella within the Laurencia complex (Ceramiales, Rhodophyta). Bot Mar 55:349CrossRefGoogle Scholar
  18. 18.
    Martin-Lescanne J, Rousseau F, De Reviers B, Payri C, Couloux A, Cruaud C, Le Gall L (2010) Phylogenetic analyses of the Laurencia complex (Rhodomelaceae, Ceramiales) support recognition of five genera: Chondrophycus, Laurencia, Osmundea, Palisada and Yuzurua stat. nov. Eur J Phycol 45:51CrossRefGoogle Scholar
  19. 19.
    Saito Y (1967) Studies on Japanese species of Laurencia, with special reference to their comparative morphology. Mem Fac Fish Hokkaido Univ 15:1Google Scholar
  20. 20.
    Nam KW, Maggs CA, Garbary DJ (1994) Resurrection of the genus Osmundea with an emendation of the generic delineation of Laurencia (Ceramiales, Rhodophyta). Phycologia 33:384CrossRefGoogle Scholar
  21. 21.
    Garbary DJ, Harper JT (1998) A phylogenetic analysis of the Laurencia complex (Rhodomelaceae) of the red algae. Cryptogamie Algol 19:185Google Scholar
  22. 22.
    Nam KW (1999) Morphology of Chondrophycus undulata and C. parvipapillata and its implications for the taxonomy of the Laurencia (Ceramiales, Rhodophyta) complex. Eur J Phycol 35:455CrossRefGoogle Scholar
  23. 23.
    Nam KW (2006) Phylogenetic re-evaluation of the Laurencia complex (Rhodophyta) with a description of L. succulenta sp. nov. from Korea. J Appl Phycol 18:679Google Scholar
  24. 24.
    Kylin H (1956) Die Gattungen der Rhodophyceen. CWK Gleerups Forlag, Lund, SwedenGoogle Scholar
  25. 25.
    McDermid KJ (1988) Section V. Laurencia (Rhodophyta, Rhodomelaceae). In: Abbott IA (ed) Taxonomy of economic seaweeds, with reference to some Pacific and Caribbean species, vol 2. California Sea Grant College Program, La Jolla, CAGoogle Scholar
  26. 26.
    Harper JT, Garbary DJ (1997) Marine algae of Northern Senegal: the flora and its biogeography. Bot Mar 40:129CrossRefGoogle Scholar
  27. 27.
    Serio D, Cormaci M, Furnari G (1999) Osmundea maggsiana sp. nov. (Ceramiales, Rhodophyta) from the Mediterranean Sea. Phycologia 38:277CrossRefGoogle Scholar
  28. 28.
    Nam KW, Choi HG (2000) A detailed morphological study of the type species of Osmundea (Rhodomelaceae, Rhodophyta). Bot Mar 43:291CrossRefGoogle Scholar
  29. 29.
    Yoneshigue-Valentin Y, Fujii MT, Gurgel CFD (2003) Osmundea lata (M. Howe & W.R. Taylor) comb. nov. (Ceramiales, Rhodophyta) from the Brazilian south-eastern continental shelf. Phycologia 42:301
  30. 30.
    Fenical W, Norris JN (1975) Chemotaxonomy in marine algae: chemical separation of some Laurencia species (Rhodophyta) from the Gulf of California. J Phycol 11:104Google Scholar
  31. 31.
    Masuda M, Abe T, Suzuki T, Suzuki M (1996) Morphological and chemotaxonomic studies on Laurencia composita and L. okamurai (Ceramiales, Rhodophyta). Phycologia 35:550CrossRefGoogle Scholar
  32. 32.
    Barrow KD, Karsten U, King RJ, West JA (1995) Floridoside in the genus Laurencia (Rhodomelaceae: Ceramiales) – a chemosystematic study. Phycologia 34:279CrossRefGoogle Scholar
  33. 33.
    Fujii MT, Cassano V, Stein ÉM, Carvalho LR (2011) Overview of the taxonomy and of the major secondary metabolites and their biological activities related to human health of the Laurencia complex (Ceramiales, Rhodophyta) from Brazil. Braz J Pharmacogn 21:268CrossRefGoogle Scholar
  34. 34.
    Fujii MT, Cassano V, Sentíes A, Díaz-Larrea J, Machín-Sánchez M, Candelaria Gil-Rodríguez M (2012) Comparative analysis of the corps en cerise in several species of Laurencia (Ceramiales, Rhodophyta) from the Atlantic Ocean. Braz J Pharmacogn 22:795CrossRefGoogle Scholar
  35. 35.
    Kuwano K, Matsuka S, Kono S, Ninomiya M, Onishi J, Saga N (1998) Growth and the content of laurinterol and debromolaurinterol in Laurencia okamurai (Ceramiales, Rhodophyta). J Appl Phycol 10:9CrossRefGoogle Scholar
  36. 36.
    Bischoff-Bäsmann B, Bartsch I, Xia B, Wiencke C (1997) Temperature responses of macroalgae from the tropical island Hainan (P.R. China). Phycol Res 45:91Google Scholar
  37. 37.
    Horta PA, Vieira-Pinto T, Martins CDL, Sissini MN, Ramlov F, Lhullier C, Scherner F, Sanches PF, Farias JN, Bastos E, Bouzon JL, Munoz P, Valduga E, Arantes NP, Batista MB, Ruil P, Almeida RS, Paes E, Fonseca A, Schenkel EP, Rorig L, Bouzon Z, Barufi JB, Colepicolo P, Yokoya N, Copertino MS, de Oliveira EC (2012) Evaluation of impacts of climate change and local stressors on the biotechnological potential of marine macroalgae - a brief theoretical discussion of likely scenarios. Braz J Pharmacogn 22:768CrossRefGoogle Scholar
  38. 38.
    Rodrigues CL, Caeiro S, Raikar SV (1997) Marine macrophyte communities on the reef flat at Agatti Atoll (Lakshadweep, India). Bot Mar 40:557CrossRefGoogle Scholar
  39. 39.
    Jadeja RN, Tewari A (2011) Impact of discharge of soda ash industry effluent on abundance and community structure of rocky intertidal macroalgae of the Arabian Sea, Gujarat, India. Ind J Geo-Mar Sci 40:71Google Scholar
  40. 40.
    Turna II, Ertan ÖO, Cormaci M, Furnari G (2002) Seasonal variations in the biomass of macro-algal communities from the gulf of Antalya (north-eastern Mediterranean). Turk J Bot 26:19Google Scholar
  41. 41.
    Díez I, Secilla A, Santolaria A, Gorostiaga JM (1999) Phytobenthic intertidal community structure along an environmental pollution gradient. Mar Pollut Bull 38:463CrossRefGoogle Scholar
  42. 42.
    Nonomura AM, West JA (1980) Ultrastructure of the parasite Janczewskia morimotoi and its host Laurencia nipponica (Ceramiales, Rhodophyta). J Ultrastruct Res 73:183CrossRefGoogle Scholar
  43. 43.
    Hay ME (1996) Marine chemical ecology: what’s known and what’s next? J Exp Mar Biol Ecol 200:103CrossRefGoogle Scholar
  44. 44.
    Kilar JA, Lou RM (1984) Ecological and behavioral studies of the decorator crab, Microphrys bicornutus Latreille (Decapoda: Brachyura): a test of optimum foraging theory. J Exp Mar Biol Ecol 74:157CrossRefGoogle Scholar
  45. 45.
    Kilar JA, Lou RM (1986) The subtleties of camouflage and dietary preference of the decorator crab, Microphrys bicornutus Latreille (Decapoda: Brachyura). J Exp Mar Biol Ecol 101:143CrossRefGoogle Scholar
  46. 46.
    Stoner AW, Waite JM (1991) Trophic biology of Strombus gigas in nursery habitats: diets and food sources in seagrass meadows. J Mollusc Stud 57:451CrossRefGoogle Scholar
  47. 47.
    Boettcher AA, Targett NM (1996) Induction of metamorphosis in queen conch, Strombus gigas Linnaeus, larvae by cues associated with red algae from their nursery grounds. J Exp Mar Biol Ecol 196:29CrossRefGoogle Scholar
  48. 48.
    Kuffner IB, Walters LJ, Becerro MA, Paul VJ, Ritson-William R, Beach KS (2006) Inhibition of coral recruitment by macroalgae and cyanobacteria. Mar Ecol Prog Ser 323:107CrossRefGoogle Scholar
  49. 49.
    Suenaga K (2004) Bioorganic studies on marine natural products with bioactivity, such as antitumor activity and feeding attractance. Bull Chem Soc Jpn 77:443CrossRefGoogle Scholar
  50. 50.
    Wessels M, König GM, Wright AD (2000) New natural product isolation and comparison of the secondary metabolite content of three distinct samples of the sea hare Aplysia dactylomela from Tenerife. J Nat Prod 63:920CrossRefGoogle Scholar
  51. 51.
    Rogers CN, De Nys R, Charlton TS, Steinberg PD (2000) Dynamics of algal secondary metabolites in two species of sea hare. J Chem Ecol 26:721CrossRefGoogle Scholar
  52. 52.
    Yamamura S, Hirata Y (1963) Structures of aplysin and aplysinol, naturally occurring bromo-compounds. Tetrahedron 19:1485CrossRefGoogle Scholar
  53. 53.
    de Oliveira LS, Gregoracci GB, Silva GGZ, Salgado LT, Filho GA, Alves-Ferreira M, Pereira RC, Thomps FL (2012) Transcriptomic analysis of the red seaweed Laurencia dendroidea (Florideophyceae, Rhodophyta) and its microbiome. BMC Genomics 13:487CrossRefGoogle Scholar
  54. 54.
    Faulkner DJ (1995) Chemical riches from the oceans. Chem Br 31:680Google Scholar
  55. 55.
    Butler A, Carter-Franklin JN (2004) The role of vanadium bromoperoxidase in the biosynthesis of halogenated marine natural products. Nat Prod Rep 21:180CrossRefGoogle Scholar
  56. 56.
    Winter JM, Moore BS (2009) Exploring the chemistry and biology of vanadium-dependent haloperoxidases. J Biol Chem 284:18577CrossRefGoogle Scholar
  57. 57.
    Carter-Franklin JN, Butler A (2004) Vanadium bromoperoxidase-catalyzed biosynthesis of halogenated marine natural products. J Am Chem Soc 126:15060CrossRefGoogle Scholar
  58. 58.
    Suzuki M, Takahashi Y, Nakano S, Abe T, Masuda M, Ohnishi T, Noya Y, Seki K (2009) An experimental approach to study the biosynthesis of brominated metabolites by the red algal genus Laurencia. Phytochemistry 70:1410CrossRefGoogle Scholar
  59. 59.
    Salgado LT, Viana NB, Andrade LR, Leal RN, da Gama BAP, Attias M, Pereira RC, Amado Filho GM (2008) Intra-cellular storage, transport and exocytosis of halogenated compounds in marine red alga Laurencia obtusa. J Struct Biol 162:345CrossRefGoogle Scholar
  60. 60.
    Suzuki M, Kurosawa E (1979) Halogenated and non-halogenated aromatic sesquiterpenes from the red algae Laurencia okamurai Yamada. Bull Chem Soc Jpn 52:3352CrossRefGoogle Scholar
  61. 61.
    Suzuki M, Kurosawa E, Kurata K (1987) (E)-2-Tridecyl-2-heptadecenal, an unusual metabolite from the red alga Laurencia species. Bull Chem Soc Jpn 60:3793Google Scholar
  62. 62.
    Vairappan CS, Suzuki M, Abe T, Masuda M (2001) Halogenated metabolites with antibacterial activity from the Okinawan Laurencia species. Phytochemistry 58:517CrossRefGoogle Scholar
  63. 63.
    Reis VM, Oliveira LS, Passos RMF, Viana NB, Mermelstein C, Sant’Anna C, Pereira RC, Paradas WC, Thompson FL, Amado-Filho GM, Salgado LT (2013) Traffic of secondary metabolites to cell surface in the red alga Laurencia dendroidea depends on a two-step transport by the cytoskeleton. PloS One 8:e63929CrossRefGoogle Scholar
  64. 64.
    Paradas WC, Salgado LT, Sudatti DB, Crapez MA, Fujii MT, Coutinho R, Pereira RC, Amado Filho GM (2010) Induction of halogenated vesicle transport in cells of the red seaweed Laurencia obtusa. Biofouling 26:277CrossRefGoogle Scholar
  65. 65.
    de Nys R, Dworjanyn SA, Steinberg PD (1998) A new method for determining surface concentrations of marine natural products on seaweeds. Mar Ecol Prog Ser 162:79CrossRefGoogle Scholar
  66. 66.
    Sudatti DB, Rodrigues SV, Pereira RC (2006) Quantitative GC-ECD analysis of halogenated metabolites: determination of surface and within-thallus elatol of Laurencia obtusa. J Chem Ecol 32:835CrossRefGoogle Scholar
  67. 67.
    Sudatti DB, Rodrigues SV, Coutinho R, da Gama BAP, Salgado LT, Amado Filho GM, Pereira RC (2008) Transport and defensive role of elatol at the surface of the red seaweed Laurencia obtusa (Ceramiales, Rhodophyta). J Phycol 44:584CrossRefGoogle Scholar
  68. 68.
    Howard BM, Nonomura AM, Fenical W (1980) Chemotaxonomy in marine algae: secondary metabolite synthesis by Laurencia in unialgal culture. Biochem Syst Ecol 8:329CrossRefGoogle Scholar
  69. 69.
    Masuda M, Kawaguchi S, Abe T, Kawamoto T, Suzuki M (2002) Additional analysis of chemical diversity of the red algal genus Laurencia (Rhodomelaceae) from Japan. Phycol Res 50:135CrossRefGoogle Scholar
  70. 70.
    Sudatti DB, Fujii MT, Rodrigues SV, Turra A, Pereira RC (2011) Effects of abiotic factors on growth and chemical defenses in cultivated clones of Laurencia dendroidea J. Agarth (Ceramiales, Rhodophyta). Mar Biol 158:1439Google Scholar
  71. 71.
    Oliveira AS, Sudatti DB, Fujii MT, Rodrigues SV, Pereira RC (2013) Inter- and intrapopulation variation in the defensive chemistry of the red seaweed Laurencia dendroidea (Ceramiales, Rhodophyta). Phycologia 52:130CrossRefGoogle Scholar
  72. 72.
    de Carvalho LR, Farias JN, Riul P, Fujii MT (2015) An overview of global distribution of the diterpenes synthesized by the red algae Laurencia complex (Ceramiales, Rhodomelaceae). In: Kim SK, Chojnacka K (eds) Marine algae extracts: processes, products, and applications. Wiley, WeinheimGoogle Scholar
  73. 73.
    Kokkotou K, Ioannou E, Nomikou M, Pitterl F, Vonaparti A, Siapi E, Zervou M, Roussis V (2014) An integrated approach using UHPLC-PDA-HRMS and 2D HSQC NMR for the metabolic profiling of the red alga Laurencia: dereplication and tracing of natural products. Phytochemistry 108:208CrossRefGoogle Scholar
  74. 74.
    Ji N-Y, Li X-M, Li K, Ding L-P, Gloer JB, Wang B-G (2007) Diterpenes, sesquiterpenes, and a C15 acetogenin from the marine red alga Laurencia mariannensis. J Nat Prod 70:1901CrossRefGoogle Scholar
  75. 75.
    Suzuki T, Furusaki A, Hashiba N, Kurosawa E (1977) Novel skeletal bromo ether from the marine alga Laurencia nipponica Yamada. Tetrahedron Lett 18:3731CrossRefGoogle Scholar
  76. 76.
    Suzuki M, Furusaki A, Kurosawa E (1979) The absolute configurations of halogenated chamigrene derivatives from the marine alga Laurencia glandulifera Kützing. Tetrahedron 35:823CrossRefGoogle Scholar
  77. 77.
    Suzuki M, Koizumi K, Kikuchi H, Suzuki T, Kurosawa E (1983) Epilaurallene, a new nonterpenoid C15-bromoallene from the red alga Laurencia nipponica Yamada. Bull Chem Soc Jpn 56:715CrossRefGoogle Scholar
  78. 78.
    Suzuki M, Segawa M, Kikuchi H, Suzuki T, Kurosawa E (1985) (5S,7R,10R)-Selin-4(14)-en-5α-ol, a sesquiterpene alcohol from the red alga Laurencia nipponica. Phytochemistry 24:2011Google Scholar
  79. 79.
    Li XD, Ding W, Miao FP, Ji NY (2012) Halogenated chamigrane sesquiterpenes from Laurencia okamurai. Magn Reson Chem 50:174CrossRefGoogle Scholar
  80. 80.
    Howard BM, Fenical W (1976) 10-Bromo-α-chamigrene. Tetrahedron Lett 17:2519CrossRefGoogle Scholar
  81. 81.
    König GM, Wright AD (1997) Laurencia rigida: chemical investigations of its antifouling dichloromethane extract. J Nat Prod 60:967CrossRefGoogle Scholar
  82. 82.
    Wolinsky LE, Faulkner DJ (1976) A biomimetic approach to the synthesis of Laurencia metabolites. Synthesis of 10-bromo-α-chamigrene. J Org Chem 41:597CrossRefGoogle Scholar
  83. 83.
    Guella G, Öztunç A, Mancini I, Pietra F (1997) Stereochemical features of sesquiterpene metabolites as a distinctive trait of red seaweeds in the genus Laurencia. Tetrahedron Lett 38:8261CrossRefGoogle Scholar
  84. 84.
    Li XD, Miao FP, Yin XL, Liu JL, Ji NY (2012) Sesquiterpenes from the marine red alga Laurencia composita. Fitoterapia 83:1191CrossRefGoogle Scholar
  85. 85.
    Ji N-Y, Li X-M, Li K, Wang B-G (2009) Halogenated sesquiterpenes from the marine red alga Laurencia saitoi (Rhodomelaceae). Helv Chim Acta 92:1873CrossRefGoogle Scholar
  86. 86.
    Dias T, Brito I, Moujir L, Paiz N, Darias J, Cueto M (2005) Cytotoxic sesquiterpenes from Aplysia dactylomela. J Nat Prod 68:1677CrossRefGoogle Scholar
  87. 87.
    Rovirosa J, Soto H, Cueto M, Dárias J, Herrera J, San-Martín A (1999) Sesquiterpenes from Laurencia claviformis. Phytochemistry 50:745CrossRefGoogle Scholar
  88. 88.
    Ji N, Li X, Li K, Gloer JB, Wang B (2008) Halogenated sesquiterpenes and non-halogenated linear C15 acetogenins from the marine red alga Laurencia composita and their chemotaxonomic significance. Biochem Syst Ecol 36:938CrossRefGoogle Scholar
  89. 89.
    Jongaramruong J, Blackman AJ, Skelton BW, White AH (2002) Chemical relationships between the sea hare Aplysia parvula and the red seaweed Laurencia filiformis from Tasmania. Aust J Chem 55:275CrossRefGoogle Scholar
  90. 90.
    Elsworth JF, Thomson RH (1989) A new chamigrane from Laurencia glomerata. J Nat Prod 52:893CrossRefGoogle Scholar
  91. 91.
    Wright AD, König GM, Sticher O (1991) New sesquiterpenes and C15 acetogenins from the marine red alga Laurencia implicata. J Nat Prod 54:1025CrossRefGoogle Scholar
  92. 92.
    Suzuki M, Matsuo Y, Masuda M (1993) Structures of laurenenyne A and B, novel halogenated acetogenins from a species of the red algal Laurencia. Tetrahedron 49:2033CrossRefGoogle Scholar
  93. 93.
    Takahashi Y, Suzuki M, Abe T, Masuda M (1998) Anhydroaplysiadiol from Laurencia japonensis. Phytochemistry 48:987CrossRefGoogle Scholar
  94. 94.
    Vairappan CS, Zanil II, Kamada T (2014) Structural diversity and geographical distribution of halogenated secondary metabolites in red algae, Laurencia nangii Masuda (Rhodomelaceae, Ceramiales), in the coastal waters of North Borneo Island. J Appl Phycol 26:1189CrossRefGoogle Scholar
  95. 95.
    Kimura J, Kamada N, Tsujimoto Y (1999) Fourteen chamigrane derivatives from a red alga Laurencia nidifica. Bull Chem Soc Jpn 72:289CrossRefGoogle Scholar
  96. 96.
    Suzuki T, Kikuchi H, Kurosawa E (1982) Six new sesquiterpenoids from the red alga Laurencia nipponica Yamada. Bull Chem Soc Jpn 55:1561CrossRefGoogle Scholar
  97. 97.
    Lyakhova EG, Kalinovsky AI, Kolesnikova SA, Vaskovsky VE, Stonik VA (2004) Halogenated diterpenoids from the red alga Laurencia nipponica. Phytochemistry 65:2527CrossRefGoogle Scholar
  98. 98.
    Alarif WM, Al-Lihaibi SS, Ayyad SEN, Abdel-Rhman MH, Badria FA (2012) Laurene-type sesquiterpenes from the Red Sea red alga Laurencia obtusa as potential antitumor-antimicrobial agents. Eur J Med Chem 55:462CrossRefGoogle Scholar
  99. 99.
    Ojika M, Shizuri Y, Yamada K (1982) A halogenated chamigrane epoxide and six related halogen-containing sesquiterpenes from the red alga Laurencia okamurai. Phytochemistry 21:2410CrossRefGoogle Scholar
  100. 100.
    Ji N-Y, Li X-M, Zhang Y, Wang B-G (2007) Two new halogenated chamigrane-type sesquiterpenes and other secondary metabolites from the marine red alga Laurencia okamurai and their chemotaxonomic significance. Biochem Syst Ecol 35:627CrossRefGoogle Scholar
  101. 101.
    Abou-Elnaga ZS, Alarif WM, Al-Iihaibi SS (2011) New larvicidal acetogenin from the red alga Laurencia papillosa. CLEAN 39:787Google Scholar
  102. 102.
    Kennedy DJ, Selby IA, Thomson RH (1988) Chamigrane metabolites from Laurencia obtusa and L. scoparia. Phytochemistry 27:1761CrossRefGoogle Scholar
  103. 103.
    König GM, Wright AD (1994) New C15 acetogenins and sesquiterpenes from the red alga Laurencia sp. cf. L. gracilis. J Nat Prod 57:477–485CrossRefGoogle Scholar
  104. 104.
    Howard BM, Fenical W (1975) Structures and chemistry of two new halogen-containing chamigrene derivatives from Laurencia. Tetrahedron Lett 16:1687CrossRefGoogle Scholar
  105. 105.
    Suzuki M, Kawamoto T, Vairappan CS, Ishii T, Abe T, Masuda M (2005) Halogenated metabolites from Japanese Laurencia spp. Phytochemistry 66:2787CrossRefGoogle Scholar
  106. 106.
    Suzuki M, Nakano S, Takahashi Y, Abe T, Masuda M, Takahashi H, Kobayashi K (2002) Brominated labdane-type diterpenoids from an Okinawan Laurencia sp. J Nat Prod 65:801CrossRefGoogle Scholar
  107. 107.
    San-Martín A, Darias J, Soto H, Contreras C, Herrera JS, Rovirosa J (1997) A new C15 acetogenin from the marine alga Laurencia claviformis. Nat Prod Lett 10:303CrossRefGoogle Scholar
  108. 108.
    Suzuki M, Kurosawa E, Furusaki A (1988) The structure and absolute stereochemistry of a halogenated chamigrene derivative from the red alga Laurencia species. Bull Chem Soc Jpn 61:3371CrossRefGoogle Scholar
  109. 109.
    Liang Y, Li XM, Cui CM, Li CS, Sun H, Wang BG (2012) Sesquiterpene and acetogenin derivatives from the marine red alga Laurencia okamurai. Mar Drugs 10:2817CrossRefGoogle Scholar
  110. 110.
    Fenical W (1976) Chemical variation in a new bromochamigrene derivative from the red seaweed Laurencia pacifica. Phytochemistry 15:511CrossRefGoogle Scholar
  111. 111.
    Suzuki M, Segawa M, Suzuki T, Kurosawa E (1983) Structure of halogenated chamigrene derivatives, minor constituents from the red alga Laurencia nipponica Yamada. Bull Chem Soc Jpn 56:3824CrossRefGoogle Scholar
  112. 112.
    Suzuki M, Kurosawa E, Irie T (1974) Glanduliferol, a new halogenated sesquiterpenoid from Laurencia glandulifera Kützing. Tetrahedron Lett 15:1807CrossRefGoogle Scholar
  113. 113.
    Suzuki M, Kurosawa E, Irie T (1974) Three new sesquiterpenoids containing bromine, minor constituents of Laurencia glandulifera Kützing. Tetrahedron Lett 15:821CrossRefGoogle Scholar
  114. 114.
    Wright AD, Coll JC, Price IR (1990) Tropical marine algae, VII. The chemical composition of marine algae from North Queensland waters. J Nat Prod 53:845CrossRefGoogle Scholar
  115. 115.
    Rovirosa J, Astudillo L, Ramirez ME, San-Martin A (1991) Chemical relationship between Aplysia dactylomela and Laurencia claviformis Borgesen from Easter Island. Bol Soc Chil Quim 36:153Google Scholar
  116. 116.
    Suzuki M, Kurosawa E (1978) Two new halogenated sesquiterpenes from the red alga Laurencia majuscula Harvey. Tetrahedron Lett 19:4805CrossRefGoogle Scholar
  117. 117.
    Suzuki M, Furusaki A, Hashiba N, Kurosawa E (1979) The structures and absolute stereochemistry of two halogenated chamigrenes from the red alga Laurencia majuscula Harvey. Tetrahedron Lett 20:879CrossRefGoogle Scholar
  118. 118.
    Palaniveloo K, Vairappan CS (2014) Chemical relationship between red algae genus Laurencia and sea hare (Aplysia dactylomela Rang) in the North Borneo Island. J Appl Phycol 26:1199CrossRefGoogle Scholar
  119. 119.
    Niwa H, Yoshida Y, Hasegawa T, Yamada K (1985) Total synthesis of (±)-(Z)-9-(bromomethylene)-1,5,5-trimethylspiro[5.5]undeca-1,7-dien-3-one, a brominated sesquiterpene of chamigrane type. Chem Lett 14:1687Google Scholar
  120. 120.
    Niwa H, Yoshida Y, Hasegawa T, Yamada K (1991) Total synthesis of (±)-(Z)-9-(bromomethylene)-1,5,5-trimethylspiro[5.5]undeca-1,7-dien-3-one, a brominated sesquiterpene of the chamigrane type. Tetrahedron 47:2155Google Scholar
  121. 121.
    Zhu JL, Huang PW, You RY, Lee FY, Tsao SW, Chen IC (2011) Total syntheses of (±)-(Z)- and (±)-(E)-9-(bromomethylene)-1,5,5-trimethylspiro[5.5]undeca-1,7-dien-3-one and (±)-majusculone. Synthesis 43:715CrossRefGoogle Scholar
  122. 122.
    Suzuki M, Kurosawa E, Kurata K (1987) Majusculone, a novel norchamigrane-type metabolite from the red alga Laurencia majuscula Harvey. Bull Chem Soc Jpn 60:3795CrossRefGoogle Scholar
  123. 123.
    Srikrishna A, Vasantha Lakshmi B, Mathews M (2006) Construction of spiro[5.5]undecanes containing a quaternary carbon atom adjacent to a spirocentre via an Ireland ester Claisen rearrangement and RCM reaction sequence. Total syntheses of (±)-α-chamigrene, (±)-β-chamigrene and (±)-laurencenone C. Tetrahedron Lett 47:2103CrossRefGoogle Scholar
  124. 124.
    Brennan MR, Erickson KL, Minott DA, Pascoe KO (1987) Chamigrane metabolites from a Jamaican variety of Laurencia obtusa. Phytochemistry 26:1053CrossRefGoogle Scholar
  125. 125.
    Kaiser CR, Pitombo LF, Pinto AC (2000) NMR analysis of a complex spin system from a spiro-chamigrene. Spectrosc Lett 33:457CrossRefGoogle Scholar
  126. 126.
    Machado FLD, Pacienza-Lima W, Rossi-Bergmann B, Gestinari LMD, Fujii MT, de Paula JC, Costa SS, Lopes NP, Kaiser CR, Soares AR (2011) Antileishmanial sesquiterpenes from the Brazilian red alga Laurencia dendroidea. Planta Med 77:733CrossRefGoogle Scholar
  127. 127.
    Capon RJ, Ghisalberti EL, Mori TA, Jefferies PR (1988) Sesquiterpenes from Laurencia spp. J Nat Prod 51:1302CrossRefGoogle Scholar
  128. 128.
    Díaz-Marrero AR, Brito I, de la Rosa JM, D’Croz L, Fabelo O, Ruiz-Perez C, Darias J, Cueto M (2009) Novel lactone chamigrene-derived metabolites from Laurencia majuscula. Eur J Org Chem 2009:1407CrossRefGoogle Scholar
  129. 129.
    González AG, Darias J, Díaz A, Fourneron JD, Martín JD, Pérez C (1976) Evidence for the biogenesis of halogenated chamigrenes from the red alga Laurencia obtusa. Tetrahedron Lett 17:3051CrossRefGoogle Scholar
  130. 130.
    González AG, Martín JD, Martín VS, Martínez-Ripoll M, Fayos J (1979) X-Ray study of sesquiterpene constituents of the alga L. obtusa leads to structure revision. Tetrahedron Lett 20:2717CrossRefGoogle Scholar
  131. 131.
    Gerwick WH, Lopez A, Davila R, Albors R (1987) Two new chamigrene sesquiterpenoids from the tropical red alga Laurencia obtusa. J Nat Prod 50:1131CrossRefGoogle Scholar
  132. 132.
    Martín JD, Caballero P, Fernández JJ, Norte M, Pérez R, Rodríguez ML (1989) Metabolites from Laurencia obtusa. Phytochemistry 28:3365CrossRefGoogle Scholar
  133. 133.
    Dorta E, Díaz-Marrero AR, Cueto M, D’Croz L, Maté JL, Darias J (2004) Chamigrenelactone, a polyoxygenated sesquiterpene with a novel structural type and devoid of halogen from Laurencia obtusa. Tetrahedron Lett 45:7065CrossRefGoogle Scholar
  134. 134.
    Davyt D, Fernández R, Suescun L, Mombrú AW, Saldaña J, Domínguez L, Coll J, Fujii MT, Manta E (2001) New sesquiterpene derivatives from the red alga Laurencia scoparia. Isolation, structure determination and anthelmintic activity. J Nat Prod 64:1552Google Scholar
  135. 135.
    Díaz-Marrero AR, de la Rosa JM, Brito I, Darias J, Cueto M (2012) Dactylomelatriol, a biogenetically intriguing omphalane-derived marine sesquiterpene. J Nat Prod 75:115CrossRefGoogle Scholar
  136. 136.
    Perales A, Martínez-Ripoll M, Fayos J (1979) Structure of obtusol acetate, a halogenated chamigrene-type sesquiterpene. Acta Crystallogr B35:2771CrossRefGoogle Scholar
  137. 137.
    Waraszkiewicz SM, Erickson KL (1974) Halogenated sesquiterpenoids from the Hawaiian marine alga Laurencia nidifica: nidificene and nidifidiene. Tetrahedron Lett 15:2003CrossRefGoogle Scholar
  138. 138.
    Kikuchi H, Suzuki T, Kurosawa E, Suzuki M (1991) The structure of notoryne, a halogenated C15 nonterpenoid with a novel carbon skeleton from the red alga Laurencia nipponica Yamada. Bull Chem Soc Jpn 64:1763CrossRefGoogle Scholar
  139. 139.
    Brito I, Cueto M, Díaz-Marrero AR, Darias J, San Martín A (2002) Oxachamigrenes, new halogenated sesquiterpenes from Laurencia obtusa. J Nat Prod 65:946CrossRefGoogle Scholar
  140. 140.
    McPhail KL, Davies-Coleman MT, Copley RCB, Eggleston DS (1999) New halogenated sesquiterpenes from South African specimens of the circumtropical sea hare Aplysia dactylomela. J Nat Prod 62:1618CrossRefGoogle Scholar
  141. 141.
    Ali MS (2004) Algal halo-chamigranes. J Chem Soc Pak 26:310Google Scholar
  142. 142.
    Juagdan EG, Kalidindi R, Scheuer P (1997) Two new chamigranes from an Hawaiian red alga Laurencia cartilaginea. Tetrahedron 53:521CrossRefGoogle Scholar
  143. 143.
    Francisco MEY, Turnbull MM, Erickson KL (1998) Cartilagineol, the fourth lineage of Laurencia-derived polyhalogenated chamigrene. Tetrahedron Lett 39:5289CrossRefGoogle Scholar
  144. 144.
    Shubina LK, Fedorov SN, Kalinovskiy AI, Dmitrenok AS, Jin JO, Song MG, Kwak JY, Stonik VA (2007) Four new chamigrane sesquiterpenoids from the opistobranch mollusk Aplysia dactylomela. Russ Chem Bull 56:2109CrossRefGoogle Scholar
  145. 145.
    Ayyad SEN, Dawidar AAM, Dias HW, Howie RA, Jakupovic J, Thomson RH (1990) Three halogenated metabolites from Laurencia obtusa. Phytochemistry 29:3193CrossRefGoogle Scholar
  146. 146.
    Da Silva Machado FL, Ventura TLB, de Souza Gestinari LM, Cassano V, Resende JALC, Kaiser CR, Lasunskaia EB, Muzitano MF, Soares AR (2014) Sesquiterpenes from the Brazilian red alga Laurencia dendroidea J. Agarth. Molecules 19:3181CrossRefGoogle Scholar
  147. 147.
    Suescun L, Mombrú AW, Mariezcurrena RA, Davyt D, Fernández R, Manta E (2001) Two natural products from the algae Laurencia scoparia. Acta Crystallogr C57:286Google Scholar
  148. 148.
    Francisco MEY, Erickson KL (2001) Ma’iliohydrin, a cytotoxic chamigrene dibromohydrin from a Philippine Laurencia species. J Nat Prod 64:790CrossRefGoogle Scholar
  149. 149.
    de Nys R, König G, Wright A, Sticher O (1993) Two metabolites from the red alga Laurencia flexilis. Phytochemistry 34:725CrossRefGoogle Scholar
  150. 150.
    Tan KL, Matsunaga S, Vairappan CS (2011) Halogenated chamigranes of red alga Laurencia snackeyi (Weber-van Bosse) Masuda from Sulu-Sulawesi Sea. Biochem Syst Ecol 39:213CrossRefGoogle Scholar
  151. 151.
    Fedorov SN, Reshetnyak MV, Shchedrin AP, Il’in GS, Struchkov YT, Stonik VA, Elyakov GB (1989) New halogenated chamigrane sesquiterpenoid from the mollusc Aplysia sp. Structure and absolute configuration. Dokl Akad Nauk SSSR 305:877Google Scholar
  152. 152.
    Li XD, Miao FP, Li K, Ji NY (2012) Sesquiterpenes and acetogenins from the marine red alga Laurencia okamurai. Fitoterapia 83:518CrossRefGoogle Scholar
  153. 153.
    de Nys R, Coll JC, Bowden BF (1992) Tropical marine algae. VIII. The structural determination of novel sesquiterpenoid metabolites from the red alga Laurencia majuscula. Aust J Chem 45:1611Google Scholar
  154. 154.
    Rashid MA, Gustafson KR, Cardellina JH II, Boyd MR (1995) Brominated chamigrane sesquiterpenes produce a novel profile of differential cytotoxicity in the NCI in vitro screen. Nat Prod Lett 6:255CrossRefGoogle Scholar
  155. 155.
    Vairappan CS, Anangdan SP, Lee KT, Matsunaga S (2010) Role of secondary metabolites as defense chemicals against ice-ice disease bacteria in biofouler at carrageenophyte farms. J Appl Phycol 22:305CrossRefGoogle Scholar
  156. 156.
    Schmitz FJ, Michaud DP, Schmidt PG (1982) Marine natural products: parguerol, deoxyparguerol and isoparguerol. New brominated diterpenes with modified pimarane skeletons from the sea hare Aplysia dactylomela. J Am Chem Soc 104:6415Google Scholar
  157. 157.
    Bansemir A, Just N, Michalik M, Lindequist U, Lalk M (2004) Extracts and sesquiterpene derivatives from the red alga Laurencia chondrioides with antibacterial activity against fish and human pathogenic bacteria. Chem Biodivers 1:463CrossRefGoogle Scholar
  158. 158.
    Coll JC, Wright AD (1989) Tropical marine algae. III. New sesquiterpenes from Laurencia majuscula (Rhodophyta, Rhodophyceae, Ceramiales, Rhodomelaceae). Aust J Chem 42:1591Google Scholar
  159. 159.
    Furusaki A, Matsumoto T, Kurata K, Suzuki T, Suzuki M, Kurosawa E (1983) X-ray structure determination of (–)-obtusane, a new sesquiterpene from the red alga Laurencia nipponica Yamada. Bull Chem Soc Jpn 56:3501CrossRefGoogle Scholar
  160. 160.
    Ji N-Y, Li X-M, Cui C-M, Wang B-G (2007) Terpenes and polybromoindoles from the marine red alga Laurencia decumbens (Rhodomelaceae). Helv Chim Acta 90:1731CrossRefGoogle Scholar
  161. 161.
    González AG, Martín JD, Martín VS, Norte M (1979) Carbon-13 NMR application to Laurencia polyhalogenated sesquiterpenes. Tetrahedron Lett 20:2719CrossRefGoogle Scholar
  162. 162.
    Vairappan CS, Phang S (2005) Morphology and halochamigrene metabolite content of Laurencia majuscula (Rhodomelaceae, Ceramiales) from the Spratly Islands. Malay J Sci 24:29Google Scholar
  163. 163.
    Guella G, Mancini I, Pietra F (1992) C15 acetogenins and terpenes of the sponge Spongia zimocca of Il Rogiolo: a case of seaweed-metabolite transfer to, and elaboration within, a sponge? Comp Biochem Physiol B 103:1019Google Scholar
  164. 164.
    Guella G, Chiasera G, Mancini I, Pietra F (1991) Conformational analysis of marine polyhalogenated β-chamigrenes through temperature-dependent NMR spectra. Helv Chim Acta 74:774CrossRefGoogle Scholar
  165. 165.
    Vairappan CS, Daitoh M, Suzuki M, Abe T, Masuda M (2001) Antibacterial halogenated metabolites from the Malaysian Laurencia species. Phytochemistry 58:291CrossRefGoogle Scholar
  166. 166.
    Vairappan CS, Anangdan SP, Matsunaga S (2009) Diet-derived halogenated metabolite from the sea hare Aplysia parvula. Malay J Sci 28:269Google Scholar
  167. 167.
    Hegazy MEF, Moustfa AY, Mohamed AEHH, Alhammady MA, Elbehairi SEIE, Ohta S, Paré PW (2014) New cytotoxic halogenated sesquiterpenes from the Egyptian sea hare Aplysia oculifera. Tetrahedron Lett 55:1711CrossRefGoogle Scholar
  168. 168.
    Martín JD, Pérez C, Ravelo JL (1986) Enantioselective ring construction: synthesis of halogenated marine natural spiro[5.5]undecane sesquiterpenes. J Am Chem Soc 108:7801Google Scholar
  169. 169.
    González AG, Martín JD, Martín VS, Norte M, Fayos J, Martínez-Ripoll M (1978) A new polyhalogenated sesquiterpene from Laurencia obtusa. Tetrahedron Lett 19:2035CrossRefGoogle Scholar
  170. 170.
    König GM, Wright AD (1997) Pulsed field gradient spectroscopy (PFGS): application to the structure elucidation of (+)-(10S)-10-bromo-β-chamigrene. Phytochem Anal 8:167CrossRefGoogle Scholar
  171. 171.
    Martín JD, Palazón JM, Pérez C, Ravelo JL (1986) Syntheses of marine molecules. Pure Appl Chem 58:395CrossRefGoogle Scholar
  172. 172.
    dos Santos AO, Veiga-Santos P, Ueda-Nakamura T, Dias BP, Sudatti DB, Bianco EM, Pereira RC, Nakamura CV (2010) Effect of elatol, isolated from red seaweed Laurencia dendroidea, on Leishmania amazonensis. Mar Drugs 8:2733CrossRefGoogle Scholar
  173. 173.
    Born FS, Bianco EM, da Camara CAG (2012) Acaricidal and repellent activity of terpenoids from seaweeds collected in Pernambuco, Brazil. Nat Prod Commun 7:463Google Scholar
  174. 174.
    Sims JJ, Lin GHY, Wing RM (1974) Marine natural products X. Elatol, a halogenated sesquiterpene alcohol from the red alga Laurencia elata. Tetrahedron Lett 15:3487Google Scholar
  175. 175.
    Lhullier C, Donnangelo A, Caro M, Palermo JA, Horta PA, Falkenberg M, Schenkel EP (2009) Isolation of elatol from Laurencia microcladia and its palatability to the sea urchin Echinometra lucunter. Biochem Syst Ecol 37:254CrossRefGoogle Scholar
  176. 176.
    Ji N, Li X, Ding L, Wang B (2007) Aristolane sesquiterpenes and highly brominated indoles from the marine red alga Laurencia similis (Rhodomelaceae). Helv Chim Acta 90:385CrossRefGoogle Scholar
  177. 177.
    Rose AF, Sims JJ (1977) Marine natural products XIV. 1-S-Bromo-4-R-hydroxyselin-7-ene, a metabolite of the marine alga Laurencia sp. Tetrahedron Lett 18:2935CrossRefGoogle Scholar
  178. 178.
    Jiménez-Romero C, Mayer AMS, Rodríguez AD (2014) Dactyloditerpenol acetate, a new prenylbisabolane-type diterpene from Aplysia dactylomela with significant in vitro anti-neuroinflammatory activity. Bioorg Med Chem Lett 24:344CrossRefGoogle Scholar
  179. 179.
    Suzuki M, Segawa M, Suzuki T, Kurosawa E (1985) Structures of two new halochamigrene derivatives from the red alga Laurencia nipponica Yamada. Bull Chem Soc Jpn 58:2435CrossRefGoogle Scholar
  180. 180.
    Waraszkiewicz SM, Erickson KL (1975) Halogenated sesquiterpenoids from the Hawaiian marine alga Laurencia nidifica. II. Nidifidienol. Tetrahedron Lett 16:281CrossRefGoogle Scholar
  181. 181.
    Masuda M, Itoh T, Matsuo Y, Suzuki M (1997) Sesquiterpenoids of Laurencia majuscula (Ceramiales, Rhodophyta) from the Ryukyu Islands, Japan. Phycol Res 45:59CrossRefGoogle Scholar
  182. 182.
    Sakai R, Higa T, Jefford CW, Bernardinelli G (1986) The absolute configurations and biogenesis of some new halogenated chamigrenes from the sea hare Aplysia dactylomela. Helv Chim Acta 69:91CrossRefGoogle Scholar
  183. 183.
    McMillan JA, Paul IC, White RH, Hager LP (1974) Molecular structure of acetoxyintricatol: a new bromo compound from Laurencia intricata. Tetrahedron Lett 15:2039CrossRefGoogle Scholar
  184. 184.
    Cox PJ, Howie RA (1989) Structure of 2,10-dibromo-3-chloro-7R,8S-epoxychamigrene. Z Krist 188:1CrossRefGoogle Scholar
  185. 185.
    Bano S, Ali MS, Ahmad VU (1987) Marine natural products. VI. A halogenated chamigrene epoxide from the red alga Laurencia pinnatifida. Planta Med 53:508Google Scholar
  186. 186.
    Furusaki A, Katayama C, Matsumoto T, Suzuki M, Suzuki T, Kikuchi H, Kurosawa E (1982) The crystal and molecular structure of 7,8-epoxyhalochamigrene. Bull Chem Soc Jpn 55:3398CrossRefGoogle Scholar
  187. 187.
    Vairappan CS, Ishii T, Lee TK, Suzuki M, Zhaoqi Z (2010) Antibacterial activities of a new brominated diterpene from Borneon Laurencia spp. Mar Drugs 8:1743CrossRefGoogle Scholar
  188. 188.
    Bittner ML, Silva M, Paul VJ, Fenical W (1985) A rearranged chamigrene derivative and its potential biogenetic precursor from a new species of the marine red algal genus Laurencia (Rhodomelaceae). Phytochemistry 24:987CrossRefGoogle Scholar
  189. 189.
    Kaiser CR, Pitombo LF, Pinto AC (1998) C-13 and H-1 NMR assignments of the chamigrenes prepacifenol and dehydroxyprepacifenol epoxides. Spectrosc Lett 31:573CrossRefGoogle Scholar
  190. 190.
    Faulkner DJ, Stallard MO, Ireland C (1974) Prepacifenol epoxide, a halogenated sesquiterpene diepoxide. Tetrahedron Lett 15:3571CrossRefGoogle Scholar
  191. 191.
    Ireland C, Stallard MO, Faulkner DJ, Finer J, Clardy J (1976) Some chemical constituents of the digestive gland of the sea hare Aplysia californica. J Org Chem 41:2461CrossRefGoogle Scholar
  192. 192.
    Suzuki M, Kurosawa E (1985) A C-15 non-terpenoid from the red alga Laurencia okamurai. Phytochemistry 24:1999CrossRefGoogle Scholar
  193. 193.
    Vairappan CS, Suzuki M, Ishii T, Okino T, Abe T, Masuda M (2008) Antibacterial activity of halogenated sesquiterpenes from Malaysian Laurencia spp. Phytochemistry 69:2490CrossRefGoogle Scholar
  194. 194.
    Pitombo LF, Kaiser CR, Pinto AC (1996) Occurrence of chamigrenes in Aplysia dactylomela from Brazilian waters. Bol Soc Chil Quim 41:433Google Scholar
  195. 195.
    Masuda M, Kawaguchi S, Takahashi Y, Matsuo Y, Suzuki M (1997) A taxonomic study of the genus Laurencia (Ceramiales, Rhodophyta) from Vietnam. I. Laurencia caduciramulosa Masuda et Kawaguchi, sp. nov. Crypt Algol 18:71Google Scholar
  196. 196.
    Hall JG, Reiss JA (1986) Elatenyne - a pyrano[3,2-b]pyranyl vinyl acetylene from the red alga Laurencia elata. Aust J Chem 39:1401CrossRefGoogle Scholar
  197. 197.
    Fronczek FR, Caccamese S (1989) Redetermination of the absolute configuration of deoxyprepacifenol from the Mediterranean red alga Laurencia majuscula. Acta Crystallogr C45:1102Google Scholar
  198. 198.
    de Nys R, Coll JC, Bowden BF (1993) Tropical marine algae. IX. A new sesquiterpenoid metabolite from the red alga Laurencia marianensis. Aust J Chem 46:933Google Scholar
  199. 199.
    Kikuchi H, Suzuki T, Suzuki M, Kurosawa E (1985) A new chamigrane-type bromo diether from the red alga Laurencia nipponica Yamada. Bull Chem Soc Jpn 58:2437CrossRefGoogle Scholar
  200. 200.
    Watanabe K, Umeda K, Miyakado M (1989) Isolation and identification of three insecticidal principles from the red alga Laurencia nipponica Yamada. Agric Biol Chem 53:2513Google Scholar
  201. 201.
    Mao SC, Guo YW (2010) Sesquiterpenes from Chinese red alga Laurencia okamurai. Chin J Nat Med 8:321CrossRefGoogle Scholar
  202. 202.
    Sims JJ, Fenical W, Wing RM, Radlick P (1973) Marine natural products. IV. Prepacifenol, a halogenated epoxy sesquiterpene and precursor to pacifenol from the red alga Laurencia filiformis. J Am Chem Soc 95:972Google Scholar
  203. 203.
    Kurata K, Furusaki A, Katayama C, Kikuchi H, Suzuki T (1981) A new labile sesquiterpene diol having bromine from the marine red alga Laurencia nipponica Yamada. Chem Lett 10:773CrossRefGoogle Scholar
  204. 204.
    Kigoshi H, Shizuri Y, Niwa H, Yamada K (1981) Laurencenyne, a plausible precursor of various nonterpenoid C15-compounds and neolaurencenyne from the red alga Laurencia okamurai. Tetrahedron Lett 22:4729CrossRefGoogle Scholar
  205. 205.
    Kurata K, Suzuki T, Suzuki M, Kurosawa E, Furusaki A, Suehiro K, Matsumoto T, Katayama C (1983) Structures of two new halogenated chamigrane-type sesquiterpenoids from the red alga Laurencia nipponica Yamada. Chem Lett 12:561CrossRefGoogle Scholar
  206. 206.
    Caccamese S, Compagnini A, Toscano RM, Nicolo F, Chapuis G (1987) A new labile bromoterpenoid from the red alga Laurencia majuscula: dehydrochloroprepacifenol. Tetrahedron 43:5393CrossRefGoogle Scholar
  207. 207.
    González AG, Martín JD, Norte M, Pérez R, Weyler V, Perales A, Fayos J (1983) New halogenated constituents of the digestive gland of the sea hare Aplysia dactylomela. Tetrahedron Lett 24:847CrossRefGoogle Scholar
  208. 208.
    Ahmad VU, Ali MS (1991) Pinnatifinone, a new halogenated chamigrene from the red alga Laurencia pinnatifida. Sci Pharm 59:243Google Scholar
  209. 209.
    White RH, Hager LP (1975) A biogenetic sequence of halogenated sesquiterpenes from Laurencia intricata. Phys Chem Sci Res Rep 1:633Google Scholar
  210. 210.
    Stallard MO, Faulkner DJ (1974) Chemical constituents of the digestive gland of the sea hare Aplysia californica - II. Chemical transformations. Comp Biochem Physiol 49Β:37Google Scholar
  211. 211.
    Selover SJ, Crews P (1980) Kylinone, a new sesquiterpene skeleton from the marine alga Laurencia pacifica. J Org Chem 45:69CrossRefGoogle Scholar
  212. 212.
    Stallard MO, Faulkner DJ (1974) Chemical constituents of the digestive gland of the sea hare Aplysia californica - I. Importance of diet. Comp Biochem Physiol 49B:25Google Scholar
  213. 213.
    Kaiser CR, Pitombo LF, Pinto AC (2001) Complete 1H and 13C NMR assignments of chamigrenes from Aplysia dactylomela. Magn Reson Chem 39:147CrossRefGoogle Scholar
  214. 214.
    Ji NY, Li XM, Wang BG (2010) Sesquiterpenes and other metabolites from the marine red alga Laurencia composita (Rhodomelaceae). Helv Chim Acta 93:2281CrossRefGoogle Scholar
  215. 215.
    Waraszkiewicz SM, Erickson KL (1976) Halogenated sesquiterpenoids from the Hawaiian marine alga Laurencia nidifica. IV. Nidifocene. Tetrahedron Lett 17:1443CrossRefGoogle Scholar
  216. 216.
    Waraszkiewicz SM, Erickson KL, Finer J, Clardy J (1977) Nidifocene: a reassignment of structure. Tetrahedron Lett 18:2311CrossRefGoogle Scholar
  217. 217.
    Iwata C, Akiyama T, Miyashita K (1988) An approach to the stereoselective synthesis of nidifocene: regio- and stereoselective synthesis of vic-trans-bromochlorocyclohexane ring system. Chem Pharm Bull 36:2878CrossRefGoogle Scholar
  218. 218.
    Miyashita K, Yoneda K, Akiyama T, Koga Y, Tanaka M, Yoneyama T, Iwata C (1993) An approach to the stereoselective synthesis of nidifocene. III. Total syntheses of stereoisomers of (±)-nidifocene from (±)-dehalogenonidifocene. Chem. Pharm Bull 41:465CrossRefGoogle Scholar
  219. 219.
    Ahmad VU, Ali MS (1991) Terpenoids from marine red alga Laurencia pinnatifida. Phytochemistry 30:4172CrossRefGoogle Scholar
  220. 220.
    Cassano V, De-Paula JC, Fujii MT, Da Gama BAP, Teixeira VL (2008) Sesquiterpenes from the introduced red seaweed Laurencia caduciramulosa (Rhodomelaceae, Ceramiales). Biochem Syst Ecol 36:223CrossRefGoogle Scholar
  221. 221.
    Dias DA, Urban S (2011) Phytochemical studies of the southern Australian marine alga Laurencia elata. Phytochemistry 72:2081CrossRefGoogle Scholar
  222. 222.
    Caccamese S, Compagnini A, Toscano RM (1986) Pacifenol from the Mediterranean red alga Laurencia majuscula. J Nat Prod 49:173CrossRefGoogle Scholar
  223. 223.
    Fronczek FR, Caccamese S (1986) Redetermination of pacifenol, a halogenated sesquiterpene from the Mediterranean red alga Laurencia majuscula. Acta Crystallogr C42:1649Google Scholar
  224. 224.
    Suzuki T (1980) Two new sesquiterpene alcohols containing bromine from the marine alga Laurencia nipponica Yamada. Chem Lett 9:541CrossRefGoogle Scholar
  225. 225.
    Sims JJ, Fenical W, Wing RM, Radlick P (1971) Marine natural products. I. Pacifenol, a rare sesquiterpene containing bromine and chlorine from the red alga Laurencia pacifica. J Am Chem Soc 93:3774Google Scholar
  226. 226.
    Argandona VH, San-Martín A, Rovirosa J (1993) Halogenated sesquiterpenes pacifenol and pacifenol derivatives on the aphid Schizaphis graminum. Phytochemistry 32:1159CrossRefGoogle Scholar
  227. 227.
    Rovirosa J, Darias J, Manriquez V, Brito I, Lara N, Argandona V, San Martin A (1994) Structure and insecticidal activities of chamigrene derivatives. Bol Soc Chil Quim 39:193Google Scholar
  228. 228.
    Rao CB, Satyanarayana C, Rao DV (1994) A new chamigrane derivative from Aplysia dactylomela of the Indian Ocean. In: Thompson MF, Nagabhushanam R, Sarojini R, Fingerman M (eds) Recent developments in biofouling control. Indo-United States conference, Bangalore, July 1992. AA Balkema, RotterdamGoogle Scholar
  229. 229.
    Li XD, Miao FP, Liang XR, Wang BG, Ji NY (2013) Two halosesquiterpenes from Laurencia composita. RSC Adv 3:1953CrossRefGoogle Scholar
  230. 230.
    Sims JJ, Fenical W, Wing RM, Radlick P (1972) Marine natural products III. Johnstonol, an unusual halogenated epoxide from the red alga Laurencia johnstonii. Tetrahedron Lett 13:195Google Scholar
  231. 231.
    Irie T, Suzuki M, Hayakawa Y (1969) Isolation of aplysin, debromoaplysin and aplysinol from Laurencia okamurai Yamada. Bull Chem Soc Jpn 42:843CrossRefGoogle Scholar
  232. 232.
    Sun J, Shi DY, Ma M, Li SA, Wang SJ, Han LJ, Yang YC, Fan X, Shi JG, He L (2005) Sesquiterpenes from the red alga Laurencia tristicha. J Nat Prod 68:915CrossRefGoogle Scholar
  233. 233.
    Atta-ur-Rahman, Ahmad VU, Bano S, Abbas SA, Alvi KA, Ali MS, Lu HSM, Clardy J (1988) Pinnatazane, a bridged cyclic ether sesquiterpene from Laurencia pinnatifida. Phytochemistry 27:3879CrossRefGoogle Scholar
  234. 234.
    Aknin M, Ahond A, Chiaroni A, Poupat C, Riche C, Kornprobst JM (1989) Isolation, détermination structurale et configuration absolue de l’almadioxyde. Tetrahedron Lett 30:559CrossRefGoogle Scholar
  235. 235.
    Bano S, Ali MS, Ahmad VU (1988) Marine natural products, IX. A new halogenated sesquiterpene pinnatifidone from the red alga Laurencia pinnatifida. Z Naturforsch 43B:1347Google Scholar
  236. 236.
    Taber DF, Sikkander IMI, Storck PH (2007) Enantioselective synthesis of (+)-majusculone. J Org Chem 72:4098CrossRefGoogle Scholar
  237. 237.
    Iwata C, Akiyama T, Miyashita K (1988) Synthesis of four possible isomers of 9-(bromomethylene)-1,2,5-trimethyspiro[5.5]undeca-1,7-dien-3-one: structure elucidation of a brominated rearranged chamigrane-type sesquiterpene. Chem Pharm Bull 36:2872Google Scholar
  238. 238.
    Suzuki M, Daitoh M, Vairappan CS, Abe T, Masuda M (2001) Novel halogenated metabolites from the Malaysian Laurencia pannosa. J Nat Prod 64:597CrossRefGoogle Scholar
  239. 239.
    Liang Y, Li XM, Cui CM, Li CS, Wang BG (2009) A new rearranged chamigrane sesquiterpene from Laurencia okamurai. Chin Chem Lett 20:190CrossRefGoogle Scholar
  240. 240.
    Fedorov SN, Shubina LK, Kalinovsky AI, Lyakhova EG, Stonik VA (2000) Structure and absolute configuration of a new rearranged chamigrane-type sesquiterpenoid from the sea hare Aplysia sp. Tetrahedron Lett 41:1979CrossRefGoogle Scholar
  241. 241.
    Atta-ur-Rahman (1989) Isolation and structural studies on new natural products of potential biological importance. Pure Appl Chem 61:453CrossRefGoogle Scholar
  242. 242.
    Fukuzawa A, Shea CM, Masamune T, Furusaki A, Katayama C, Matsumoto T (1981) Spironippol, new sesquiterpene from the marine alga Laurencia nipponica Yamada. Tetrahedron Lett 22:4087CrossRefGoogle Scholar
  243. 243.
    Kazlauskas R, Murphy PT, Quinn RJ, Wells RT (1976) New laurene derivatives from Laurencia filiformis. Aust J Chem 29:2533CrossRefGoogle Scholar
  244. 244.
    Irie T, Yasunari Y, Suzuki T, Imai N, Kurosawa E, Masamune T (1965) A new sesquiterpene hydrocarbon from Laurencia glandulifera. Tetrahedron Lett 6:3619CrossRefGoogle Scholar
  245. 245.
    Irie T, Suzuki T, Ito S, Kurosawa E (1967) The absolute configuration of laurene and α-cuparenone. Tetrahedron Lett 8:3187CrossRefGoogle Scholar
  246. 246.
    Irie T, Suzuki T, Yasunari Y, Kurosawa E, Masamune T (1969) Laurene, a sesquiterpene hydrocarbon from Laurencia species. Tetrahedron 25:459CrossRefGoogle Scholar
  247. 247.
    Suzuki M, Kurosawa E (1978) New aromatic sesquiterpenoids from the red alga Laurencia okamurai Yamada. Tetrahedron Lett 19:2503CrossRefGoogle Scholar
  248. 248.
    Wratten SJ, Faulkner DJ (1977) Metabolites of the red alga Laurencia subopposita. J Org Chem 42:3343CrossRefGoogle Scholar
  249. 249.
    Findlay JA, Li GQ (2002) Novel terpenoids from the sea hare Aplysia punctata. Can J Chem 80:1697CrossRefGoogle Scholar
  250. 250.
    Srikrishna A, Sundarababu G (1990) A radical cyclisation based strategy to cuparenoids: synthesis of (±)-α-cuparenone, (±)-epilaurene and laurenes. Tetrahedron 46:3601CrossRefGoogle Scholar
  251. 251.
    Bailey WF, Jiang XL, McLeod CE (1995) Conformational control in the cyclization of an unsaturated vinyllithium: synthesis of (±)-laurene. J Org Chem 60:7791CrossRefGoogle Scholar
  252. 252.
    Kulkarni MG, Pendharkar DS (1997) An efficient total synthesis of (±)-laurene. J Chem Soc Perkin Trans 1:3127CrossRefGoogle Scholar
  253. 253.
    Oh CH, Han JW, Kim JS, Um SY, Jung HH, Jang WH, Won HS (2000) A short synthesis of (±)-laurene: mechanistic reinvestigation in palladium-catalyzed cycloreductions of 1,6-enynes. Tetrahedron Lett 41:8365CrossRefGoogle Scholar
  254. 254.
    Nemoto H, Nagamochi M, Fukumoto K (1993) Chiral cyclobutanones as versatile synthons: the first enantioselective total synthesis of (+)-laurene. J Chem Soc Perkin Trans 1:2329CrossRefGoogle Scholar
  255. 255.
    Kladi M, Xenaki H, Vagias C, Papazafiri P, Roussis V (2006) New cytotoxic sesquiterpenes from the red algae Laurencia obtusa and Laurencia microcladia. Tetrahedron 62:182CrossRefGoogle Scholar
  256. 256.
    Izac RR, Sims JJ (1979) Marine natural products. 18. Iodinated sesquiterpenes from the red algal genus Laurencia. J Am Chem Soc 101:6136Google Scholar
  257. 257.
    Dias DA, White JM, Urban S (2009) Laurencia filiformis: phytochemical profiling by conventional and HPLC-NMR approaches. Nat Prod Commun 4:157Google Scholar
  258. 258.
    Suzuki M, Kurosawa E (1979) Halogenated sesquiterpene phenols and ethers from the red alga Laurencia glandulifera Kützing. Bull Chem Soc Jpn 52:3349CrossRefGoogle Scholar
  259. 259.
    König GM, Wright AD (1997) Sesquiterpene content of the antibacterial dichloromethane extract of the marine red alga Laurencia obtusa. Planta Med 63:186CrossRefGoogle Scholar
  260. 260.
    Appleton DR, Babcock RC, Copp BR (2001) Novel tryptophan-derived dipeptides and bioactive metabolites from the sea hare Aplysia dactylomela. Tetrahedron 57:10181CrossRefGoogle Scholar
  261. 261.
    Gewali MB, Ronald RC (1982) Synthesis of allolaurinterol. J Org Chem 47:2792CrossRefGoogle Scholar
  262. 262.
    Kladi M, Vagias C, Papazafiri P, Furnari G, Serio D, Roussis V (2007) New sesquiterpenes from the red alga Laurencia microcladia. Tetrahedron 63:7606CrossRefGoogle Scholar
  263. 263.
    Caccamese S, Hager LP, Rinehart KL, Setzer RB (1979) Characterization of Laurencia species by GC-MS. Bot Mar 22:41CrossRefGoogle Scholar
  264. 264.
    Blunt JW, Lake RJ, Munro MHG (1984) Sesquiterpenes from the marine red alga Laurencia distichophylla. Phytochemistry 23:1951CrossRefGoogle Scholar
  265. 265.
    Irie T, Suzuki M, Kurosawa E, Masamune T (1970) Laurinterol, debromolaurinterol and isolaurinterol, constituents of Laurencia intermedia Yamada. Tetrahedron 26:3271CrossRefGoogle Scholar
  266. 266.
    Harrowven DC, Lucas MC, Howes PD (2001) The synthesis of a natural product family: from debromoisolaurinterol to the aplysins. Tetrahedron 57:791CrossRefGoogle Scholar
  267. 267.
    Mao S, Guo Y (2005) Cuparene-derived sesquiterpenes from the Chinese red alga Laurencia okamurai Yamada. Helv Chim Acta 88:1034CrossRefGoogle Scholar
  268. 268.
    Ryu G, Park SH, Choi BW, Lee NH, Hwang HJ, Ryu SY, Lee BH (2002) Cytotoxic activities of brominated sesquiterpenes from the red alga Laurencia okamurai. Nat Prod Sci 8:103Google Scholar
  269. 269.
    Ji N-Y, Li X-M, Li K, Ding L-P, Wang B-G (2008) Laurane-derived sesquiterpenes from the marine red alga Laurencia tristicha (Rhodomelaceae). Nat Prod Res 22:715CrossRefGoogle Scholar
  270. 270.
    Schmitz FJ, Gopichand Y, Michaud D, Prasad RS, Remaley S, Hossain MB, Rahman A, Sengupta PK, van der Helm D (1981) Recent developments in research on metabolites from Caribbean marine invertebrates. Pure Appl Chem 51:853Google Scholar
  271. 271.
    Angawi RF, Alarif WM, Hamza RI, Badria FA, Ayyad SEN (2014) New cytotoxic laurene-, cuparene- and laurokamurene-type sesquiterpenes from the red alga Laurencia obtusa. Helv Chim Acta 97:1388CrossRefGoogle Scholar
  272. 272.
    González AG, Arteaga JM, Fernández JJ, Martín JD, Norte M, Ruano JZ (1984) Terpenoids of the red alga Laurencia pinnatifida. Tetrahedron 40:2751CrossRefGoogle Scholar
  273. 273.
    Irie T, Fukuzawa A, Izawa M, Kurosawa E (1969) Laurenisol, a new sesquiterpenoid containing bromine from Laurencia nipponica Yamada. Tetrahedron Lett 10:1343CrossRefGoogle Scholar
  274. 274.
    Kladi M, Vagias C, Furnari G, Moreau D, Roussakis C, Roussis V (2005) Cytotoxic cuparene sesquiterpenes from Laurencia microcladia. Tetrahedron Lett 46:5723CrossRefGoogle Scholar
  275. 275.
    Yu XQ, He WF, Liu DQ, Feng MT, Fang Y, Wang B, Feng LH, Guo YW, Mao SC (2014) A seco-laurane sesquiterpene and related laurane derivatives from the red alga Laurencia okamurai Yamada. Phytochemistry 103:162CrossRefGoogle Scholar
  276. 276.
    Ahmad VU, Ali MS, Bano S (1990) Marine natural products. Part 12. Laurol, a new metabolite from the red alga Laurencia pinnatifida. Sci Pharm 58:299Google Scholar
  277. 277.
    Rao CB, Satyanarayana C, Rao DV, Fahy E, Faulkner DJ (1989) Metabolites of Aplysia dactylomela from the Indian Ocean. Indian J Chem B28:322Google Scholar
  278. 278.
    Shizuri Y, Yamada A, Yamada K (1984) Laurequinone, a cyclolaurane sesquiterpene from the red alga Laurencia nidifica. Phytochemistry 23:2672CrossRefGoogle Scholar
  279. 279.
    Mao S, Guo Y (2006) A laurane sesquiterpene and rearranged derivatives from the Chinese red alga Laurencia okamurai Yamada. J Nat Prod 69:1209CrossRefGoogle Scholar
  280. 280.
    Yamada K, Yazawa H, Uemura D, Toda M, Hirata Y (1969) Total synthesis of (±)-aplysin and (±)-debromoaplysin. Tetrahedron 25:3509CrossRefGoogle Scholar
  281. 281.
    Feutrill GI, Mirrington RN, Nichols RJ (1973) The total synthesis of (±)-laurinterol and related compounds. Aust J Chem 26:345CrossRefGoogle Scholar
  282. 282.
    Ronald RC (1976) A new stereoselective synthesis of (±)-debromoaplysin and (±)-aplysin. Tetrahedron Lett 17:4413CrossRefGoogle Scholar
  283. 283.
    Biswas S, Ghosh A, Venkateswaran RV (1990) Stereocontrolled synthesis of (±)-debromoaplysin, (±)-aplysin, (±)-debromoaplysinol, (±)-aplysinol and (±)-isoaplysin. J Org Chem 55:3498CrossRefGoogle Scholar
  284. 284.
    Laronze JY, Boukili RE, Patigny D, Dridi S, Cartier D, Levy J (1991) The rearrangement of some cyclopentanone-aryloximes: synthesis of (±)-aplysin, (±)-filiformin and of their debromo analogues. Tetrahedron 47:10003CrossRefGoogle Scholar
  285. 285.
    Ronald RC, Gewali MB, Ronald BP (1980) Total synthesis of (–)-aplysin and (–)-debromoaplysin. J Org Chem 45:2224CrossRefGoogle Scholar
  286. 286.
    Takano S, Moriya M, Ogasawara K (1992) Enantiocontrolled syntheses of the cuparene sesquiterpenes, (–)-herbertene, (+)-β-cuparenone, (–)-debromoaplysin and (–)-aplysin. Tetrahedron Lett 33:329CrossRefGoogle Scholar
  287. 287.
    Nemoto H, Nagamochi M, Ishibashi H, Fukumoto K (1994) A remarkable substituent effect on the enantioselectivity of tandem asymmetric epoxidation and enantiospecific ring expansion of cyclopropylidene alcohols: a new enantiocontrolled synthesis of (–)-debromoaplysin and (–)-aplysin. J Org Chem 59:74CrossRefGoogle Scholar
  288. 288.
    Srikrishna A, Chandrasekhar Babu N (2001) An enantiospecific formal total sunthesis of (–)-aplysin and (–)-debromoaplysin. Tetrahedron Lett 42:4913CrossRefGoogle Scholar
  289. 289.
    Fletcher CJ, Blair DJ, Wheelhouse KMP, Aggarwal VK (2012) The total synthesis of (–)-aplysin via a lithiation-borylation-propenylation sequence. Tetrahedron 68:7598CrossRefGoogle Scholar
  290. 290.
    Sun J, Shi D-Y, Li S, Wang S-J, Han L-J, Fan Z, Yang Y-C, Shi J-G (2007) Chemical constituents of the red alga Laurencia tristicha. J Asian Nat Prod Res 9:725CrossRefGoogle Scholar
  291. 291.
    Miyamoto T, Ebisawa Y, Higuchi R (1995) Aplyparvunin, a bioactive acetogenin from the sea hare Aplysia parvula. Tetrahedron Lett 36:6073CrossRefGoogle Scholar
  292. 292.
    Cameron AF, Ferguson G, Robertson JM (1967) The crystal structure and absolute stereochemistry of laurinterol. The absolute stereochemistry of aplysin. J Chem Soc Chem Commun 271Google Scholar
  293. 293.
    Cameron AF, Ferguson G, Robertson JM (1969) Laurencia natural products II. Crystal structure and absolute stereochemistry of laurinterol acetate, a bicyclo[3.1.0]hexane derivative. J Chem Soc B:692Google Scholar
  294. 294.
    Sun J, Han LJ, Shi DY, Fan X, Wang SJ, Li S, Yang YC, Shi JG (2005) Sesquiterpenes from red alga Laurencia tristicha. Chin Chem Lett 16:1611Google Scholar
  295. 295.
    Sun J, Han LJ, Shi DY, Fan X, Wang SJ, Li S, Yang YC, Shi JG (2006) Sesquiterpene components of Laurencia tristicha. Chin Trad Herb Drugs 37:329Google Scholar
  296. 296.
    Suzuki M, Kurata K, Kurosawa E (1986) The structure of isoaplysin, a brominated rearranged cuparane-type sesquiterpenoid from the red alga Laurencia okamurai Yamada. Bull Chem Soc Jpn 59:3981CrossRefGoogle Scholar
  297. 297.
    McMillan JA, Paul IC, Caccamese S, Rinehart KL (1976) Aplysinol from Laurencia decidua: crystal structure and absolute stereochemistry. Tetrahedron Lett 17:4219CrossRefGoogle Scholar
  298. 298.
    Wu Z (1989) Chemical constituents of marine algae Laurencia okamurai. Chin J Mar Drugs 8:1Google Scholar
  299. 299.
    Copley RCB, Davies-Coleman MT, Edmonds DR, Faulkner DJ, McPhail KL (2002) Absolute stereochemistry of ibhayinol from a South African sea hare. J Nat Prod 65:580CrossRefGoogle Scholar
  300. 300.
    Nemoto H, Hakamata H, Nagamochi M, Fukumoto K (1994) An efficient route to chiral benzooxabicyclo[3.2.1]octane ring system-the first enantiocontrolled total synthesis of (–)-filiformin. Heterocycles 39:467Google Scholar
  301. 301.
    Suzuki M, Kurosawa E (1976) New bromo-compounds from Laurencia glandulifera Kützing. Tetrahedron Lett 17:4817CrossRefGoogle Scholar
  302. 302.
    Yoo S, Suh JH, Yi KY (1998) Total synthesis of (±)-filiforminol and (±)-bromoether A. Synthesis 30:771CrossRefGoogle Scholar
  303. 303.
    Su S, Sun WS, Wang B, Cheng W, Liang H, Zhao YY, Zhang QY, Wu J (2010) A novel brominated cuparene-derived sesquiterpene ether from the red alga Laurencia sp. J Asian Nat Prod Res 12:916CrossRefGoogle Scholar
  304. 304.
    Izac RR, Drage JS, Sims JJ (1981) Caraibical, a new aromatic sesquiterpene from the marine alga Laurencia caraibica. Tetrahedron Lett 22:1799CrossRefGoogle Scholar
  305. 305.
    Ichiba T, Higa T (1986) New cuparene-derived sesquiterpenes with unprecedented oxygenation patterns from the sea hare Aplysia dactylomela. J Org Chem 51:3364CrossRefGoogle Scholar
  306. 306.
    Srikrishna A, Krishnan K (1992) Total syntheses of (±)-cyclolaurene, (±)-epicyclolaurene and (±)-β-cuparenones. Tetrahedron 48:3429CrossRefGoogle Scholar
  307. 307.
    Irie T, Suzuki M, Kurosawa E, Masamune T (1966) Laurinterol and debromolaurinterol, constituents from Laurencia intermedia. Tetrahedron Lett 7:1837CrossRefGoogle Scholar
  308. 308.
    Okamoto Y, Nitanda N, Ojika M, Sakagami Y (2001) Aplysiallene, a new bromoallene as an Na+, K+-ATPase inhibitor from the sea hare Aplysia kurodai. Biosci Biotechnol Biochem 65:474CrossRefGoogle Scholar
  309. 309.
    Tsukamoto S, Yamashita Y, Ohta T (2005) New cytotoxic and antibacterial compounds isolated from the sea hare Aplysia kurodai. Mar Drugs 3:22CrossRefGoogle Scholar
  310. 310.
    Masuda M, Abe T, Kogame K, Kawaguchi S, Phang SM, Daitoh M, Sakai T, Takahashi Y, Suzuki M (2002) Taxonomic notes on marine algae from Malaysia. VIII. Three species of Laurencia (Rhodophyceae). Bot Mar 45:571Google Scholar
  311. 311.
    Takahashi H, Tonoi Y, Matsumoto K, Minami H, Fukuyama Y (1998) Total synthesis of (–)-laurequinone. Chem Lett 27:485CrossRefGoogle Scholar
  312. 312.
    Shizuri Y, Yamada K (1985) Laurebiphenyl, a dimeric sesquiterpene of the cyclolaurane-type from the red alga Laurencia nidifica. Phytochemistry 24:1385CrossRefGoogle Scholar
  313. 313.
    Srikrishna A, Khan IA, Babu RR, Sajjanshetty A (2007) The first total synthesis of (±)-laurokamurene B. Tetrahedron 63:12616CrossRefGoogle Scholar
  314. 314.
    Srikrishna A, Beeralah B, Babu RR (2008) Enantioselective total synthesis and assignment of the absolute configuration of (+)-laurokamurene B. Tetrahedron Asymm 19:624CrossRefGoogle Scholar
  315. 315.
    Sun J, Shi D, Ma M, Li S, Wang S, Han L, Yang Y, Fan X, Shi J, He L (2008) Addition and correction to “Sesquiterpenes from the red alga Laurencia tristicha”. J Nat Prod 71:296CrossRefGoogle Scholar
  316. 316.
    Chen P, Wang J, Liu K, Li C (2008) Synthesis and structural revision of (±)-laurentristich-4-ol. J Org Chem 73:339CrossRefGoogle Scholar
  317. 317.
    Howard BM, Fenical W (1976) α- and β-Snyderol: new bromo-monocyclic sesquiterpenes from the seaweed Laurencia. Tetrahedron Lett 16:41Google Scholar
  318. 318.
    González AG, Martín JD, Norte M, Rivera P, Ruano JZ (1984) Two new C15 acetylenes from the marine red alga Laurencia obtusa. Tetrahedron 40:3443CrossRefGoogle Scholar
  319. 319.
    Topcu G, Aydoğmuş Z, Imre S, Gšren AC, Pezzuto JM, Clement JA, Kingston DGI (2003) Brominated sesquiterpenes from the red alga Laurencia obtusa. J Nat Prod 66:1505CrossRefGoogle Scholar
  320. 320.
    Howard BM, Fenical W (1978) Obtusadiol, a unique bromoditerpenoid from the marine red alga Laurencia obtusa. Tetrahedron Lett 18:2453CrossRefGoogle Scholar
  321. 321.
    Imre S, Aydoğmuş Z (1997) Secondary metabolites from the red alga Laurencia obtusa. Pharmazie 52:883Google Scholar
  322. 322.
    González AG, Martín JD, Pérez C, Ramírez MA (1976) Bromonium ion-induced cyclization of methyl farnesate: application to the synthesis of snyderol. Tetrahedron Lett 17:137CrossRefGoogle Scholar
  323. 323.
    Kuniyoshi M, Marma MS, Higa T, Bernardinelli G, Jefford CW (2001) New bromoterpenes from the red alga Laurencia luzonensis. J Nat Prod 64:696CrossRefGoogle Scholar
  324. 324.
    Kuniyoshi M, Wahome PG, Miono T, Hashimoto T, Yokoyama M, Shrestha KL, Higa T (2005) Terpenoids from Laurencia luzonensis. J Nat Prod 68:1314CrossRefGoogle Scholar
  325. 325.
    Su H, Shi D-Y, Li J, Guo S-J, Li L-L, Yuan Z-H, Zhu X-B (2009) Sesquiterpenes from Laurencia similis. Molecules 14:1889CrossRefGoogle Scholar
  326. 326.
    Ioannou E, Nappo M, Avila C, Vagias C, Roussis V (2009) Metabolites from the sea hare Aplysia fasciata. J Nat Prod 72:1716CrossRefGoogle Scholar
  327. 327.
    Norte M, González R, Padilla A, Fernández JJ, Vázquez JT (1991) New halogenated sesquiterpenes from the red alga Laurencia caespitosa. Can J Chem 69:518CrossRefGoogle Scholar
  328. 328.
    Paul VJ, Fenical W (1980) Palisadins A, B and related monocyclofarnesol-derived sesquiterpenoids from Laurencia cf. palisada. Tetrahedron Lett 21:2787Google Scholar
  329. 329.
    Masuda M, Takahashi Y, Okamoto K, Matsuo Y, Suzuki M (1997) Morphology and halogenated secondary metabolites of Laurencia snackeyi (Weber-van Bosse) stat. nov. (Ceramiales, Rhodophyra). Eur J Phycol 32:293Google Scholar
  330. 330.
    Vairappan CS, Kamada T, Lee WW, Jeon YJ (2013) Anti-inflammatory activity of halogenated secondary metabolites of Laurencia snackeyi (Weber-van Bosse) Masuda in LPS-stimulated RAW 264.7 macrophages. J Appl Phycol 25:1805Google Scholar
  331. 331.
    de Nys R, Wright AD, König GM, Sticher O, Alino PM (1993) Five new sesquiterpenes from the red alga Laurencia flexilis. J Nat Prod 56:877CrossRefGoogle Scholar
  332. 332.
    König GM, Wright AD (1994) X-ray crystal structure of 3,4-epoxypalisadin A. J Nat Prod 57:151CrossRefGoogle Scholar
  333. 333.
    Su J, Zhong Y, Zeng L, Wu H, Ma K (1995) Terpenoids from Laurencia karlae. Phytochemistry 40:195CrossRefGoogle Scholar
  334. 334.
    Makhanu DS, Yokoyama M, Miono T, Maesato T, Maedomari M, Wisespongpand P, Kuniyoshi M (2006) New sesquiterpenes from the Okinawan red alga Laurencia luzonensis. Bull Fac Sci Univ Ryukuyus 81:115Google Scholar
  335. 335.
    Su H, Yuan Z-H, Li J, Guo S-J, Deng L-P, Han L-J, Zhu X-B, Shi D-Y (2009) Sesquiterpenes from the marine red alga Laurencia saitoi. Helv Chim Acta 92:1291CrossRefGoogle Scholar
  336. 336.
    Huang Y, Hu S, Zhong Y, Su J (1994) Structure of palisadin B, C15H24Br2O. Chin J Struct Chem 13:48Google Scholar
  337. 337.
    Vairappan CS, Anangdan SP, Lee TK (2007) Additional halogenated secondary metabolites from the sea hare Aplysia dactylomela. Malay J Sci 26:57Google Scholar
  338. 338.
    Couladouros EA, Vidali VP (2004) Novel stereocontrolled approach to syn- and anti-oxepene-cyclogeranyl trans-fused polycyclic systems: asymmetric total synthesis of (–)-aplysistatin, (+)-palisadin A, (+)-palisadin B, (+)-12-hydroxypalisadin B and the AB ring system of adociasulfate-2 and toxicol A. Chem Eur J 10:3822CrossRefGoogle Scholar
  339. 339.
    Vairappan CS, Lee TK (2005) Halogenated secondary metabolites from sea hare Aplysia dactylomela. Malay J Sci 24:17Google Scholar
  340. 340.
    Tanaka J, Kuniyoshi M, Tanaka C, Issa HH, Balansa W, Otsuka M, Githige WR, Higa T (2005) Diverse metabolites of coral reef organisms. Pure Appl Chem 77:83CrossRefGoogle Scholar
  341. 341.
    Capon R, Ghisalberti EL, Jefferies PR, Skelton BW, White AH (1981) Sesquiterpene metabolites from Laurencia filiformis. Tetrahedron 37:1613CrossRefGoogle Scholar
  342. 342.
    Sun LL, Wang CY, Dai HF, Shao CL, Mei WL, Tao-Liu MZD (2011) Chemical constituents of Chondrophycus papillosus and their cytotoxicity in vitro. Chem Nat Comp 47:650CrossRefGoogle Scholar
  343. 343.
    Pettit GR, Herald CL, Allen MS, Von Dreele RB, Vanell LD, Kao JPY, Blake W (1977) The isolation and structure of aplysistatin. J Am Chem Soc 99:262CrossRefGoogle Scholar
  344. 344.
    White JD, Nishiguchi T, Skeean RW (1982) Stereoselective, biogenetically patterned synthesis of (±)-aplysistatin. J Am Chem Soc 104:3923CrossRefGoogle Scholar
  345. 345.
    Hoye TR, Caruso AJ, Dellaria JF, Kurth MJ (1982) Two syntheses of dl-aplysistatin. J Am Chem Soc 104:6704CrossRefGoogle Scholar
  346. 346.
    Gosselin P, Rouessac F (1983) Polycyclisations cationiques de polyenes via leurs bromohydrines — II. Synthese de la (±) aplysistatine. Tetrahedron Lett 24:5515CrossRefGoogle Scholar
  347. 347.
    Shieh H-M, Prestwich GD (1982) Chiral, biomimetic total synthesis of (–)-aplysistatin. Tetrahedron Lett 23:4643CrossRefGoogle Scholar
  348. 348.
    Faulkner DJ (1976) 3β-Bromo-8-epicaparrapi oxide, the major metabolite of Laurencia obtusa. Phytochemistry 15:1993CrossRefGoogle Scholar
  349. 349.
    Suzuki M, Takahashi Y, Matsuo Y, Guiry MD, Masuda M (1997) Scanlonenyne, a novel halogenated C15 acetogenin from the red alga Laurencia obtusa in Irish waters. Tetrahedron 53:4271CrossRefGoogle Scholar
  350. 350.
    Recsei C, Chan B, McErlean CSP (2014) Synthesis of (+)-luzofuran and (−)-ancistrofuran. J Org Chem 79:880CrossRefGoogle Scholar
  351. 351.
    Horsley SB, Cardellina JH, Meinwald J (1981) Secondary metabolites from a red alga (Laurencia intricata): sesquiterpene alcohols. J Org Chem 46:5033CrossRefGoogle Scholar
  352. 352.
    Schmitz FJ, McDonald FJ, Vanderah DJ (1978) Marine natural products: sesquiterpene alcohols and ethers from the sea hare Aplysia dactylomela. J Org Chem 43:4220CrossRefGoogle Scholar
  353. 353.
    Sun HH, Waraszkiewicz SM, Erickson KL (1976) Sesquiterpenoid alcohols from the Hawaiian marine alga Laurencia nidifica. III. Tetrahedron Lett 17:585CrossRefGoogle Scholar
  354. 354.
    Howard BM, Fenical W, Finer J, Hirotsu K, Clardy J (1977) Neoconcinndiol hydroperoxide, a novel marine diterpenoid from the red alga Laurencia. J Am Chem Soc 99:6440CrossRefGoogle Scholar
  355. 355.
    Oppolzer W, Briner PH, Snowden RL (1980) A short synthesis of 3-methyl-5-(2,3,6-trimethylphenyl)-1-penten-3-ol, a sesquiterpene isolated from Laurencia nidifica. Helv Chim Acta 63:967CrossRefGoogle Scholar
  356. 356.
    Schmitz FJ, McDonald FJ (1974) Marine natural products: dactyloxene-B, a sesquiterpene ether from the sea hare Aplysia dactylomela. Tetrahedron Lett 15:2541CrossRefGoogle Scholar
  357. 357.
    Maurer B, Hauser A, Thommen W, Schulte-Elte KH, Ohloff G (1980) Synthesis and configuration of the eight diastereoisomeric racemates of dactyloxene-B. The relative configuration of dactyloxene-B and -C. Helv Chim Acta 63:293CrossRefGoogle Scholar
  358. 358.
    Maurer B, Hauser A, Ohloff G (1980) Synthesis and absolute configuration of naturally occurring dactyloxene-B and -C. Helv Chim Acta 63:2503CrossRefGoogle Scholar
  359. 359.
    Paquette LA, Lord MD, Negri JT (1993) Enantioselective synthesis of natural (+)-dactyloxene B and C by actuation of oxonium ion-initiated pinacol rearrangement. Tetrahedron Lett 34:5693CrossRefGoogle Scholar
  360. 360.
    Lord MD, Negri JT, Paquette LA (1995) Oxonium ion-initiated pinacolic ring expansion reactions. Application to the enantioselective synthesis of the spirocyclic sesquiterpene ethers dactyloxene-B and C. J Org Chem 60:191Google Scholar
  361. 361.
    Chattopadhyay SK, Karmakar S, Sarkar K (2005) Short new route to the chiral spiro-tetrahydrofuran subunit common to some terpenoids. Synth Commun 35:2125CrossRefGoogle Scholar
  362. 362.
    Ayyad SN, Jakupovic J, Abdel-Mogib M (1994) A sesquiterpene ether from Laurencia obtusa. Phytochemistry 36:1077CrossRefGoogle Scholar
  363. 363.
    Suzuki T, Kikuchi H, Kurosawa E (1980) (E)-γ-Bisabolen-8,9-epoxide and isocycloeudesmol, two new sesquiterpenoids from Laurencia nipponica Yamada. Chem Lett 9:1267Google Scholar
  364. 364.
    Martín JD, Pérez C, Ravelo JL (1985) Stereocontrolled syntheses of (E)- and (Z)-γ-bisabolene 8,9-epoxide. J Am Chem Soc 107:516CrossRefGoogle Scholar
  365. 365.
    Vazquez JT, Chang M, Nakanishi K, Martin JD, Martin VS, Perez R (1988) Puertitols: novel sesquiterpenes from Laurencia obtusa. Structure elucidation and absolute configuration and conformation based on circular dichroism. J Nat Prod 51:1257Google Scholar
  366. 366.
    Davyt D, Fernandez R, Suescun L, Mombrú AW, Saldaña J, Domínguez L, Fujii MT, Manta E (2006) Bisabolanes from the red alga Laurencia scoparia. J Nat Prod 69:1113CrossRefGoogle Scholar
  367. 367.
    Norte M, Fernández JJ, Padilla A (1992) Bisabolane halogenated sesquiterpenes from Laurencia. Phytochemistry 31:326CrossRefGoogle Scholar
  368. 368.
    Brito I, Dias T, Díaz-Marrero AR, Darias J, Cueto M (2006) Aplysiadiol from Aplysia dactylomela suggested a key intermediate for a unified biogenesis of regular and irregular marine algal bisabolene-type metabolites. Tetrahedron 62:9655CrossRefGoogle Scholar
  369. 369.
    Chang M, Vazquez JT, Nakanishi K, Cataldo F, Estrada DM, Fernandez J, Gallardo A, Martin JD, Norte M, Perez R (1989) Regular and irregular sesquiterpenes containing a halogenated hydropyran from Laurencia caespitosa. Phytochemistry 28:1417CrossRefGoogle Scholar
  370. 370.
    Lhullier C, Falkenberg M, Ioannou E, Quesada A, Papazafiri P, Horta PA, Schenkel EP, Vagias C, Roussis V (2010) Cytotoxic halogenated metabolites from the Brazilian red alga Laurencia catarinensis. J Nat Prod 73:27CrossRefGoogle Scholar
  371. 371.
    Hollenbeak KH, Schmitz FJ, Hossain MB, van der Helm D (1979) Marine natural products. Deodactol, antineoplastic sesquiterpenoid from the sea hare Aplysia dactylomela. Tetrahedron 35:541CrossRefGoogle Scholar
  372. 372.
    Gopichand Y, Schmitz FJ, Shelly J, Rahman A, Van Der Helm D (1981) Halogenated acetylenic ethers from the sea hare Aplysia dactylomela. J Org Chem 46:5192CrossRefGoogle Scholar
  373. 373.
    De Carvalho LR, Fujii MT, Roque NF, Lago JHG (2006) Aldingenin derivatives from the red alga Laurencia aldingensis. Phytochemistry 67:1331CrossRefGoogle Scholar
  374. 374.
    Takahashi S, Yasuda M, Nakamura T, Hatano K, Matsuoka K, Koshino H (2014) Synthesis and structural revision of a brominated sesquiterpenoid, aldingenin C. J Org Chem 79:9373CrossRefGoogle Scholar
  375. 375.
    González AG, Darias J, Martín JD (1973) Caespitol, a new halogenated sesquiterpene from Laurencia caespitosa. Tetrahedron Lett 14:2381CrossRefGoogle Scholar
  376. 376.
    González AG, Darias J, Martín JD, Pérez C (1974) Revised structure of caespitol and its correlation with isocaespitol. Tetrahedron Lett 15:1249CrossRefGoogle Scholar
  377. 377.
    Masuda M, Kogame K, Arisawa S, Suzuki M (1998) Morphology and halogenated secondary metabolites of three Gran Canarian species of Laurencia (Ceramiales, Rhodophyra). Bot Mar 41:265Google Scholar
  378. 378.
    de Carvalho LR, Fujii MT, Roque NF, Kato MJ, Lago JHG (2003) Aldingenin A, new brominated sesquiterpene from red algae Laurencia aldingensis. Tetrahedron Lett 44:2637CrossRefGoogle Scholar
  379. 379.
    Mukhina OA, Koshino H, Crimmins MT, Kutateladze AG (2015) Computationally driven reassignment of the structures of aldingenins A and B. Tetrahedron Lett 56:4900CrossRefGoogle Scholar
  380. 380.
    Schmitz FJ, Michaud DP, Hollenbeak KH (1980) Marine natural products: dihydroxydeodactol monoacetate, a halogenated sesquiterpene ether from the sea hare Aplysia dactylomela. J Org Chem 45:1525CrossRefGoogle Scholar
  381. 381.
    González AG, Martín JD, Pérez C, Ramírez MA, Ravelo F (1980) Total synthesis of 8-desoxy-isocaespitol, a new polyhalogenated sesquiterpene from Laurencia caespitosa. Tetrahedron Lett 21:187CrossRefGoogle Scholar
  382. 382.
    González AG, Darias J, Martín JD, Pérez C, Sims JJ, Lin GHY, Wing RM (1975) Isocaespitol, a new halogenated sesquiterpene from Laurencia caespitosa. Tetrahedron 31:2449CrossRefGoogle Scholar
  383. 383.
    González AG, Martín JD, Melián MA (1976) Synthesis of marine terpenoids III. Synthesis of (±)-isocaespitol. Tetrahedron Lett 17:2279CrossRefGoogle Scholar
  384. 384.
    González AG, Darias V, Estévez E (1982) Chemotherapeutic activity of polyhalogenated terpenes from Spanish algae. Planta Med 44:44CrossRefGoogle Scholar
  385. 385.
    Yang J, Tummatorn J, Slegeris R, Tlais SF, Dudley GB (2011) Synthesis of the tricyclic core of aldingenin B by oxidative cyclo-ketalization of an alkyne-diol. Org Lett 13:2065CrossRefGoogle Scholar
  386. 386.
    Crimmins MT, Hughes CO (2012) Total synthesis of the proposed structure of aldingenin B. Org Lett 14:2168CrossRefGoogle Scholar
  387. 387.
    Estrada DM, Martín JD, Pérez R, Rivera P, Rodríguez ML, Ruano JZ (1987) Furocaespitane and related C12 metabolites from Laurencia caespitosa. Tetrahedron Lett 28:687CrossRefGoogle Scholar
  388. 388.
    González AG, Darias J, Martín JD (1973) Furocaespitane, a new furan from Laurencia caespitosa. Tetrahedron Lett 14:3625CrossRefGoogle Scholar
  389. 389.
    González AG, Martín JD, Norte M, Pérez R, Rivera P, Ruano JZ, Rodríguez ML, Fayos J, Perales A (1983) X-Ray structure determination of new brominated metabolites isolated from the red seaweed Laurencia obtusa. Tetrahedron Lett 24:4143CrossRefGoogle Scholar
  390. 390.
    Erickson KL, Beutler JA, Gray GN, Cardellina JH II, Boyd MR (1995) Majapolene A, a cytotoxic peroxide, and related sesquiterpenes from the red alga Laurencia majuscula. J Nat Prod 58:1848CrossRefGoogle Scholar
  391. 391.
    Monde K, Taniguchi T, Miura N, Vairappan CS, Suzuki M (2006) Absolute configurations of brominated sesquiterpenes determined by vibrational circular dichroism. Chirality 18:335CrossRefGoogle Scholar
  392. 392.
    Brito I, Dias T, Díaz-Marrero AR, Darias J, Cueto M (2007) Corrigendum to “Aplysiadiol from Aplysia dactylomela suggested a key intermediate for a unified biogenesis of regular and irregular marine algal bisabolene-type metabolites”. Tetrahedron 63:3908CrossRefGoogle Scholar
  393. 393.
    Iliopoulou D, Roussis V, Pannecouque C, De Clercq E, Vagias C (2002) Halogenated sesquiterpenes from the red alga Laurencia obtusa. Tetrahedron 58:6749CrossRefGoogle Scholar
  394. 394.
    González AG, Darias J, Martín JD (1977) Biomimetic interconversions of two new types of metabolite from Laurencia perforata. Tetrahedron Lett 18:3375CrossRefGoogle Scholar
  395. 395.
    Howard BM, Fenical W (1979) Guadalupol and epiguadalupol, rearranged sesquiterpene alcohols from Laurencia snyderiae var. guadalupensis. Phytochemistry 18:1224Google Scholar
  396. 396.
    González AG, Darias J, Martín JD, Melián MA (1978) Total synthesis of racemic perforenone and 3-debromo-perforatone. Tetrahedron Lett 19:481Google Scholar
  397. 397.
    Majetich G, Ringold C (1987) A stereospecific synthesis of (±)-perforenone. Heterocycles 25:271CrossRefGoogle Scholar
  398. 398.
    González AG, Aguiar JM, Martín JD, Norte M (1975) Three new sesquiterpenoids from the marine alga Laurencia perforata. Tetrahedron Lett 16:2499CrossRefGoogle Scholar
  399. 399.
    Wright AD, Goclik E, König GM (2003) Three new sesquiterpenes from the red alga Laurencia perforata. J Nat Prod 66:435CrossRefGoogle Scholar
  400. 400.
    González AG, Aguiar JM, Darias J, González E, Martín JD, Martín VS, Pérez C, Fayos J, Martínez-Ripoll M (1978) Perforenol, a new polyhalogenated sesquiterpene from Laurencia perforata. Tetrahedron Lett 19:3931CrossRefGoogle Scholar
  401. 401.
    González AG, Aguiar JM, Martín JD, Rodríguez ML (1976) Perforene, a new halogenated sesquiterpene from the red alga Laurencia perforata. Tetrahedron Lett 17:205CrossRefGoogle Scholar
  402. 402.
    Coll JC, Skelton BW, White AH, Wright AD (1989) Tropical marine algae V. The structure determination of two novel sesquiterpenes from the red alga Laurencia tenera (Rhodophyceae, Ceramiales, Rhodomelaceae). Aust J Chem 42:1695Google Scholar
  403. 403.
    Wright AD, König GM, Sticher O, Rüegger H (1992) The application of two-dimensional nuclear magnetic resonance methodologies to the structure solution of the new natural product tenerol acetate from Laurencia tenera. Phytochem Anal 3:263CrossRefGoogle Scholar
  404. 404.
    Caccamese S, Amico V, Neri P (1990) Two new rearranged sesquiterpenoids from the red alga Laurencia obtusa. J Nat Prod 53:1287CrossRefGoogle Scholar
  405. 405.
    Iliopoulou D, Vagias C, Galanakis D, Argyropoulos D, Roussis V (2002) Brasilane-type sesquiterpenoids from Laurencia obtusa. Org Lett 4:3263CrossRefGoogle Scholar
  406. 406.
    Stallard MO, Fenical W, Kittredge JS (1978) The brasilenols, rearranged sesquiterpene alcohols isolated from the marine opisthobranch Aplysia brasiliana. Tetrahedron 34:2077CrossRefGoogle Scholar
  407. 407.
    Manzo E, Ciavatta ML, Gavagnin M, Puliti R, Mollo E, Guo YW, Mattia CA, Mazzarella L, Cimino G (2005) Structure and absolute stereochemistry of novel C15-halogenated acetogenins from the anaspidean mollusc Aplysia dactylomela. Tetrahedron 61:7456CrossRefGoogle Scholar
  408. 408.
    Greene AE, Serra AA, Barreiro EJ, Costa PRR (1987) Expeditious, stereocontrolled syntheses of racemic and natural brasilenol through intramolecular asymmetry transfer. Absolute stereochemistry of brasilenol. J Org Chem 52:1169Google Scholar
  409. 409.
    Greene AE, Coelho F, Barreiro EJ, Costa PRR (1986) A selective synthesis of brasilenol, a novel sesquiterpene from the sea hare Aplysia brasiliana and the red alga Laurencia obtusa. J Org Chem 51:4250CrossRefGoogle Scholar
  410. 410.
    Amico V, Caccamese S, Neri P, Russo G, Foti M (1991) Brasilane-type sesquiterpenoids from the Mediterranean red alga Laurencia obtusa. Phytochemistry 30:1921CrossRefGoogle Scholar
  411. 411.
    Mihopoulos N, Vagias C, Scoullos M, Roussis V (1999) Laurencienyne B, a new acetylenic cyclic ether from the red alga Laurencia obtusa. Nat Prod Lett 13:151CrossRefGoogle Scholar
  412. 412.
    Tori M, Nakashima K, Seike M, Asakawa Y, Wright AD, König GM, Sticher O (1994) Revised structure of a brasilane-type sesquiterpene isolated from the red alga Laurencia implicata and its absolute configuration. Tetrahedron Lett 35:3105CrossRefGoogle Scholar
  413. 413.
    Aydoğmuş Z, Imre S, Ersoy L, Wray V (2004) Halogenated secondary metabolites from Laurencia obtusa. Nat Prod Res 18:43CrossRefGoogle Scholar
  414. 414.
    Suzuki T, Suzuki M, Kurosawa E (1975) α-Bromocuparene and α-isobromocuparene, new bromo compounds from Laurencia species. Tetrahedron Lett 16:3057Google Scholar
  415. 415.
    Coll JC, Wright AD (1989) Tropical marine algae IV. Novel metabolites from the red alga Laurencia implicata (Rhodophyta, Rhodophyceae, Ceramiales, Rhodomelaceae). Aust J Chem 42:1685Google Scholar
  416. 416.
    Wright AD, König GM, de Nys R, Sticher O (1993) Seven new metabolites from the marine red alga Laurencia majuscula. J Nat Prod 56:394CrossRefGoogle Scholar
  417. 417.
    Sun HH, Erickson KL (1978) Sesquiterpenoids from the Hawaiian marine alga Laurencia nidifica. 7. (+)-Selin-4,7(11)-diene. J Org Chem 43:1613CrossRefGoogle Scholar
  418. 418.
    Fukuzawa A, Aye M, Takaya Y, Masamune T, Murai A (1990) A sesquiterpene alcohol from the red alga Laurencia nipponica. Phytochemistry 29:2337CrossRefGoogle Scholar
  419. 419.
    Dieter RK, Kinnel R, Meinwald J, Eisner T (1979) Brasudol and isobrasudol, two bromosesquiterpenes from a sea hare (Aplysia brasiliana). Tetrahedron Lett 20:1645CrossRefGoogle Scholar
  420. 420.
    Brennan MR, Erickson KL (1982) Austradiol acetate and austradiol diacetate, 4,6-dihydroxy-(+)-selinane derivatives from an Australian Laurencia sp. J Org Chem 47:3917CrossRefGoogle Scholar
  421. 421.
    Rochfort SJ, Capon RJ (1996) Parguerenes revisited: new brominated diterpenes from the southern Australian marine red alga Laurencia filiformis. Aust J Chem 49:19Google Scholar
  422. 422.
    Suzuki M, Takahashi Y, Mitome Y, Itoh T, Abe T, Masuda M (2002) Brominated metabolites from an Okinawan Laurencia intricata. Phytochemistry 60:861CrossRefGoogle Scholar
  423. 423.
    Alarif WM, Al-Footy KO, Zubair MS, Halid PHM, Ghandourah MA, Basaif SA, Al-Lihaibi SS, Ayyad SEN, Badria FA (2016) The role of new eudesmane-type sesquiterpenoid and known eudesmane derivatives from the red alga Laurencia obtusa as potential antifungal-antitumour agents. Nat Prod Res 30:1150CrossRefGoogle Scholar
  424. 424.
    Howard BM, Fenical W (1977) Structure, chemistry and absolute configuration of (–)-(1S,4R)-bromo-hydoxy-selin-7-ene from a marine red alga Laurencia sp. J Org Chem 42:2518CrossRefGoogle Scholar
  425. 425.
    Rose AF, Sims JJ, Wing RM, Wiger GM (1978) Marine natural products. XVII. The structure of (1S,4R,7R)-1-bromo-4-hydroxy-7-chloroselinane, a metabolite of the marine alga Laurencia sp. Tetrahedron Lett 19:2533CrossRefGoogle Scholar
  426. 426.
    Kazlauskas R, Murphy PT, Wells RJ, Daly JJ, Oberhänsli WE (1977) Heterocladol, a halogenated selinane sesquiterpene of biosynthetic significance from Laurencia filiformis: its isolation, crystal structure and absolute configuration. Aust J Chem 30:2679CrossRefGoogle Scholar
  427. 427.
    Baker B, Ratnapala L, Mahindaratne MPD, de Silva ED, Tillekeratne LMV, Jeong JH, Scheuer PJ, Seff K (1988) Lankalapuol A and B: two cis-eudesmanes from the sea hare Aplysia dactylomela. Tetrahedron 44:4695CrossRefGoogle Scholar
  428. 428.
    Suzuki T, Furusaki A, Kikuchi H, Kurosawa E, Katayama C (1981) The absolute configuration of cycloeudesmol from the red alga Laurencia nipponica Yamada. Tetrahedron Lett 22:3423CrossRefGoogle Scholar
  429. 429.
    Fenical W, Sims JJ (1974) Cycloeudesmol, an antibiotic cyclopropane containing sesquiterpene from the marine alga Chondria oppositiclada Dawson. Tetrahedron Lett 15:1137CrossRefGoogle Scholar
  430. 430.
    Guella G, Skropeta D, Mancini I, Pietra F (2002) The first 6,8-cycloeudesmane sesquiterpene from a marine organism: the red seaweed Laurencia microcladia from the Baia di Calenzana, Elba Island. Z Naturforsch 57B:1147Google Scholar
  431. 431.
    Li C, Li X, Cui C, Wang B (2010) Brominated metabolites from the marine red alga Laurencia similis. Z Naturforsch 65B:87Google Scholar
  432. 432.
    Kamada T, Vairappan CS (2013) New bioactive secondary metabolites from Bornean red alga Laurencia similis (Ceramiales). Nat Prod Commun 8:287Google Scholar
  433. 433.
    Rahelivao MP, Gruner M, Andriamanantoanina H, Andriamihaja B, Bauer I, Knölker HJ (2015) Red algae (Rhodophyta) from the coast of Madagascar: preliminary bioactivity studies and isolation of natural products. Mar Drugs 13:4197CrossRefGoogle Scholar
  434. 434.
    Ji NY, Li XM, Ding LP, Wang BG (2007) Two new aristolane sesquiterpenes from Laurencia similis. Chin Chem Lett 18:178CrossRefGoogle Scholar
  435. 435.
    Imre S, Islimyeli S, Öztunc A, Thomson RH (1981) Obtusenol, a sesquiterpene from Laurencia obtusa. Phytochemistry 20:833CrossRefGoogle Scholar
  436. 436.
    González AG, Martín JD, Pérez C, Ramírez MA, Ravelo F (1981) Total synthesis of obtusenol. Tetrahedron Lett 22:5071CrossRefGoogle Scholar
  437. 437.
    Takeda S, Iimura Y, Tanaka K, Kurosawa E, Suzuki T (1990) A new naturally occurring racemic compound from the marine red alga Laurencia obtusa (Hudson) Lamouroux. Chem Lett 19:155CrossRefGoogle Scholar
  438. 438.
    Suzuki T, Kurosawa E (1979) New bromo-acetal from the marine alga Laurencia nipponica Yamada. Chem Lett 8:301CrossRefGoogle Scholar
  439. 439.
    Kurata K, Suzuki T, Suzuki M, Kurosawa E, Furusaki A, Matsumoto T (1983) Laureacetal-D and -E, two new secochamigrane derivatives from the red alga Laurencia nipponica Yamada. Chem Lett 12:557CrossRefGoogle Scholar
  440. 440.
    Kurata K, Suzuki T, Suzuki M, Kurosawa E (1983) Laureacetal-C, an unusual secochamigrane sesquiterpene from the red alga Laurencia nipponica Yamada. Chem Lett 12:29CrossRefGoogle Scholar
  441. 441.
    Fenical W, Schulte GR, Finer J, Clardy J (1978) Poitediol, a new nonisoprenoid sesquiterpene diol from the marine alga Laurencia poitei. J Org Chem 43:3628CrossRefGoogle Scholar
  442. 442.
    Schmitz FJ, Hollenbeak KH, Vanderah DJ (1978) Marine natural products: dactylol, a new sesquiterpene alcohol from a sea hare. Tetrahedron 34:2719CrossRefGoogle Scholar
  443. 443.
    Gadwood RC (1985) Stereoelectronic effects in cyclo-octanes: synthesis of (±)-dactylol and (±)-isodactylol. J Chem Soc Chem Commun:123Google Scholar
  444. 444.
    Feldman KS, Wu MJ, Rotella DP (1990) Total synthesis of (±)-dactylol and related studies. J Am Chem Soc 112:8490CrossRefGoogle Scholar
  445. 445.
    Molander GA, Eastwood PR (1995) Total synthesis of (+)-dactylol via a novel [3+5] annulation approach. J Org Chem 60:4559CrossRefGoogle Scholar
  446. 446.
    Fürstner A, Langemann K (1996) A concise total synthesis of dactylol via ring closing metathesis. J Org Chem 61:8746CrossRefGoogle Scholar
  447. 447.
    Gadwood RC, Lett RM, Wissinger JE (1984) Total synthesis of (±)-poitediol and (±)-4-epipoitediol. J Am Chem Soc 106:3869CrossRefGoogle Scholar
  448. 448.
    Hall SS, Faulkner DJ, Fayos J, Clardy J (1973) Oppositol, a brominated sesquiterpene alcohol of a new skeletal class from the red alga Laurencia subopposita. J Am Chem Soc 95:7187CrossRefGoogle Scholar
  449. 449.
    Fukuzawa A, Sato H, Masamune T (1987) Synthesis of (±)-prepinnaterpene, a bromoditerpene from the red alga Laurencia pinnata Yamada. Tetrahedron Lett 28:4303CrossRefGoogle Scholar
  450. 450.
    Kim D, Kim IH (1997) A stereoselective total synthesis of (±)-oppositol by a doubly diastereoselective intramolecular ester enolate alkylation. Tetrahedron Lett 38:415CrossRefGoogle Scholar
  451. 451.
    Wijesinghe WAJP, Kang MC, Lee WW, Lee HS, Kamada T, Vairappan CS, Jeon YJ (2014) 5β-Hydroxypalisadin B isolated from red alga Laurencia snackeyi attenuates inflammatory response in lipopolysaccharide-stimulated RAW 264.7 macrophages. Algae 29:333Google Scholar
  452. 452.
    Kurata K, Suzuki T, Suzuki M, Kurosawa E, Furusaki A, Matsumoto T (1983) Laurencial, a novel sesquiterpene α,β-unsaturated aldehyde from the red alga Laurencia nipponica Yamada. Chem Lett 12:299CrossRefGoogle Scholar
  453. 453.
    Miyashita K, Tanaka A, Shintaku H, Iwata C (1998) Regiospecific bromination-cyclization of spirocyclic cyclohexanones and its application to the synthesis of (±)-laurencial. Tetrahedron 54:1395CrossRefGoogle Scholar
  454. 454.
    Suzuki M, Kurosawa E, Irie T (1970) Spirolaurenone, a new sesquiterpenoid containing bromine from Laurencia glandulifera Kützing. Tetrahedron Lett 11:4995CrossRefGoogle Scholar
  455. 455.
    Suzuki M, Kowata N, Kurosawa E (1980) The structure of spirolaurenone, a halogenated sesquiterpenoid from the red alga Laurencia glandulifera Kützing. Tetrahedron 36:1551CrossRefGoogle Scholar
  456. 456.
    Murai A, Kato K, Masamune T (1982) Total synthesis of (±)-spirolaurenone. Tetrahedron Lett 23:2887CrossRefGoogle Scholar
  457. 457.
    Fukuzawa A, Matsue H, Masamune T, Furusaki A, Katayama C, Matsumoto T (1984) Laurenones A and B, new sesquiterpenes from the red alga Laurencia nipponica Yamada. Chem Lett 13:1349CrossRefGoogle Scholar
  458. 458.
    Gressler V, Stein EM, Dӧrr F, Fujii MT, Colepicolo P, Pinto E (2011) Sesquiterpenes from the essential oil of Laurencia dendroidea (Ceramiales, Rhodophyta): isolation, biological activities and distribution among seaweeds. Braz J Pharmacogn 21:248CrossRefGoogle Scholar
  459. 459.
    Norte M, Fernández JJ, Souto ML (1994) Viridianol, a rearranged sesquiterpene with a novel carbon skeleton from Laurencia viridis. Tetrahedron Lett 35:4607CrossRefGoogle Scholar
  460. 460.
    Xu X, Zeng L, Su J (1997) Tricyclic sesquiterpene from Laurencia majuscula. Chem Res Chin Univ 13:176Google Scholar
  461. 461.
    Brito I, Cueto M, Dorta E, Darias J (2002) Bromocyclococanol, a halogenated sesquiterpene with a novel carbon skeleton from the red alga Laurencia obtusa. Tetrahedron Lett 43:2551CrossRefGoogle Scholar
  462. 462.
    Guella G, Skropeta D, Breuils S, Mancini I, Pietra F (2001) Calenzanol, the first member of a new class of sesquiterpene with a novel skeleton isolated from the red seaweed Laurencia microladia from the Bay of Calenzana, Elba Island. Tetrahedron Lett 42:723CrossRefGoogle Scholar
  463. 463.
    Guella G, Skropeta D, Mancini I, Pietra F (2003) Calenzanane sesquiterpenes from the red seaweed Laurencia microcladia from the Bay of Calenzana, Elba Island: acid-catalyzed stereospecific conversion of calenzanol into indene- and guaiazulene-type sesquiterpenes. Chem Eur J 9:5770CrossRefGoogle Scholar
  464. 464.
    Caccamese S, Amico V, Neri P, Foti M (1991) The structure of laurobtusol, a new rearranged sesquiterpenoid from the Mediterranean red alga Laurencia obtusa. Tetrahedron 47:10101CrossRefGoogle Scholar
  465. 465.
    Blanchfield JT, Chow S, Bernhardt PV, Kennard CHL, Kitching W (2004) Concerning the proposed structure of (+)-laurobtusol: spectral discrepancies with synthetic, racemic stereoisomers. Aust J Chem 57:673CrossRefGoogle Scholar
  466. 466.
    González AG, Martín JD, Martín VS, Pérez R, Drexler SA, Clardy J (1984) Structure of güimarediol, a new rearranged sesquiterpenoid from the red alga Laurencia sp. Chem Lett 13:1865CrossRefGoogle Scholar
  467. 467.
    Díaz-Marrero AR, Brito I, de la Rosa JM, Darias J, Cueto M (2008) Gomerones A-C, halogenated sesquiterpenoids with a novel carbon skeleton from Laurencia majuscula. Tetrahedron 64:10821CrossRefGoogle Scholar
  468. 468.
    Huwyler N, Carreira EM (2012) Total synthesis and stereochemical revision of the chlorinated sesquiterpene (±)-gomerone C. Angew Chem Int Ed 51:13066CrossRefGoogle Scholar
  469. 469.
    González AG, Martín JD, Martín VS, Pérez R, Tagle B, Clardy J (1985) Rhodolaureol and rhodolauradiol, two new halogenated tricyclic sesquiterpenes from a marine alga. J Chem Soc Chem Commun:260Google Scholar
  470. 470.
    González AG, Martín JD, Martín VS, Norte M, Pérez R (1982) Bioimetic approach to the syntheses of rhodolaureol and rhodolauradiol. Tetrahedron Lett 23:2395CrossRefGoogle Scholar
  471. 471.
    Fedorov SN, Radchenko OS, Shubina LK, Kalinovsky AI, Gerasimenko AV, Popov DY, Stonik VA (2001) Aplydactone, a new sesquiterpenoid with an unprecedented carbon skeleton from the sea hare Aplysia dactylomela, and its Cargill-like rearrangement. J Am Chem Soc 123:504CrossRefGoogle Scholar
  472. 472.
    Guella G, Chiasera G, Pietra F (1992) Conformational studies of marine polyhalogenated α-chamigrenes using temperature-dependent NMR spectra. Cyclohexene-ring flipping and rigid-chair cyclohexane ring in the presence of equatorial halogen atoms at C(8) and C(9). Helv Chim Acta 75:2012Google Scholar
  473. 473.
    Guella G, Chiasera G, Pietra F (1992) Conformational studies of marine polyhalogenated α-chamigrenes using temperature-dependent NMR spectra. Inverted-chair and twist-boat cyclohexane moieties in the presence of an axial halogen atom at C(8). Helv Chim Acta 75:2026Google Scholar
  474. 474.
    González AG, Darias J, Martín JD, Martín VS, Norte M, Pérez C, Perales A, Fayos J (1980) Laurencia sesquiterpene biogenetic-type interconversions. Tetrahedron Lett 21:1151CrossRefGoogle Scholar
  475. 475.
    Takeda S, Kurosawa E, Komiyama K, Suzuki T (1990) The structures of cytotoxic diterpenes containing bromine from the marine red alga Laurencia obtusa (Hudson) Lamouroux. Bull Chem Soc Jpn 63:3066CrossRefGoogle Scholar
  476. 476.
    Bian WT, You ZJ, Wang CY, Shao CL (2014) Brominated pimarane diterpenoids from the sea hare Aplysia pulmonica from the South China Sea. Chem Nat Comp 50:557CrossRefGoogle Scholar
  477. 477.
    Kurata K, Taniguchi K, Agatsuma Y, Suzuki M (1998) Diterpenoid feeding-deterrents from Laurencia saitoi. Phytochemistry 47:363CrossRefGoogle Scholar
  478. 478.
    Tsukamoto S, Yamashita Y, Yoshida T, Ohta T (2004) Parguerol and isoparguerol isolated from the sea hare Aplysia kurodai induce neurite outgrowth in PC-12 cells. Mar Drugs 2:170CrossRefGoogle Scholar
  479. 479.
    Suzuki T, Takeda S, Hayama N, Tanaka I, Komiyama K (1989) The structure of brominated diterpene from the marine red alga Laurencia obtusa (Hudson) Lamouroux. Chem Lett 18:969CrossRefGoogle Scholar
  480. 480.
    Ji NY, Li XM, Wang BG (2008) Halogenated terpenes and a C15 acetogenin from the marine red alga Laurencia saitoi. Molecules 13:2894CrossRefGoogle Scholar
  481. 481.
    Masuda M, Takahashi Y, Matsuo Y, Suzuki M (1997) A taxonomic study of the genus Laurencia (Ceramiales, Rhodophyta) from Vietnam. II. Laurencia lageniformis sp. nov. Crypt Algol 18:163Google Scholar
  482. 482.
    Higgs MD, Faulkner DJ (1982) A diterpene from Laurencia obtusa. Phytochemistry 21:789CrossRefGoogle Scholar
  483. 483.
    Takeda S, Matsumoto T, Komiyama K, Kurosawa E, Suzuki T (1990) A new cytotoxic diterpene from the marine red alga Laurencia obtusa (Hudson) Lamouroux. Chem Lett 19:277CrossRefGoogle Scholar
  484. 484.
    Suzuki M, Kurosawa E, Kurata K (1988) Venustanol, a brominated labdane diterpene from the red alga Laurencia venusta. Phytochemistry 27:1209CrossRefGoogle Scholar
  485. 485.
    Yamamura S, Hirata Y (1971) A naturally-occurring bromo-compound, aplysin-20 from Aplysia kurodai. Bull Chem Soc Jpn 44:2560CrossRefGoogle Scholar
  486. 486.
    Matsuda H, Tomiie Y, Yamamura S, Hirata Y (1967) The structure of aplysin-20. Chem Commun:898Google Scholar
  487. 487.
    Yamaguchi Y, Uyehara T, Kato T (1985) Biogenetic type synthesis of (±)-concinndiol and (±)-aplysin 20. Tetrahedron Lett 26:343CrossRefGoogle Scholar
  488. 488.
    Murai A, Abiko A, Masamune T (1984) Total synthesis of (±)-aplysin-20. Tetrahedron Lett 25:4955CrossRefGoogle Scholar
  489. 489.
    Ojika M, Kigoshi H, Yoshikawa K, Nakayama Y, Tamada K (1992) A new bromo diterpene, epi-aplysin-20, and ent-isoconcinndiol from the marine mollusc Aplysia kurodai. Bull Chem Soc Jpn 65:2300CrossRefGoogle Scholar
  490. 490.
    Sims JJ, Lin GHY, Wing RM, Fenical W (1973) Marine natural products. Concinndiol, a bromo-diterpene alcohol from the red alga Laurencia concinna. J Chem Soc Chem Commun:470Google Scholar
  491. 491.
    Howard BM, Fenical W (1980) Isoconcinndiol, a brominated diterpenoid from Laurencia snyderae var. guadalupensis. Phytochemistry 19:2774Google Scholar
  492. 492.
    Rodríguez ML, Martín JD, Estrada D (1989) The absolute configuration of (+)-isoconcinndiol. Acta Crystallogr C45:306Google Scholar
  493. 493.
    Fujiwara S, Takeda K, Uyehara T, Kato T (1986) Structural revision of isoconcinndiol by its synthesis. Chem Lett 15:1763CrossRefGoogle Scholar
  494. 494.
    Fukuzawa A, Miyamoto M, Kumagai Y, Abiko A, Takaya Y, Masamune T (1985) Structure of new bromoditerpenes, pinnatols, from the marine red alga Laurencia pinnata Yamada. Chem Lett 14:1259CrossRefGoogle Scholar
  495. 495.
    González AG, Ciccio JF, Rivera AP, Martín JD (1985) New halogenated diterpenes from the red alga Laurencia perforata. J Org Chem 50:1261CrossRefGoogle Scholar
  496. 496.
    Yamamura S, Terada Y (1977) Isoaplysin-20, a natural bromine-containing diterpene, from Aplysia kurodai. Tetrahedron Lett 18:2171CrossRefGoogle Scholar
  497. 497.
    Imamura PM, Rúveda EA (1980) The C-13 configuration of the bromine-containing diterpene isoaplysin-20. Synthesis of debromoisoaplysin-20 and its C-13 epimer. J Org Chem 45:510CrossRefGoogle Scholar
  498. 498.
    Nishizawa M, Takenaka H, Hirotsu K, Higuchi T, Hayashi Y (1984) Synthesis and structure determination of isoaplysin-20. J Am Chem Soc 106:4290CrossRefGoogle Scholar
  499. 499.
    Nishizawa M, Takenaka H, Hayashi Y (1986) Chemical simulation of polycyclic diterpenoid biosynthesis using mercury (II) triflate/N, N-dimethylaniline complex: mechanistic aspects of a biomimetic olefin cyclization. J Org Chem 51:806CrossRefGoogle Scholar
  500. 500.
    Briand A, Kornprobst JM, Aleasa HS, Rizk AFM, Toupet L (1997) (–)-Paniculatol, a new ent-labdane bromoditerpene from Laurencia paniculata. Tetrahedron Lett 38:3399Google Scholar
  501. 501.
    Iliopoulou D, Mihopoulos N, Roussis V, Vagias C (2003) New brominated labdane diterpenes from the red alga Laurencia obtusa. J Nat Prod 66:1225CrossRefGoogle Scholar
  502. 502.
    Kuniyoshi M, Marma MS, Higa T, Bernardinelli G, Jefford CW (2000) 3-Bromobarekoxide, an unusual diterpene from Laurencia luzonensis. Chem Commun:1155Google Scholar
  503. 503.
    Justicia J, Oller-Lopez JL, Campana AG, Oltra JE, Cuerva JM, Bunuel E, Cardenas DJ (2005) 7-endo radical cyclizations catalyzed by titanocene(III). Straightforward synthesis of terpenoids with seven-membered carbocycles. J Am Chem Soc 127:14911Google Scholar
  504. 504.
    Howard BM, Fenical W (1978) Structures of the irieols, new dibromoditerpenoids of a unique skeletal class from Laurencia irieii. J Org Chem 43:4401CrossRefGoogle Scholar
  505. 505.
    Fukuzawa A, Takaya Y, Matsue H, Masamune T (1985) Structure of a new bromoditerpene, prepinnaterpene, from the marine red alga Laurencia pinnata Yamada. Chem Lett 14:1263CrossRefGoogle Scholar
  506. 506.
    Fenical W, Howard B, Gifkins KB, Clardy J (1975) Irieol A and iriediol, dibromoditerpenes of a new skeletal class from Laurencia. Tetrahedron Lett 16:3983CrossRefGoogle Scholar
  507. 507.
    Howard BM, Fenical W, Donovan SF, Clardy J (1982) Neoirieone, a diterpenoid of a new skeletal class from the red marine alga Laurencia cf. irieii. Tetrahedron Lett 23:3847Google Scholar
  508. 508.
    Fukuzawa A, Kumagai Y, Masamune T, Furusaki A, Matsumoto T, Katayama C (1982) Pinnaterpenes A, B and C, new dibromoditerpenes from the red alga Laurencia pinnata Yamada. Chem Lett 11:1389CrossRefGoogle Scholar
  509. 509.
    Ji NY, Li XM, Cui CM, Wang BG (2007) Two new brominated diterpenes from Laurencia decumbens. Chin Chem Lett 18:957CrossRefGoogle Scholar
  510. 510.
    Pettit GR, Herald CL, Einck JJ, Vanell LD, Brown P, Gust D (1978) Isolation and structure of angasiol. J Org Chem 43:4685CrossRefGoogle Scholar
  511. 511.
    Atta-ur-Rahman, Alvi KA, Abbas SA, Sultana T, Shameel M, Choudhary MI, Clardy JC (1991) A diterpenoid lactone from Aplysia juliana. J Nat Prod 54:886CrossRefGoogle Scholar
  512. 512.
    Takahashi H, Takahashi Y, Suzuki M, Abe T, Masuda M (2010) Neoirietriol. Acta Crystallogr E66:o1795Google Scholar
  513. 513.
    Takahashi Y, Daitoh M, Suzuki M, Abe T, Masuda M (2002) Halogenated metabolites from the new Okinawan red alga Laurencia yonaguniensis. J Nat Prod 65:395CrossRefGoogle Scholar
  514. 514.
    Takahashi H, Takahashi Y, Suzuki M, Abe T, Masuda M (2007) Crystal structure and absolute stereochemistry of neoirietetraol. Anal Sci 23:x103CrossRefGoogle Scholar
  515. 515.
    Petraki A, Ioannou E, Papazafiri P, Roussis V (2015) Dactylomelane diterpenes from the sea hare Aplysia depilans. J Nat Prod 78:462CrossRefGoogle Scholar
  516. 516.
    Fernández JJ, Souto ML, Gil LV, Norte M (2005) Isolation of naturally occurring dactylomelane metabolites as Laurencia constituents. Tetrahedron 61:8910CrossRefGoogle Scholar
  517. 517.
    Estrada DM, Ravelo JL, Ruiz-Pérez C, Martín JD (1989) Dactylomelol, a new class of diterpene from the sea hare Aplysia dactylomela. Tetrahedron Lett 30:6219CrossRefGoogle Scholar
  518. 518.
    Guella G, Marchetti F, Pietra F (1997) Rogioldiol A, a new obtusane diterpene, and rogiolal, a degraded derivative, of the red seaweed Laurencia microcladia from Il Rogiolo along the coast of Tuscany: a synergism in structural elucidation. Helv Chim Acta 80:684CrossRefGoogle Scholar
  519. 519.
    Schmitz FJ, Hollenbeak KH, Carter DC, Hossain MB, van der Helm D (1979) Marine natural products: 14-bromoobtus-1-ene-3,11-diol, a new diterpenoid from the sea hare Aplysia dactylomela. J Org Chem 44:2445CrossRefGoogle Scholar
  520. 520.
    Guella G, Pietra F (1998) Antipodal pathways to secondary metabolites in the same eukaryotic organism. Chem Eur J 4:1692CrossRefGoogle Scholar
  521. 521.
    Mohammed KA, Hossain CF, Zhang L, Bruick RK, Zhou YD, Nagle DG (2004) Laurenditerpenol, a new diterpene from the tropical marine alga Laurencia intricata that potently inhibits HIF-1 mediated hypoxic signaling in breast tumor cells. J Nat Prod 67:2002CrossRefGoogle Scholar
  522. 522.
    Jung ME, Im G-YJ (2009) Total synthesis of racemic laurenditerpenol, an HIF-1 inhibitor. J Org Chem 74:8739CrossRefGoogle Scholar
  523. 523.
    Jung ME, Im G-YJ (2008) Convergent total synthesis of the racemic HIF-1 inhibitor laurenditerpenol. Tetrahedron Lett 49:4962CrossRefGoogle Scholar
  524. 524.
    Chittiboyina AG, Kumar GM, Carvalho PB, Liu Y, Zhou Y-D, Nagle DG, Avery MA (2007) Total synthesis and absolute configuration of laurenditerpenol: a hypoxia inducible factor-1 activation inhibitor. J Med Chem 50:6299CrossRefGoogle Scholar
  525. 525.
    Mukherjee S, Scopton AP, Corey EJ (2010) Enantioselective pathway for the synthesis of laurenditerpenol. Org Lett 12:1836CrossRefGoogle Scholar
  526. 526.
    Pitsinos EN, Athinaios N, Vidali VP (2012) Enantioselective total synthesis of (-)-laurenditerpenol. Org Lett 14:4666CrossRefGoogle Scholar
  527. 527.
    Mihopoulos N, Vagias C, Mikros E, Scoullos M, Roussis V (2001) Prevezols A and B: new brominated diterpenes from the red alga Laurencia obtusa. Tetrahedron Lett 42:3749CrossRefGoogle Scholar
  528. 528.
    Iliopoulou D, Mihopoulos N, Vagias C, Papazafiri P, Roussis V (2003) Novel cytotoxic brominated diterpenes from the red alga Laurencia obtusa. J Org Chem 68:7667CrossRefGoogle Scholar
  529. 529.
    Leung AE, Rubbiani R, Gasser G, Tuck KL (2014) Enantioselective total syntheses of the proposed structures of prevezol B and evaluation of anti-cancer activity. Org Biomol Chem 12:8239CrossRefGoogle Scholar
  530. 530.
    Leung AE, Blair M, Forsyth CM, Tuck KL (2013) Synthesis of the proposed structures of prevezol C. Org Lett 15:2198CrossRefGoogle Scholar
  531. 531.
    Blair M, Forsyth CM, Tuck KL (2010) Towards the synthesis of prevezol C: total enantioselective synthesis of (–)-2-epi-prevezol C. Tetrahedron Lett 51:4808CrossRefGoogle Scholar
  532. 532.
    Guella G, Pietra F (2000) A new-skeleton diterpenoid, new prenylbisabolanes, and their putative biogenetic precursor, from the red seaweed Laurencia microcladia from Il Rogiolo: assigning the absolute configuration when two chiral halves are connected by single bonds. Helv Chim Acta 83:2946CrossRefGoogle Scholar
  533. 533.
    Chatter R, Kladi M, Tarhouni S, Maatoug R, Kharrat R, Vagias C, Roussis V (2009) Neorogioltriol: a brominated diterpene with analgesic activity from Laurencia glandulifera. Phytochem Lett 2:25CrossRefGoogle Scholar
  534. 534.
    Norte M, Souto ML, Fernández JJ (1996) Viridiols, two new diterpenes from Laurencia viridis. Nat Prod Lett 8:263CrossRefGoogle Scholar
  535. 535.
    Caccamese S, Toscano RM, Cerrini S, Gavuzzo E (1982) Laurencianol, a new halogenated diterpenoid from marine alga Laurencia obtusa. Tetrahedron Lett 23:3415CrossRefGoogle Scholar
  536. 536.
    Kladi M, Ntountaniotis D, Zervou M, Vagias C, Ioannou E, Roussis V (2014) Glandulaurencianols A-C, brominated diterpenes from the red alga Laurencia glandulifera and the sea hare Aplysia punctata. Tetrahedron Lett 55:2835CrossRefGoogle Scholar
  537. 537.
    Brennan MR, Kim IK, Erickson KL (1993) Kahukuenes, new diterpenoids from the marine alga Laurencia majuscula. J Nat Prod 56:76CrossRefGoogle Scholar
  538. 538.
    Chatter R, Cenac N, Roussis V, Kharrat R, Vergnolle N (2012) Inhibition of sensory afferents activation and visceral pain by a brominated diterpene. Neurogastroenterol Motil 24, e336CrossRefGoogle Scholar
  539. 539.
    Ojika M, Yoshida Y, Okumura M, Ieda S, Yamada K (1990) Aplysiadiol, a new brominated diterpene from the marine mollusc Aplysia kurodai. J Nat Prod 53:1619CrossRefGoogle Scholar
  540. 540.
    Niwa H, Ieda S, Inagaki H, Yamada K (1990) A biogenetic-type synthesis of (±)-aplysiadiol, a brominated diterpene isolated from the marine mollusc Aplysia kurodai. Tetrahedron Lett 31:7157CrossRefGoogle Scholar
  541. 541.
    Sun J, Han LJ, Yang RY, Shi DY, Uan ZH, Shi JG (2007) Studies on chemical constituents of Laurencia tristicha. Chin J Chin Mat Med 32:2610Google Scholar
  542. 542.
    Mahdi F, Falkenberg M, Ioannou E, Roussis V, Zhou YD, Nagle DG (2011) Thyrsiferol inhibits mitochondrial respiration and HIF-1 activation. Phytochem Lett 4:75CrossRefGoogle Scholar
  543. 543.
    Ji NY, Li XM, Xie H, Ding J, Li K, Ding LP, Wang BG (2008) Highly oxygenated triterpenoids from the marine red alga Laurencia mariannensis (Rhodomelaceae). Helv Chim Acta 91:1940CrossRefGoogle Scholar
  544. 544.
    Suzuki T, Suzuki M, Furusaki A, Matsumoto T, Kato A, Imanaka Y, Kurosawa E (1985) Teurilene and thyrsiferyl 23-acetate, meso and remarkably cytotoxic compounds from the marine red alga Laurencia obtusa (Hudson) Lamouroux. Tetrahedron Lett 26:1329CrossRefGoogle Scholar
  545. 545.
    Blunt JW, Hartshorn MP, McLennan TJ, Munro MHG, Robinson WT, Yorke SC (1978) Thyrsiferol, a squalene-derived metabolite of Laurencia thyrsifera. Tetrahedron Lett 19:69CrossRefGoogle Scholar
  546. 546.
    Blunt JW, McCombs JD, Munro MHG, Thomas FN (1989) Complete assignment of the 13C and 1H nmr spectra of thyrsiferyl acetate. Magn Reson Chem 27:792CrossRefGoogle Scholar
  547. 547.
    Sakemi S, Higa T, Jefford CW, Bernardinelli G (1986) Venustatriol, a new antiviral triterpene tetracyclic ether from Laurencia venusta. Tetrahedron Lett 27:4287CrossRefGoogle Scholar
  548. 548.
    Fernández JJ, Souto ML, Norte M (1998) Evaluation of the cytotoxic activity of polyethers isolated from Laurencia. Bioorg Med Chem 6:2237CrossRefGoogle Scholar
  549. 549.
    Manzo E, Gavagnin M, Bifulco G, Cimino P, Di Micco S, Ciavatta ML, Guo YW, Cimino G (2007) Aplysiols A and B, squalene-derived polyethers from the mantle of the sea hare Aplysia dactylomela. Tetrahedron 63:9970CrossRefGoogle Scholar
  550. 550.
    Broka CA, Hu L, Lee WJ, Shen T (1987) Synthetic studies on thyrsiferol. Tetrahedron Lett 28:4993CrossRefGoogle Scholar
  551. 551.
    Broka CA, Lin Y (1988) Synthetic studies on thyrsiferol. Elaboration of the bromotetrahydropyran ring. J Org Chem 53:5876CrossRefGoogle Scholar
  552. 552.
    Hashimoto M, Kan T, Nozaki K, Yanagiya M, Shirahama H, Matsumoto T (1990) Total syntheses of (+)-thyrsiferol, (+)-thyrsiferyl 23-acetate, and (+)-venustatriol. J Org Chem 55:5088CrossRefGoogle Scholar
  553. 553.
    González IC, Forsyth CJ (2000) Total synthesis of thyrsiferyl 23-acetate, a specific inhibitor of protein phosphatase 2A and an anti-leukemic inducer of apoptosis. J Am Chem Soc 122:9099CrossRefGoogle Scholar
  554. 554.
    Norte M, Fernández JJ, Souto ML (1997) New polyether squalene derivatives from Laurencia. Tetrahedron 53:4649CrossRefGoogle Scholar
  555. 555.
    Cen-Pacheco F, Mollinedo F, Villa-Pulgarín JA, Norte M, Fernández JJ, Daranas AH (2012) Saiyacenols A and B: the key to solve the controversy about the configuration of aplysiols. Tetrahedron 68:7275CrossRefGoogle Scholar
  556. 556.
    Suzuki T, Hasegawa M, Hirayama Y, Takahashi Y, Matsuo Y (1995) The structure of squalene-derived polyether, 15(28)-anhydrothyrsiferyl 23-acetate isolated from the marine red alga Laurencia obtusa (Hudson) Lamouroux. J Hokkaido Univ Ed Sect II A 46:57Google Scholar
  557. 557.
    Suzuki T, Takeda S, Suzuki M, Kurosawa E, Kato A, Imanaka Y (1987) Cytotoxic squalene-derived polyethers from the marine red alga Laurencia obtusa (Hudson) Lamouroux. Chem Lett 16:361CrossRefGoogle Scholar
  558. 558.
    Manríquez CP, Souto ML, Gavín JA, Norte M, Fernández JJ (2001) Several new squalene-derived triterpenes from Laurencia. Tetrahedron 57:3117CrossRefGoogle Scholar
  559. 559.
    Souto ML, Manríquez CP, Norte M, Fernández JJ (2002) Novel marine polyethers. Tetrahedron 58:8119CrossRefGoogle Scholar
  560. 560.
    Norte M, Fernández JJ, Souto ML, García-Grávalos MD (1996) Two new antitumoral polyether squalene derivatives. Tetrahedron Lett 37:2671CrossRefGoogle Scholar
  561. 561.
    Matsuo Y, Suzuki M, Masuda M, Iwai T, Morimoto Y (2008) Squalene-derived triterpene polyethers from the red alga Laurencia omaezakiana. Helv Chim Acta 91:1261CrossRefGoogle Scholar
  562. 562.
    Corey EJ, Ha D-C (1988) Total synthesis of venustatriol. Tetrahedron Lett 29:3171CrossRefGoogle Scholar
  563. 563.
    Cen-Pacheco F, Villa-Pulgarin JA, Mollinedo F, Martín MN, Fernández JJ, Hernádez Daranas AH (2011) New polyether triterpenoids from Laurencia viridis and their biological evaluation. Mar Drugs 9:2220CrossRefGoogle Scholar
  564. 564.
    Cen-Pacheco F, Santiago-Benítez AJ, García C, Álvarez-Méndez SJ, Martín-Rodríguez AJ, Norte M, Martín VS, Gavín JA, Fernández JJ, Daranas AH (2015) Oxasqualenoids from Laurencia viridis: combined spectroscopic-computational analysis and antifouling potential. J Nat Prod 78:712CrossRefGoogle Scholar
  565. 565.
    Ola ARB, Babey AM, Motti C, Bowden BF (2010) Aplysiols C-E, brominated triterpene polyethers from the marine alga Chondria armata and a revision of the structure of aplysiol B. Aust J Chem 63:907CrossRefGoogle Scholar
  566. 566.
    Suzuki M, Matsuo Y, Takahashi Y, Masuda M (1995) Callicladol, a novel cytotoxic bromotriterpene polyether from a Vietnamese species of the red algal genus Laurencia. Chem Lett 24:1045CrossRefGoogle Scholar
  567. 567.
    Vera B, Rodríguez AD, Avilés E, Ishikawa Y (2009) Aplysqualenols A and B: squalene-derived polyethers with antitumoral and antiviral activity from the Caribbean sea slug Aplysia dactylomela. Eur J Org Chem 2009:5327CrossRefGoogle Scholar
  568. 568.
    Norte M, Fernández JJ, Souto ML, Gavin JA, García-Grávalos MD (1997) Thyrsenols A and B, two unusual polyether squalene derivatives. Tetrahedron 53:3173CrossRefGoogle Scholar
  569. 569.
    Cen-Pacheco F, Villa-Pulgarin JA, Mollinedo F, Norte M, Daranas AH, Fernández JJ (2011) Cytotoxic oxasqualenoids from the red alga Laurencia viridis. Eur J Med Chem 46:3302CrossRefGoogle Scholar
  570. 570.
    Cen-Pacheco F, Nordström L, Souto ML, Martín MN, Fernández JJ, Daranas AH (2010) Studies on polyethers produced by red algae. Mar Drugs 8:1178CrossRefGoogle Scholar
  571. 571.
    Hioki H, Motosue M, Mizutani Y, Noda A, Shimoda T, Kubo M, Harada K, Fukuyama Y, Kodama M (2009) Total synthesis of pseudodehydrothyrsiferol. Org Lett 11:579CrossRefGoogle Scholar
  572. 572.
    Clausen DJ, Wan S, Floreancig PE (2011) Total synthesis of the protein phosphatase 2A inhibitor lactodehydrothyrsiferol. Angew Chem Int Ed 50:5178CrossRefGoogle Scholar
  573. 573.
    Suenaga K, Shibata T, Takada N, Kigoshi H, Yamada K (1998) Aurilol, a cytotoxic bromoditerpene isolated from the sea hare Dolabella auricularia. J Nat Prod 61:515CrossRefGoogle Scholar
  574. 574.
    Morimoto Y, Nishikawa Y, Takaishi M (2005) Total synthesis and complete assignment of the stereostructure of a cytotoxic bromoditerpene polyether (+)-aurilol. J Am Chem Soc 127:5806CrossRefGoogle Scholar
  575. 575.
    Matsuo Y, Suzuki M, Masuda M (1995) Enshuol, a novel squalene-derived pentacyclic triterpene alcohol from a new species of the red algal genus Laurencia. Chem Lett 24:1043CrossRefGoogle Scholar
  576. 576.
    Morimoto Y, Yata H, Nishikawa Y (2007) Assignment of the absolute configuration of the marine pentacyclic polyether (+)-enshuol by total synthesis. Angew Chem Int Ed 46:6481CrossRefGoogle Scholar
  577. 577.
    Hashimoto M, Yanagiya M, Shirahama H (1988) Total synthesis of meso-triterpene ether, teurilene. Chem Lett 17:645CrossRefGoogle Scholar
  578. 578.
    Hashimoto M, Harigaya H, Yanagiya M, Shirahama H (1991) Total synthesis of the meso-triterpene polyether teurilene. J Org Chem 56:2299CrossRefGoogle Scholar
  579. 579.
    Iwai T, Kinoshita T, Morimoto Y (1998) Highly efficient total synthesis of cytotoxic meso polyether teurilene featuring diastereoselective method for construction of tetrahydrofuran rings by means of rhenium (VII) oxide. Symp Chem Nat Prod 40:277Google Scholar
  580. 580.
    Morimoto Y, Iwai T, Kinoshita T (1999) Effective combination of two-directional synthesis and rhenium(VII) chemistry: total synthesis of meso polyether teurilene. J Am Chem Soc 121:6792CrossRefGoogle Scholar
  581. 581.
    Morimoto Y, Iwai T, Kinoshita T (2002) Total synthesis of highly symmetric squalene-derived cytotoxic polyethers. J Synth Org Chem Jpn 60:1112CrossRefGoogle Scholar
  582. 582.
    Rodríguez-López J, Crisóstomo FP, Ortega N, Rodríguez-López M, Martín VS, Martín T (2013) Epoxide-opening cascades triggered by a Nicholas reaction: total synthesis of teurilene. Angew Chem Int Ed 52:3659CrossRefGoogle Scholar
  583. 583.
    Suzuki M, Matsuo Y, Takeda S, Suzuki T (1993) Intricatetraol, a halogenated triterpene alcohol from the red alga Laurencia intricata. Phytochemistry 33:651CrossRefGoogle Scholar
  584. 584.
    Umezawa T, Oguri Y, Matsuura H, Yamazaki S, Suzuki M, Yoshimura E, Furuta T, Nogata Y, Serisawa Y, Matsuyama-Serisawa K, Abe T, Matsuda F, Suzuki M, Okino T (2014) Omaezallene from red alga Laurencia sp.: structure elucidation, total synthesis and antifouling activity. Angew Chem Int Ed 53:3909Google Scholar
  585. 585.
    Morimoto Y, Okita T, Takaishi M, Tanaka T (2007) Total synthesis and determination of the absolute configuration of (+)-intricatetraol. Angew Chem Int Ed 46:1132CrossRefGoogle Scholar
  586. 586.
    Authors’ unpublished dataGoogle Scholar
  587. 587.
    Kigoshi H, Ojika M, Shizuri Y, Niwa H, Yamada K (1986) Isolation of (10R,11R)-(+)-squalene-10,11-epoxide from the red alga Laurencia okamurai and its enantioselective synthesis. Tetrahedron 42:3789CrossRefGoogle Scholar
  588. 588.
    Kigoshi H, Ojika M, Shizuri Y, Niwa H, Yamada K (1982) (10R,11R)-(+)-squalene-10,11-epoxide: isolation from Laurencia okamurai and the asymmetric synthesis. Tetrahedron Lett 23:5413Google Scholar
  589. 589.
    Kigoshi H, Itoh T, Ogawa T, Ochi K, Okada M, Suenaga K, Yamada K (2001) Auriculol, a cytotoxic oxygenated squalene from the Japanese sea hare Dolabella auricularia: isolation, stereostructure and synthesis. Tetrahedron Lett 42:7461CrossRefGoogle Scholar
  590. 590.
    Xiong Z, Busch R, Corey EJ (2010) A short total synthesis of (+)-omaezakianol via an epoxide-initiated cationic cascade reaction. Org Lett 12:1512CrossRefGoogle Scholar
  591. 591.
    Fernández JJ, Souto ML, Norte M (2000) Marine polyether triterpenes. Nat Prod Rep 17:235CrossRefGoogle Scholar
  592. 592.
    Norte M, Fernández JJ, Ruano JZ, Matías L, Rodríguez ML, Pérez R (1988) Graciosin and graciosallene, two bromoethers from Laurencia obtusa. Phytochemistry 27:3537CrossRefGoogle Scholar
  593. 593.
    Norte M, Fernández JJ, Runao JZ (1989) Three new bromo ethers from the red alga Laurencia obtusa. Tetrahedron 45:5987CrossRefGoogle Scholar
  594. 594.
    Kamada T, Vairappan CS (2012) A new bromoallene-producing chemical type of the red alga Laurencia nangii Masuda. Molecules 17:2119CrossRefGoogle Scholar
  595. 595.
    Suzuki T, Koizumi K, Suzuki M, Kurosawa E (1983) Kumausynes and deacetylkumausynes, four new halogenated C-15 acetylenes from the red alga Laurencia nipponica Yamada. Chem Lett 12:1643CrossRefGoogle Scholar
  596. 596.
    Martin T, Soler MA, Betancort JM, Martin VS (1997) Biomimetic-type synthesis of halogenated tetrahydrofurans from Laurencia. Total synthesis of (+)-trans-deacetylkumausyne. J Org Chem 62:1570Google Scholar
  597. 597.
    Brown MJ, Harisson T, Overman LE (1991) General approach to halogenated tetrahydrofuran natural products from the red algae of the genus Laurencia. Synthesis of (±)-trans-kumausyne and demonstration of an asymmetric synthesis strategy. J Am Chem Soc 113:5378Google Scholar
  598. 598.
    Osumi K, Sugimura H (1995) Total synthesis of (–)-trans-kumausyne. Tetrahedron Lett 36:5789CrossRefGoogle Scholar
  599. 599.
    Andrey O, Glanzmann C, Landais Y, Parra-Rapado L (1997) 1,3-Asymmetric induction in electrophilic addition onto homoallylsilanes. An approach towards the total synthesis of (±)-kumausyne. Tetrahedron 53:2835CrossRefGoogle Scholar
  600. 600.
    Lee E, Yoo SK, Cho YS, Cheon HS, Chong YH (1997) Radical cyclisation of β-alkoxyacrylates: stereoselective synthesis of (–)-trans-kumausyne. Tetrahedron Lett 38:7757CrossRefGoogle Scholar
  601. 601.
    Mereyala HB, Gadikota RR (2000) A general strategy for the formal synthesis of (–)-trans-kumausyne and total synthesis of (5R)-Hagen’s gland lactones from diacetone-d-glucose. Tetrahedron Asymm 11:743CrossRefGoogle Scholar
  602. 602.
    García C, Martín T, Martín VS (2001) β-Hydroxy-γ-lactones as chiral building blocks for the enantioselective synthesis of marine natural products. J Org Chem 66:1420Google Scholar
  603. 603.
    Gadikota RR, Callam CS, Lowary TL (2001) Total synthesis of (2S,3S,5S,10S)-6,9-epoxynonadec-18-ene-7,10-diol and formal total synthesis of (+)-trans-kumausyne from d-arabinose. J Org Chem 66:9046CrossRefGoogle Scholar
  604. 604.
    Chandler CL, Phillips AJ (2005) A total synthesis of (±)-trans-kumausyne. Org Lett 7:3493CrossRefGoogle Scholar
  605. 605.
    Gutiérrez-Cepeda A, Daranas AH, Fernández JJ, Norte M, Souto ML (2014) Stereochemical determination of five-membered cyclic ether acetogenins using a spin-spin coupling constant approach and DFT calculations. Mar Drugs 12:4031CrossRefGoogle Scholar
  606. 606.
    Fukuzawa A, Aye M, Takaya Y, Fukui TM, Murai A, Masamune T (1989) Laureoxolane a new bromo ether from Laurencia nipponica. Tetrahedron Lett 30:3665CrossRefGoogle Scholar
  607. 607.
    Kladi M, Vagias C, Papazarifi P, Brogi S, Tafi A, Roussis V (2009) Tetrahydrofuran acetogenins from Laurencia glandulifera. J Nat Prod 72:190CrossRefGoogle Scholar
  608. 608.
    Suzuki M, Nakano S, Takahashi Y, Abe T, Masuda M (1999) Bisezakyne-A and -B, halogenated C15 acetogenins from a Japanese Laurencia species. Phytochemistry 51:657CrossRefGoogle Scholar
  609. 609.
    Fukuzawa A, Kurosawa E, Tobetsu I (1980) Laureepoxide, new bromo ether from the marine red alga Laurencia nipponica Yamada. Tetrahedron Lett 21:1471CrossRefGoogle Scholar
  610. 610.
    Imre S, Aydoǧmuş Z, Güner H, Lotter H, Wagner H (1995) Polybrominated non-terpenoid C15 compounds from Laurencia paniculata and Laurencia obtusa. Z Naturforsch 50C:743Google Scholar
  611. 611.
    Ji N-Y, Li X-M, Li K, Wang B-G (2007) Laurendecumallenes A-B and laurendecumenynes A-B, halogenated nonterpenoid C15 acetogenins from the marine red alga Laurencia decumbens. J Nat Prod 70:1499CrossRefGoogle Scholar
  612. 612.
    Ji NY, Li XM, Li K, Wang BG (2010) Erratum to “Laurendecumallenes A-B and laurendecumenynes A-B, halogenated nonterpenoid C15 acetogenins from the marine red alga Laurencia decumbens”. J Nat Prod 73:1192CrossRefGoogle Scholar
  613. 613.
    Dyson BS, Burton JW, Sohn TI, Kim B, Bae H, Kim D (2012) Total synthesis and structure confirmation of elatenyne: success of computational methods for NMR prediction with highly flexible diastereomers. J Am Chem Soc 134:11781CrossRefGoogle Scholar
  614. 614.
    Kim K, Brennan MR, Erickson KL (1989) Lauroxolanes from the marine alga Laurencia majuscula. Tetrahedron Lett 30:1757CrossRefGoogle Scholar
  615. 615.
    Sheldrake HM, Jamieson C, Burton JW (2006) The changing faces of halogenated marine natural products: total synthesis of the reported structures of elatenyne and an enyne from Laurencia majuscula. Angew Chem Int Ed 45:7199CrossRefGoogle Scholar
  616. 616.
    Sheldrake HM, Jamieson C, Pascu SI, Burton JW (2009) Synthesis of the originally proposed structures of elatenyne and an enyne from Laurencia majuscula. Org Biomol Chem 7:238CrossRefGoogle Scholar
  617. 617.
    Smith SG, Paton RS, Burton JW, Goodman JM (2008) Stereostructure assignment of flexible five-membered rings by GIAO 13C NMR calculations: prediction of the stereochemistry of elatenyne. J Org Chem 73:4053CrossRefGoogle Scholar
  618. 618.
    Brkljaca R, Urban S (2013) Relative configuration of the marine natural product elatenyne using NMR spectroscopic and chemical derivatization methodologies. Nat Prod Commun 8:729Google Scholar
  619. 619.
    Abdel-Mageed WM, Ebel R, Valeriote FA, Jaspars M (2010) Laurefurenynes A-F, new cyclic ether acetogenins from a marine red alga Laurencia sp. Tetrahedron 66:2855CrossRefGoogle Scholar
  620. 620.
    Shepherd DJ, Broadwith PA, Dyson BS, Paton RS, Burton JW (2013) Structure reassignment of laurefurenynes A and B by computation and total synthesis. Chem Eur J 19:12644CrossRefGoogle Scholar
  621. 621.
    Holmes MT, Britton R (2013) Total synthesis and structural revision of laurefurenynes A and B. Chem Eur J 19:12649CrossRefGoogle Scholar
  622. 622.
    Suzuki T, Koizumi K, Suzuki M, Kurosawa E (1983) Kumausallene, a new bromoallene from the marine red alga Laurencia nipponica Yamada. Chem Lett 12:1639CrossRefGoogle Scholar
  623. 623.
    Grese TA, Hutchinson KD, Overman LE (1993) General approach to halogenated tetrahydrofuran natural products from red algae of genus Laurencia. Total synthesis of (±)-kumausallene and (±)-1-epi-kumausallene. J Org Chem 58:2468Google Scholar
  624. 624.
    Lee E, Yoo SK, Choo H, Song HY (1998) Radical cyclization of β-alkoxyacrylates: a formal synthesis of (–)-kumausallene. Tetrahedron Lett 39:317CrossRefGoogle Scholar
  625. 625.
    Evans PA, Murthy VS, Roseman JD, Rheingold AL (1999) Enantioselective total synthesis of the nonisoprenoid sesquiterpene (–)-kumausallene. Angew Chem Int Ed 38:3175CrossRefGoogle Scholar
  626. 626.
    Werness JB, Tang W (2011) Stereoselective total synthesis of (–)-kumausallene. Org Lett 13:3664CrossRefGoogle Scholar
  627. 627.
    Nesbitt CL, McErlean CSP (2009) An expedient synthesis of 2,5-disubstituted-3-oxygenated tetrahydrofurans. Tetrahedron Lett 50:6318CrossRefGoogle Scholar
  628. 628.
    Okamoto Y, Nitanda N, Ojika M, Sakagami Y (2003) Aplysiallene, a new bromoallene as an Na+,K+-ATPase inhibitor from the sea hare Aplysia kurodai (Erratum). Biosci Biotechnol Biochem 67:460Google Scholar
  629. 629.
    Wang J, Pagenkopf BL (2007) First total synthesis and structural reassignment of (–)-aplysiallene. Org Lett 9:3703CrossRefGoogle Scholar
  630. 630.
    Suzuki M, Kurosawa E (1981) Okamurallene, a novel halogenated C15 metabolite from the red alga Laurencia okamurai Yamada. Tetrahedron Lett 22:3853CrossRefGoogle Scholar
  631. 631.
    Suzuki M, Sasage Y, Ikura M, Hikichi K, Kurosawa E (1989) Structure revision of okamurallene and structure elucidation of further C15 non-terpenoid bromoallenes from Laurencia intricata. Phytochemistry 28:2145CrossRefGoogle Scholar
  632. 632.
    Suzuki M, Kondo H, Tanaka I (1991) The absolute stereochemistry of okamurallene and its congeners, halogenated C15 nonterpenoids from the red alga Laurencia intricata. Chem Lett 20:33CrossRefGoogle Scholar
  633. 633.
    Suzuki M, Kurosawa E (1982) Deoxyokamurallene and isookamurallene, new halogenated nonterpenoid C15-compounds from the red alga Laurencia okamurai Yamada. Chem Lett 11:289CrossRefGoogle Scholar
  634. 634.
    Kinnel R, Duggan AJ, Eisner T, Meinwald J, Miura I (1977) Panacene, an aromatic bromoallene from a sea hare (Aplysia brasiliana). Tetrahedron Lett 18:3913CrossRefGoogle Scholar
  635. 635.
    Feldman KS (1982) Biomimetic synthesis of (±)-panacene. Tetrahedron Lett 23:3031CrossRefGoogle Scholar
  636. 636.
    Feldman KS, Mechem CC, Nader L (1982) Total synthesis of (±)-panacene. J Am Chem Soc 104:4011CrossRefGoogle Scholar
  637. 637.
    Sabot C, Bérard D, Canesi S (2008) Expeditious total syntheses of natural allenic products via aromatic ring umpolung. Org Lett 10:4629CrossRefGoogle Scholar
  638. 638.
    Howard BM, Fenical W, Arnold EV, Clardy J (1979) Obtusin, a unique bromine-containing polycyclic ketal from the red marine alga Laurencia obtusa. Tetrahedron Lett 20:2841CrossRefGoogle Scholar
  639. 639.
    Caccamese S, Toscano RM (1986) Neoobtusin, a new brominated ketal from the marine red alga Laurencia obtusa. Gazz Chim Ital 116:177Google Scholar
  640. 640.
    Sugimura H, Hasegawa Y, Osumi K (2000) Studies relating to the synthesis of laurenenynes: construction of the alkylidene side chain via [2,3]-Wittig-Still rearrangement at the anomeric center of a furanoside derivative. Heterocycles 52:99CrossRefGoogle Scholar
  641. 641.
    Liu X, Li XM, Li CS, Ji NY, Wang BG (2010) Laurenidificin, a new brominated C15 acetogenin from the marine red alga Laurencia nidifica. Chin Chem Lett 21:1213CrossRefGoogle Scholar
  642. 642.
    Schulte GR, Chung MCH, Scheuer PJ (1981) Two bicyclic C15 enynes from the sea hare Aplysia oculifera. J Org Chem 46:3870CrossRefGoogle Scholar
  643. 643.
    Waraszkiewicz SM, Sun HH, Erickson KL (1976) C15-halogenated compounds from the Hawaiian marine alga Laurencia nidifica. V. The maneonenes. Tetrahedron Lett 17:3021CrossRefGoogle Scholar
  644. 644.
    Waraszkiewicz SM, Sun HH, Erickson KL, Finer J, Clardy J (1978) C15 halogenated compounds from the Hawaiian marine alga Laurencia nidifica. Maneonenes and isomaneonenes. J Org Chem 43:3194CrossRefGoogle Scholar
  645. 645.
    Ayyad SEN, Al-Footy KO, Alarif WM, Sobahi TR, Bassaif SA, Makki MS, Asiri AM, Al Halwani AY, Badria AF, Badria FA (2011) Bioactive C15 acetogenins from the red alga Laurencia obtusa. Chem Pharm Bull 59:1294CrossRefGoogle Scholar
  646. 646.
    Holmes AB, Jennings-White CLD, Kendrick DA (1983) Total synthesis of cis-maneonenes-A and B. J Chem Soc Chem Commun:415Google Scholar
  647. 647.
    Sun HH, Waraszkiewicz SM, Erickson KL (1976) C15-halogenated compounds from the Hawaiian marine alga Laurencia nidifica. VI. The isomaneonenes. Tetrahedron Lett 17:4227Google Scholar
  648. 648.
    Holmes AB, Jennings-White CLD, Kendrick DA (1984) Total synthesis of (±)-trans-maneonene-B. J Chem Soc Chem Commun:1594Google Scholar
  649. 649.
    Vanderah DJ, Schmitz FJ (1976) Marine natural products; Isodactylyne, a halogenated acetylenic ether from the sea hare Aplysia dactylomela. J Org Chem 41:3480CrossRefGoogle Scholar
  650. 650.
    Gao L, Murai A (1992) Total synthesis of (–)-dactylyne and (–)-isodactylyne. Tetrahedron Lett 33:4349CrossRefGoogle Scholar
  651. 651.
    Gao L, Murai A (1996) Total synthesis of (–)-dactylynes. Heterocycles 42:745CrossRefGoogle Scholar
  652. 652.
    McDonald FJ, Campbell DC, Vanderah DJ, Schmitz FJ, Washecheck DM, Burks JE, Van Der Helm D (1975) Marine natural products. Dactylyne an acetylenic dibromochloro ether from the sea hare Aplysia dactylomela. J Org Chem 40:665CrossRefGoogle Scholar
  653. 653.
    Lee H, Kim KW, Park J, Kim H, Kim S, Kim D, Hu X, Yang W, Hong J (2008) A general strategy for construction of both 2,6-cis and 2,6-trans-disubstituted tetrahydropyrans: substrate-controlled asymmetric total synthesis of (+)-scanlonenyne. Angew Chem Int Ed 47:4200CrossRefGoogle Scholar
  654. 654.
    de Silva ED, Schwartz RE, Scheuer PJ, Shoolery JN (1983) Srilankenyne, a new metabolite from the sea hare Aplysia oculifera. J Org Chem 48:395CrossRefGoogle Scholar
  655. 655.
    Takahashi Y, Suzuki M, Abe T, Masuda M (1999) Japonenynes, halogenated C15 acetogenins from Laurencia japonensis. Phytochemistry 50:799CrossRefGoogle Scholar
  656. 656.
    Imre S, Öztunç A, Islimyeli S (1987) Chemical investigation of some marine organisms from Turkish waters. Turk Kim Derg 11:119Google Scholar
  657. 657.
    Kozikowski AP, Lee J (1990) A synthesis approach to the cis-fused marine pyranopyrans (3E)- and (3Z)-dactomelyne. X-ray structure of a rare organomercurial. J Org Chem 55:863Google Scholar
  658. 658.
    Lee E, Park CM, Yun JS (1995) Total synthesis of dactomelynes. J Am Chem Soc 117:8017CrossRefGoogle Scholar
  659. 659.
    Lee E (1996) Oxacycle synthesis via radical cyclization of β-alkoxyacrylates. Pure Appl Chem 68:631CrossRefGoogle Scholar
  660. 660.
    Fukuzawa A, Masamune T (1981) Laurepinnacin and isolaurepinnacin, new acetylenic cyclic ethers from the marine red alga Laurencia pinnata Yamada. Tetrahedron Lett 22:4081CrossRefGoogle Scholar
  661. 661.
    Kotsuki H, Ushio Y, Kadota I, Ochi M (1989) Stereoselective reduction of bicyclic ketals. A new, enantioselective synthesis of isolaurepinnacin and lauthisan skeletons. J Org Chem 54:5153CrossRefGoogle Scholar
  662. 662.
    Berger D, Overman LE, Renhowe PA (1993) Enantioselective total synthesis of (+)-isolaurepinnacin. J Am Chem Soc 115:9305CrossRefGoogle Scholar
  663. 663.
    Berger D, Overman LE, Renhowe PA (1997) Total synthesis of (+)-isolaurepinnacin. Use of acetal-alkene cyclizations to prepare highly functionalized seven-membered cyclic ethers. J Am Chem Soc 119:2446Google Scholar
  664. 664.
    Suzuki T, Matsumura R, Nagai Y, Sato K, Sekiguchi H, Hagiwara H, Ando M (1997) Stereospecific construction of medium-sized cyclic ethers and its applications to synthesis of marine natural products. Symp Chem Nat Prod 39:91Google Scholar
  665. 665.
    Suzuki T, Matsumura R, Oku KI, Taguchi K, Hagiwara H, Hoshi T, Ando M (2001) Formal synthesis of (+)-isolaurepinnacin. Tetrahedron Lett 42:65CrossRefGoogle Scholar
  666. 666.
    Rodríguez-López J, Ortega N, Martín VS, Martín T (2014) β-Hydroxy-γ-lactones as nucleophiles in the Nicholas reaction for the synthesis of oxepene rings. Enantioselective formal synthesis of (−)-isolaurepinnacin and (+)-rogioloxepane A. Chem Commun 50:3685Google Scholar
  667. 667.
    Guella G, Mancini I, Chiasera G, Pietra F (1992) On the unusual propensity by the red seaweed Laurencia microcladia of Il Rogiolo to form C15 oxepanes: isolation of rogioloxepane A, B, C, and their likely biogenetic acyclic precursor, prerogioloxepane. Helv Chim Acta 75:310CrossRefGoogle Scholar
  668. 668.
    Matsumura R, Suzuki T, Hagiwara H, Hoshi T, Ando M (2001) The first total synthesis of (+)-rogioloxepane A. Tetrahedron Lett 42:1543CrossRefGoogle Scholar
  669. 669.
    Crimmins MT, DeBaillie AC (2003) Enantioselective total synthesis of (+)-rogioloxepane A. Org Lett 5:3009CrossRefGoogle Scholar
  670. 670.
    Lyakhova EG, Kalinovsky AI, Dmitrenok AS, Kolesnikova SA, Fedorov SN, Vaskovsky VE, Stonik VA (2006) Structures and absolute stereochemistry of nipponallene and neonipponallene, new brominated allenes from the red alga Laurencia nipponica. Tetrahedron Lett 47:6549CrossRefGoogle Scholar
  671. 671.
    Guella G, Mancici I, Chiasera G, Pietra F (1992) Rogiolenyne D, the likely immediate precursor of rogiolenyne A and B, branched C15 acetogenins isolated from the red seaweed Laurencia microcladia of Il Rogiolo. Conformation and absolute configuration in the whole series. Helv Chim Acta 75:303Google Scholar
  672. 672.
    Guella G, Pietra F (1991) Rogiolenyne A, B and C: the first branched marine C15 acetogenins. Isolation from the red seaweed Laurencia microcladia or the sponge Spongia zimocca of Il Rogiolo. Helv Chim Acta 74:47Google Scholar
  673. 673.
    Kurosawa E, Fukuzawa A, Irie T (1973) Isoprelaurefucin, new bromo compound from Laurencia nipponica Yamada. Tetrahedron Lett 14:4135CrossRefGoogle Scholar
  674. 674.
    Suzuki M, Kurata K, Suzuki T, Kurosawa E (1986) The absolute configuration of isoprelaurefucin. Bull Chem Soc Jpn 59:2953CrossRefGoogle Scholar
  675. 675.
    Lee H, Kim Y, Yoon T, Kim B, Kim S, Kim H-D, Kim D (2005) Novel “protecting group-dependent” alkylation-RCM strategy to medium-sized oxacycles: first total synthesis of (-)-isoprelaurefucin. J Org Chem 70:8723CrossRefGoogle Scholar
  676. 676.
    Suzuki M, Mizuno Y, Matsuo Y, Masuda M (1996) Neoisoprelaurefucin, a halogenated C15 non-terpenoid compound from Laurencia nipponica. Phytochemistry 43:121CrossRefGoogle Scholar
  677. 677.
    Lee H, Kim H, Baek S, Kim S, Kim D (2003) Total synthesis and determination of the absolute configuration of (+)-neoisoprelaurefucin. Tetrahedron Lett 44:6609CrossRefGoogle Scholar
  678. 678.
    Falshaw CP, King TJ, Imre S, Islimyeli S, Thomson RH (1980) Laurenyne, a new acetylene from Laurencia obtusa, crystal structure and absolute configuration. Tetrahedron Lett 21:4951CrossRefGoogle Scholar
  679. 679.
    Öztunç A, Imre S, Lotter H, Wagner H (1991) Two C15 bromoallenes from the red alga Laurencia obtusa. Phytochemistry 30:255CrossRefGoogle Scholar
  680. 680.
    Overman LE, Thompson AS (1988) Total synthesis of (–)-laurenyne. Use of acetyl-initiated cyclizations to prepare functionalized eight-membered cyclic ethers. J Am Chem Soc 110:2248Google Scholar
  681. 681.
    Boeckman RK, Zhang J, Reeder MR (2002) Synthetic and mechanistic studies of the retro-Claisen rearrangement 4. An application to the total synthesis of (+)-laurenyne. Org Lett 4:3891CrossRefGoogle Scholar
  682. 682.
    Clark JS, Freeman RP, Cacho M, Thomas AW, Swallow S, Wilson C (2004) Stereoselective synthesis of the cyclic ether core of (+)-laurenyne. Tetrahedron Lett 45:8639CrossRefGoogle Scholar
  683. 683.
    Suzuki M, Kurosawa E, Furusaki A, Matsumoto T (1983) The structures of (3Z)-epoxyvenustin, (3Z)-venustin, and (3Z)-venustinene, new halogenated C15-nonterpenoids from the red alga Laurencia venusta Yamada. Chem Lett 12:779CrossRefGoogle Scholar
  684. 684.
    Howard BM, Fenical W, Hirotsu K, Solheim B, Clardy J (1980) The rhodophytin and chondriol natural products, structures of several new acetylenes from Laurencia and a reassignment of structure of cis-rhodophytin. Tetrahedron 36:171CrossRefGoogle Scholar
  685. 685.
    Fenical W (1974) Rhodophytin, a halogenated vinyl peroxide of marine origin. J Am Chem Soc 96:5580CrossRefGoogle Scholar
  686. 686.
    Fenical W, Sims JJ, Radlick P (1973) Chondriol, a halogenated acetylene from the marine alga Chondria oppositiclada. Tetrahedron Lett 14:313CrossRefGoogle Scholar
  687. 687.
    Fenical W, Gifkins KB, Clardy J (1974) X-ray determination of chondriol, a re-assignment of structure. Tetrahedron Lett 15:1507CrossRefGoogle Scholar
  688. 688.
    Suzuki M, Kurosawa E (1980) Venustin A and B, new halogenated C15 metabolites from the red alga Laurencia venusta Yamada. Chem Lett 9:1177CrossRefGoogle Scholar
  689. 689.
    Norte M, González AG, Cataldo F, Rodríguez ML, Brito I (1991) New examples of acyclic and cyclic C-15 acetogenins from Laurencia pinnatifida. Reassignment of the absolute configuration for E and Z pinnatifidienyne. Tetrahedron 47:9411CrossRefGoogle Scholar
  690. 690.
    Notre M, Fernández JJ, Cataldo F, González AG (1989) E-Dihydrorhodophytin, a C15 acetogenin from the red alga Laurencia pinnatifida. Phytochemistry 28:647CrossRefGoogle Scholar
  691. 691.
    Vairappan CS, Lee TK (2009) C-15 halogenated acetogenin with antibacterial activity against food pathogens. Malay J Sci 28:263Google Scholar
  692. 692.
    Kinnel RB, Dieter RK, Meinwald J, Van Engen D, Clardy J, Eisner T, Stallard MO, Fenical W (1979) Brasilenyne and cis-dihydrorhodophytin, antifeedant medium-ring haloethers from a sea hare (Aplysia brasiliana). Proc Natl Acad Sci USA 76:3576CrossRefGoogle Scholar
  693. 693.
    Fukuzawa A, Takasugi Y, Murai A (1991) Prelaureatin, a new biogenetic key intermediate isolated from Laurencia nipponica. Tetrahedron Lett 32:5597CrossRefGoogle Scholar
  694. 694.
    Fukuzawa A, Aye M, Murai A (1990) A direct enzymatic synthesis of laurencin from laurediol. Chem Lett 19:1579CrossRefGoogle Scholar
  695. 695.
    Fukuzawa A, Takasugi Y, Murai A, Nakamura M, Tamura M (1992) Enzymatic single-step formation of laureatin and its key intermediate, prelaureatin, from (3Z,6S,7S)-laurediol. Tetrahedron Lett 33:2017CrossRefGoogle Scholar
  696. 696.
    Fukuzawa A, Aye M, Takasugi Y, Nakamura M, Tamura M, Murai A (1994) Enzymic bromo-ether cyclization of laurediols with bromoperoxidase. Chem Lett 13:2307CrossRefGoogle Scholar
  697. 697.
    Ishihara J, Kanoh N, Murai A (1995) Enzymatic reaction of (3E,6S,7S)-laurediol and the molecular modeling studies on the cyclization of laurediols. Tetrahedron Lett 36:737CrossRefGoogle Scholar
  698. 698.
    Crimmins MT, Tabet EA (2000) Total synthesis of (+)-prelaureatin and (+)-laurallene. J Am Chem Soc 122:5473CrossRefGoogle Scholar
  699. 699.
    Fujiwara K, Souma SI, Mishima H, Murai A (2002) Total synthesis of prelaureatin. Synlett 13:1493CrossRefGoogle Scholar
  700. 700.
    Sasaki M, Oyamada K, Takeda K (2010) Formal total syntheses of (+)-prelaureatin and (+)-laurallene by diastereoselective Brook rearrangement-mediated [3+4] annulation. J Org Chem 75:3941CrossRefGoogle Scholar
  701. 701.
    Li J, Suh JM, Chin E (2010) Expedient enantioselective synthesis of the Δ4-oxocene cores of (+)-laurencin and (+)-prelaureatin. Org Lett 12:4712CrossRefGoogle Scholar
  702. 702.
    Iliopoulou D, Vagias C, Harvala C, Roussis V (2002) C15 acetogenins from the red alga Laurencia obtusa. Phytochemistry 59:111CrossRefGoogle Scholar
  703. 703.
    González AG, Martín JD, Martín VS, Norte M, Pérez R, Ruano JZ, Drexler SA, Clardy J (1982) Non-terpenoid C-15 metabolites from the red seaweed Laurencia pinnatifida. Tetrahedron 38:1009CrossRefGoogle Scholar
  704. 704.
    Kim H, Choi WJ, Jung J, Kim S, Kim D (2003) Construction of eight-membered ether rings by olefin geometry-dependent internal alkylation: first asymmetric total syntheses of (+)-3-(E)- and (+)-3-(Z)-pinnatifidenyne. J Am Chem Soc 125:10238CrossRefGoogle Scholar
  705. 705.
    Snyder SA, Brucks AP, Treitler DS, Moga I (2012) Concise synthetic approaches for the Laurencia family: formal total syntheses of (±)- laurefucin and (±)-E- and (±)-Z-pinnatifidenyne. J Am Chem Soc 134:17714CrossRefGoogle Scholar
  706. 706.
    Imre S, Lotter H, Wagner H, Thomson RH (1987) Epoxy-trans-isodihydrorhodophytin, a new metabolite from Laurencia obtusa. Z Naturforsch 42C:507Google Scholar
  707. 707.
    Caccamese S, Azzolina R, Duesler EN, Paul IC, Rinehart KL (1980) Laurencienyne; a new acetylenic cyclic ether from the marine red alga Laurencia obtusa. Tetrahedron Lett 21:2299CrossRefGoogle Scholar
  708. 708.
    Rinehart KL Jr, Shaw PD, Shield LS, Gloer JB, Harbour GC, Koker MES, Samain D, Schwartz RE, Tymiak AA, Weller DL, Carter GT, Munro MHG, Hughes RG Jr, Renis HE, Swynenberg EB, Stringfellow DA, Vavra JJ, Coats JH, Zurenko GE, Kuentzel SL, Li LH, Bakus GJ, Brusca RC, Craft LL, Young DN, Connor JL (1981) Marine natural products as sources of antiviral, antimicrobial, and antineoplastic agents. Pure Appl Chem 53:795CrossRefGoogle Scholar
  709. 709.
    Aydoğmuş Z, Imre S (1999) A new halogenated C15 non-terpenoid compound from the marine red alga Laurencia obtusa. Acta Pharm Turc 41:93Google Scholar
  710. 710.
    Ojika M, Nemoto T, Yamada K (1993) Doliculols A and B, the non-halogenated C15 acetogenins with cylic ether from the sea hare Dolabella auricularia. Tetrahedron Lett 34:3461CrossRefGoogle Scholar
  711. 711.
    Gutiérrez-Cepeda A, Fernández JJ, Gil LV, López-Rodríguez M, Norte M, Souto ML (2011) Nonterpenoid C15 acetogenins from Laurencia marilzae. J Nat Prod 74:441CrossRefGoogle Scholar
  712. 712.
    Irie T, Suzuki M, Masamune T (1965) Laurencin, a constituent from Laurencia species. Tetrahedron Lett 6:1091CrossRefGoogle Scholar
  713. 713.
    Irie T, Suzuki M, Masamune T (1968) Laurencin, a constituent of Laurencia glandulifera Kützing. Tetrahedron 24:4193CrossRefGoogle Scholar
  714. 714.
    Forbes Cameron A, Cheung KK, Ferguson G, Monteath Robertson J (1969) Laurencia natural products: crystal structure and absolute stereochemistry of laurencin. J Chem Soc B:559Google Scholar
  715. 715.
    Robinson RA, Clark JS, Holmes AB (1993) Synthesis of (+)-laurencin. J Am Chem Soc 115:10400CrossRefGoogle Scholar
  716. 716.
    Bratz M, Bullock WH, Overman LE, Takemoto T (1995) Total synthesis of (+)-laurencin. Use of acetal-vinyl sulfide cyclizations for forming highly functionalized eight-membered cyclic ethers. J Am Chem Soc 117:5958Google Scholar
  717. 717.
    Burton JW, Clark JS, Derrer S, Stork TC, Bendall JG, Holmes AB (1997) Synthesis of medium ring ethers. 5. The synthesis of (+)-laurencin. J Am Chem Soc 119:7483CrossRefGoogle Scholar
  718. 718.
    Crimmins MT, Choy AL (1999) An asymmetric aldol-ring-closing metathesis strategy for the enantioselective synthesis of (+)-laurencin. J Am Chem Soc 121:5653CrossRefGoogle Scholar
  719. 719.
    Crimmins MT, Emmitte KA (1999) Total synthesis of (+)-laurencin: an asymmetric alkylation-ring-closing metathesis approach to medium ring ethers. Org Lett 1:2029CrossRefGoogle Scholar
  720. 720.
    Baek S, Jo H, Kim H, Kim H, Kim S, Kim D (2005) Highly stereoselective and efficient total synthesis of (+)-laurencin. Org Lett 7:75CrossRefGoogle Scholar
  721. 721.
    Fujiwara K, Yoshimoto S, Takizawa A, Souma S, Mishima H, Murai A, Kawai H, Suzuki T (2005) Synthesis of (+)-laurencin via ring expansion of a C-glycoside derivative. Tetrahedron Lett 46:6819CrossRefGoogle Scholar
  722. 722.
    Adsool VA, Pansare SV (2008) An enantioselective approach to (+)-laurencin. Org Biomol Chem 6:2011CrossRefGoogle Scholar
  723. 723.
    Ortega N, Martin VS, Martin T (2010) An approach to lauroxanes by literative use of Co2(CO)6-acetylenic complexes. A formal synthesis of (+)-laurencin. J Org Chem 75:6660CrossRefGoogle Scholar
  724. 724.
    White RH, Hager LP (1978) Intricenyne and related halogenated compounds from Laurencia intricata. Phytochemistry 17:939CrossRefGoogle Scholar
  725. 725.
    Blunt JW, Lake RJ, Munro MHG (1984) Metabolites of the marine red alga Laurencia thyrsifera. III. Aust J Chem 37:1545CrossRefGoogle Scholar
  726. 726.
    Cardellina JH II, Horsley SB, Clardy J, Leftow SR, Meinwald J (1982) Secondary metabolites from the red alga Laurencia intricata: halogenated enynes. Can J Chem 60:2675CrossRefGoogle Scholar
  727. 727.
    Kim G, Sohn TI, Kim D, Paton R (2014) Asymmetric total synthesis of (+)-bermudenynol, a C15 Laurencia metabolite with a vinyl chloride containing oxocene skeleton, through intramolecular amide enolate alkylation. Angew Chem Int Ed 53:272CrossRefGoogle Scholar
  728. 728.
    Kladi M, Vagias C, Stavri M, Rahman MM, Gibbons S, Roussis V (2008) C15 acetogenins with antistaphylococcal activity from the red alga Laurencia glandulifera. Phytochem Lett 1:31CrossRefGoogle Scholar
  729. 729.
    Blunt JW, Lake RJ, Munro MHG, Yorke SC (1981) A new vinyl acetylene from the red alga Laurencia thyrsifera. Aust J Chem 34:2393CrossRefGoogle Scholar
  730. 730.
    Howard BM, Schulte GR, Fenical W, Solheim B, Clardy J (1980) Three new vinyl acetylenes from the marine red alga Laurencia. Tetrahedron 36:1747CrossRefGoogle Scholar
  731. 731.
    Fukuzawa A, Kurosawa E, Tobetsu I (1979) Laurallene, new bromoallene from the marine red alga Laurencia nipponica Yamada. Tetrahedron Lett 20:2797CrossRefGoogle Scholar
  732. 732.
    Ishihara J, Shimada Y, Kanoh N, Takasugi Y, Fukuzawa A, Murai A (1997) Conversion of prelaureatin into laurallene, a bromo-allene compound, by enzymatic and chemical bromo-etherification reactions. Tetrahedron 53:8371CrossRefGoogle Scholar
  733. 733.
    Saitoh T, Suzuki T, Sugimoto M, Hagiwara H, Hoshi T (2003) Total synthesis of (+)-laurallene. Tetrahedron Lett 44:3175CrossRefGoogle Scholar
  734. 734.
    Kim MJ, Sohn TI, Kim D, Paton RS (2012) Concise substrate-controlled asymmetric total syntheses of dioxabicyclic marine natural products with 2,10-dioxabicyclo-[7.3.0]dodecene and 2,9-dioxabicyclo[6.3.0]undecene skeletons. J Am Chem Soc 134:20178Google Scholar
  735. 735.
    Suzuki M, Takahashi Y, Matsuo Y, Masuda M (1996) Pannosallene, a brominated C15 nonterpenoid from Laurencia pannosa. Phytochemistry 41:1101CrossRefGoogle Scholar
  736. 736.
    Suzuki M, Kurosawa E (1987) (3E)-Laureatin and (3E)-isolaureatin, halogenated C-15 non-terpenoid compounds from the red alga Laurencia nipponica Yamada. Bull Chem Soc Jpn 60:3791Google Scholar
  737. 737.
    Yoshimitsu Y, Inuki S, Oishi S, Fujii N, Ohno H (2013) Palladium-catalyzed medium-ring formation for construction of the core structure of Laurencia oxacycles: synthetic study of laurendecumallene B. Org Lett 15:3046CrossRefGoogle Scholar
  738. 738.
    Kurosawa E, Fukuzawa A, Irie T (1973) trans- and cis-Laurediol, unsaturated glycols from Laurencia nipponica Yamada. Tetrahedron Lett 14:2121Google Scholar
  739. 739.
    Irie T, Izawa M, Kurosawa E (1968) Laureatin, a constituent from Laurencia nipponica Yamada. Tetrahedron Lett 9:2091CrossRefGoogle Scholar
  740. 740.
    Irie T, Izawa M, Kurosawa E (1970) Laureatin and isolaureatin, constituents of Laurencia nipponica Yamada. Tetrahedron 26:851CrossRefGoogle Scholar
  741. 741.
    Kurosawa E, Furusaki A, Izawa M, Fukuzawa A, Irie T (1973) The absolute configurations of laureatin and isolaureatin. Tetrahedron Lett 14:3857CrossRefGoogle Scholar
  742. 742.
    Sugimoto M, Suzuki T, Hagiwara H, Hoshi T (2007) The first total synthesis of (+)-(Z)-laureatin. Tetrahedron Lett 48:1109CrossRefGoogle Scholar
  743. 743.
    Kim H, Lee H, Lee D, Kim S, Kim D (2007) Asymmetric total syntheses of (+)-(3Z)-laureatin and (+)-(3Z)-isolaureatin by “lone pair-lone pair interaction-controlled” isomerization. J Am Chem Soc 129:2269CrossRefGoogle Scholar
  744. 744.
    Keshipeddy S, Martínez I, Castillo BF, Morton MD, Howell AR (2012) Toward a formal synthesis of laureatin: unexpected rearrangements involving cyclic ether nucleophiles. J Org Chem 77:7883CrossRefGoogle Scholar
  745. 745.
    Irie T, Izawa M, Kurosawa E (1968) Isolaureatin, a constituent from Laurencia nipponica Yamada. Tetrahedron Lett 9:2735CrossRefGoogle Scholar
  746. 746.
    Fukuzawa A, Kurosawa E, Irie T (1972) Laurefucin and acetyllaurefucin, new bromo compounds from Laurencia nipponica Yamada. Tetrahedron Lett 13:3CrossRefGoogle Scholar
  747. 747.
    Furusaki A, Kurosawa E, Fukuzawa A, Irie T (1973) The revised structure and absolute configuration of laurefucin from Laurencia nipponica Yamada. Tetrahedron Lett 14:4579CrossRefGoogle Scholar
  748. 748.
    McPhail KL, Davies-Coleman MT (2005) (3Z)-Bromofucin from a South African sea hare. Nat Prod Res 19:449Google Scholar
  749. 749.
    Fukuzawa A, Aye M, Nakamura M, Tamura M, Murai A (1990) Structure elucidation of laureoxanyne, a new nonisoprenoid C15 enyne, using lactoperoxidase. Tetrahedron Lett 31:4895CrossRefGoogle Scholar
  750. 750.
    Kennedy DJ, Selby IA, Cowe HJ, Cox PJ, Thomson RH (1984) Bromoallenes from the alga Laurencia microcladia. J Chem Soc Chem Commun:153Google Scholar
  751. 751.
    Park JH, Kim BS, Kim HS, Kim SH, Kim DJ (2007) Substrate-controlled asymmetric total synthesis of (+)-microcladallene B with bromination strategy based on a nucleophile-assisting leaving group. Angew Chem Int Ed 46:4726CrossRefGoogle Scholar
  752. 752.
    Denmark SE, Yang S-M (2002) Intramolecular silicon-assisted cross-coupling: total synthesis of (+)-brasilenyne. J Am Chem Soc 124:15196CrossRefGoogle Scholar
  753. 753.
    Denmark SE, Yang SM (2004) Total synthesis of (+)-brasilenyne. Application of an intramolecular silicon-assisted cross-coupling reaction. J Am Chem Soc 126:12432Google Scholar
  754. 754.
    King TJ, Imre S, Öztunc A, Thomson RH (1979) Obtusenyne, a new acetylenic nine-membered cyclic ether from Laurencia obtusa. Tetrahedron Lett 20:1453CrossRefGoogle Scholar
  755. 755.
    Curtis NR, Holmes AB, Looney MG (1992) Studies towards the synthesis of obtusenyne. Synthesis of the hexahydrooxonin nucleus. Tetrahedron Lett 33:671CrossRefGoogle Scholar
  756. 756.
    Curtis NR, Holmes AB, Looney MG (1991) Studies towards the synthesis of obtusenyne. A Claisen rearrangement approach to unsaturated nine-membered lactones. Tetrahedron 47:7171Google Scholar
  757. 757.
    Fujiwara K, Awakura D, Tsunashima M, Nakamura A, Honma T, Murai A (1999) Total synthesis of (+)-obtusenyne. J Org Chem 64:2616CrossRefGoogle Scholar
  758. 758.
    Crimmins MT, Powell MT (2003) Enantioselective total synthesis of (+)-obtusenyne. J Am Chem Soc 125:7592CrossRefGoogle Scholar
  759. 759.
    Urmura T, Suzuki T, Onodera N, Hagiwara H, Hoshi T (2007) Total synthesis of (+)-obtusenyne. Tetrahedron Lett 48:715CrossRefGoogle Scholar
  760. 760.
    Frankie Mak SY, Curtis NR, Payne AN, Congreve MS, Wildsmith AJ, Francis CL, Davies JE, Pascu SI, Burton JW, Holmes AB (2008) Synthesis of (+)-obtusenyne. Chem Eur J 14:2867CrossRefGoogle Scholar
  761. 761.
    Awakura D, Fujiwara K, Murai A (1999) Determination of the absolute configuration of Norte’s obtusenynes by total synthesis of (12R,13R)-(–)- and (12S,13R)-(+)-obtusenynes. Chem Lett 28:461CrossRefGoogle Scholar
  762. 762.
    Kurata K, Furusaki A, Suehiro K, Katayama C, Suzuki T (1982) Isolaurallene, a new nonterpenoid C15-bromoallene, from the red alga Laurencia nipponica Yamada. Chem Lett 11:1031CrossRefGoogle Scholar
  763. 763.
    Furusaki A, Katsuragi S-I, Suehiro K, Matsumoto T (1985) The conformations of (Z)-2,3,4,7,8,9-hexahydrooxonin and (Z)-cyclononene. X-ray structure determinations of isolaurallene and neolaurallene, and force-field calculations. Bull Chem Soc Jpn 58:803CrossRefGoogle Scholar
  764. 764.
    Crimmins MT, Emmitte KA (2001) Asymmetric total synthesis of (–)-isolaurallene. J Am Chem Soc 123:1533CrossRefGoogle Scholar
  765. 765.
    Crimmins MT, Emmitte KA, Choy AL (2002) Ring closing metathesis for the formation of medium ring ethers: the total synthesis of (–)-isolaurallene. Tetrahedron 58:1817CrossRefGoogle Scholar
  766. 766.
    Suzuki M, Kurosawa E, Furusaki A, Katsuragi S-I, Matsumoto T (1984) Neolaurallene, a new halogenated C-15 nonterpenoid from the red alga Laurencia okamurai Yamada. Chem Lett 13:1033CrossRefGoogle Scholar
  767. 767.
    Jeong W, Kim MJ, Kim H, Kim S, Kim D, Shin KJ (2010) Substrate-controlled asymmetric total synthesis and structure revision of (+)-itomanallene A. Angew Chem Int Ed 49:752CrossRefGoogle Scholar
  768. 768.
    Braddock DC, Bhuva R, Millan DS, Pérez-Fuertes Y, Roberts CA, Sheppard RN, Solanki S, Stokes ESE, White AJP (2007) A biosynthetically-inspired synthesis of the tetrahydrofuran core of obtusallenes II and IV. Org Lett 9:445CrossRefGoogle Scholar
  769. 769.
    Guella G, Chiasera G, Mancini I, Öztunç A, Pietra F (1997) Twelve-membered O-bridged cyclic ethers of red seaweeds in the genus Laurencia exist in solution as slowly interconverting conformers. Chem Eur J 3:1223CrossRefGoogle Scholar
  770. 770.
    Guella G, Mancini I, Öztunç A, Pietra F (2000) Conformational bias in macrocyclic ethers and observation of high solvolytic reactivity at a masked furfuryl (=2-furylmethyl) C-atom. Helv Chim Acta 83:336CrossRefGoogle Scholar
  771. 771.
    Ciavatta ML, Gavagnin M, Puliti R, Cimino G, Martínez E, Ortea J, Mattia CA (1997) Dactyllalene: a novel dietary C15 bromoallene from the Atlantic anaspidean mollusc Aplysia dactylomela. Tetrahedron 53:17343CrossRefGoogle Scholar
  772. 772.
    Braddock DC, Millan DS, Pérez-Fuertes Y, Pouwer RH, Sheppard RN, Solanki S, White AJP (2009) Bromonium ion induced transannular oxonium ion formation-fragmentation in model obtusallene systems and structural reassignment of obtusallenes V-VII. J Org Chem 74:1835CrossRefGoogle Scholar
  773. 773.
    Öztunç A, Imre S, Wagner H, Norte M, Fernández JJ, González R (1991) A new and highly oxygenated bromoallene from a marine source. Tetrahedron Lett 32:4377CrossRefGoogle Scholar
  774. 774.
    Cox PJ, Imre S, Islimyeli S, Thomson RH (1982) Obtusallene I, a new halogenated allene from Laurencia obtusa. Tetrahedron Lett 23:579CrossRefGoogle Scholar
  775. 775.
    Cox PJ, Howie RA (1982) X-ray structure analysis of obtusallene. Acta Crystallogr B38:1386CrossRefGoogle Scholar
  776. 776.
    Öztunç A, Imre S, Wagner H, Norte M, Fernández JJ, González R (1991) A new haloether from Laurencia possessing a lauroxacyclododecane ring. Structural and conformational studies. Tetrahedron 47:2273Google Scholar
  777. 777.
    Gutiérrez-Cepeda G, Fernández JJ, Norte M, Souto ML (2011) New bicyclotridecane C15 nonterpenoid bromoallenes from Laurencia marilzae. Org Lett 13:2690CrossRefGoogle Scholar
  778. 778.
    Wright AE, Wing RM, Sims JJ (1983) Poitediene a new metabolite from the marine red alga Laurencia poitei. Tetrahedron Lett 24:4649CrossRefGoogle Scholar
  779. 779.
    Kigoshi H, Shizuri Y, Niwa H, Yamada K (1982) Isolation and structures of trans-laurencenyne, a possible precursor of the C15 halogenated cyclic ethers, and trans-neolaurencenyne from Laurencia okamurai. Tetrahedron Lett 23:1475CrossRefGoogle Scholar
  780. 780.
    Kigoshi H, Shizuri Y, Niwa H, Yamada K (1986) Four new C15 acetylenic polyenes of biogenetic significance from the red alga Laurencia okamurai: structures and synthesis. Tetrahedron 42:3781CrossRefGoogle Scholar
  781. 781.
    Holmeide AK, Skattebol I, Sydnes M (2001) The syntheses of three highly unsaturated marine lipid hydrocarbons. J Chem Soc Perkin Trans 1:1942CrossRefGoogle Scholar
  782. 782.
    Fukuzawa A, Honma T, Takasugi Y, Murai A (1993) Biogenetic intermediates, (3E and 3Z,12Z)-laurediols and (3E and 3Z)-12,13-dihydrolaurediols, isolated from Laurencia nipponica. Phytochemistry 32:1435CrossRefGoogle Scholar
  783. 783.
    Palazón JM, Martín VS (1988) Enantioselective total synthesis of 6(R),7(R)-3-cis-9-cis-12-cis, 6-acetoxy-7-chloropentadeca-3,9,12-trien-1-yne and its 3-trans-isomer. Tetrahedron Lett 29:681CrossRefGoogle Scholar
  784. 784.
    Fukuzawa A, Sato H, Miyamoto M, Masamune T (1986) Synthesis of (6S,7S)-trans-laurediol and its [9,10-2H2]-analogue. Tetrahedron Lett 27:2901CrossRefGoogle Scholar
  785. 785.
    Añorbe B, Martín VS, Palazón JM, Trujillo JM (1986) Enantiomeric syntheses of 6R,7R and 6S,7S trans- and cis-laurediol. Tetrahedron Lett 27:4991CrossRefGoogle Scholar
  786. 786.
    Martin T, Martin VS (2000) A short synthesis of trans-(+)-laurediol. Tetrahedron Lett 41:2503CrossRefGoogle Scholar
  787. 787.
    Gadikota RR, Keller AI, Callam CS, Lowary TL (2003) Efficient syntheses of trans-(+)-laurediol from carbohydrate precursors. Tetrahedron Asymm 14:737CrossRefGoogle Scholar
  788. 788.
    Ishihara J, Kanoh N, Fukuzawa A, Murai A (1994) Isomerization of the (Z)-enyne unit to the (E)-enyne unit. Conversion of laureatin to (E)-isolaureatin. Chem Lett 13:1563Google Scholar
  789. 789.
    Braddock DC (2006) A hypothesis concerning the biosynthesis of the obtusallene family of marine natural products via electrophilic bromination. Org Lett 8:6055CrossRefGoogle Scholar
  790. 790.
    Braddock DC, Rzepa HS (2008) Structural reassignment of obtusallenes V, VI and VII by GIAO-based density functional prediction. J Nat Prod 71:728CrossRefGoogle Scholar
  791. 791.
    Su H, Yuan ZH, Li J, Guo SJ, Deng LP, Han LJ, Zhu XB, Shi DY (2009) Two new bromoindoles from red alga Laurencia similis. Chin Chem Lett 20:456CrossRefGoogle Scholar
  792. 792.
    Sun WS, Su S, Zhu RX, Tu GZ, Cheng W, Liang H, Guo XY, Zhao YY, Zhang QY (2013) A pair of unprecedented spiro-trisindole enantiomers fused through a five-member ring from Laurencia similis. Tetrahedron Lett 54:3617CrossRefGoogle Scholar
  793. 793.
    Carter GT, Rinehart KL, Li LH, Kuentzel S, Connor JL (1978) Brominated indoles from Laurencia brongniartii. Tetrahedron Lett 19:4479CrossRefGoogle Scholar
  794. 794.
    Su H, Yuan Z, Li J, Guo S, Han L, Zhu X, Shi D (2009) Studies on chemical constituents of Laurencia saitoi. Chin J Chin Mat Med 34:871Google Scholar
  795. 795.
    Masuda M, Kawaguchi S, Takahashi Y, Okamoto K, Suzuki M (1999) Halogenated secondary metabolites of Laurencia similis (Rhodomelaceae, Rhodophyta). Bot Mar 42:199Google Scholar
  796. 796.
    Vairappan CS, Yen AM, Yi OC, Moi PS (2004) Biologically active polybrominated indoles in the red alga Laurencia similis from the coastal waters of Sabah (Rhodomelaceae, Ceramiales). Malay J Sci 23:119Google Scholar
  797. 797.
    Suárez-Castillo OR, Beiza-Granados L, Meléndez-Rodríguez M, Alvarez-Hernández A, Morales-Ríos MS, Joseph-Nathan P (2006) Synthesis of bromoindole alkaloids from Laurencia brogniartii. J Nat Prod 69:1596CrossRefGoogle Scholar
  798. 798.
    Tanaka J, Higa T, Benardinelli G, Jefford CW (1989) Sulfur-containing polybromoindoles from the red alga Laurencia brongniartii. Tetrahedron 45:7301CrossRefGoogle Scholar
  799. 799.
    El-Gamal AA, Wang WL, Duh CY (2005) Sulfur-containing polybromoindoles from the Formosan red alga Laurencia brongniartii. J Nat Prod 68:815CrossRefGoogle Scholar
  800. 800.
    Tanaka J, Higa T, Bernardinelli G, Jefford CW (1988) Itomanindoles A and B, methylsulfinylindoles from Laurencia brongniartii. Tetrahedron Lett 29:6091CrossRefGoogle Scholar
  801. 801.
    Fang HY, Chiou SF, Uvarani C, Wen ZH, Hsu CH, Wu YC, Wang WL, Liaw CC, Sheu JH (2014) Cytotoxic, anti-inflammatory and antibacterial sulfur-containing polybromoindoles from the Formosan red alga Laurencia brongniartii. Bull Chem Soc Jpn 87:1278CrossRefGoogle Scholar
  802. 802.
    Liu Y, Gribble GW (2002) Syntheses of polybrominated indoles from the red alga Laurencia brongniartii and the brittle star Ophiocoma erinaceus. J Nat Prod 65:748CrossRefGoogle Scholar
  803. 803.
    Kubota NK, Iwamoto H, Fukazawa Y, Uchio Y (2005) Five new sulfur-containing polybrominated bisindoles from the red alga Laurencia brongniartii. Heterocycles 65:2675CrossRefGoogle Scholar
  804. 804.
    Wright AD, König GM, Angerhofer CK, Greenidge P, Linden A, Desqueyroux-Faúndez R (1996) Antimalarial activity: the search for marine-derived natural products with selective antimalarial activity. J Nat Prod 59:710CrossRefGoogle Scholar
  805. 805.
    Mikami D, Kurihara H, Kim SM, Takahashi K (2013) Red algal bromophenols as glucose 6-phosphate dehydrogenase inhibitors. Mar Drugs 11:4050CrossRefGoogle Scholar
  806. 806.
    Valdebenito H, Bittner M, Sammes PG, Silva M, Watson WH (1982) A compound with antimicrobial activity isolated from the red seaweed Laurencia chilensis. Phytochemistry 21:1456CrossRefGoogle Scholar
  807. 807.
    Qin JC, Su H, Zhang YM, Gao JM, Zhu L, Wu XA, Pan HY, Li XA (2010) Highly brominated metabolites from marine red alga Laurencia similis inhibit protein tyrosine phosphatase 1B. Bioorg Med Chem Lett 20:7152CrossRefGoogle Scholar
  808. 808.
    Zhong Y, Su J, Zeng L, Yan S, Luo B (1996) Studies on the chemical constituents of Laurencia karlae collected from the South China Sea. Chem J Chin Univ 17:249Google Scholar
  809. 809.
    Su JY, Xu XH, Zeng LM, Wang CJ (1997) A new iodolactone from Laurencia majuscula. Chem J Chin Univ 18:1333Google Scholar
  810. 810.
    Kavita K, Singh VK, Jha B (2014) 24-Branched Δ5 sterols from Laurencia papillosa red seaweed with antibacterial activity against human pathogenic bacteria. Microbiol Res 169:301CrossRefGoogle Scholar
  811. 811.
    Al-Iihaibi SS, Ayyad SEN, Al-Wessaby E, Alarif WM (2010) 3β,7β-Dihydroxy-5α-cholestane skeleton from Laurencia papillosa. Biochem Syst Ecol 38:861CrossRefGoogle Scholar
  812. 812.
    Alarif WM, Al-Lihaibi SS, Abdel-Lateff A, Ayyad SEN (2011) New antifungal cholestane and aldehyde derivatives from the red alga Laurencia papillosa. Nat Prod Commun 6:1821Google Scholar
  813. 813.
    Xu XH, Su JY (1997) A new cytotoxic dihydroxysterol from Laurencia majuscula. Chin Chem Lett 8:235Google Scholar
  814. 814.
    Fukuzawa A, Kumagai Y, Masamune T, Furusaki A, Katayama C, Matsumoto T (1981) Acetylpinnasterol and pinnasterol, ecdysone-like metabolites from the marine red alga Laurencia pinnata Yamada. Tetrahedron Lett 22:4085CrossRefGoogle Scholar
  815. 815.
    Fukuzawa A, Miyamoto M, Kumagai Y, Masamune T (1986) Ecdysone-like metabolites, 14α-hydroxypinnasterols from the red alga Laurencia pinnata. Phytochemistry 25:1305CrossRefGoogle Scholar
  816. 816.
    Kobayashi M, Murata O (1992) Marine sterols. 23. 2a-Oxa-2-oxo-5α-hydroxy-3,4-dinorcholestane from the Arabian Sea red alga Laurencia obtusa. Tetrahedron Lett 33:519Google Scholar
  817. 817.
    San-Martín A, Rovirosa J, Muñoz O, Chen MHM, Guneratne RD, Clardy J (1983) The isolation and structure determination of chilenone A, a putative dimer of 2-methyl-3(2H)-furanone from the marine alga Laurencia chilensis. Tetrahedron Lett 24:4063CrossRefGoogle Scholar
  818. 818.
    San-Martín A, Rovirosa J, Xu C, Lu HSM, Clardy J (1987) Further structural studies on the 2-methyl-3(2H)-furanone derived metabolites of the marine alga Laurencia chilensis. Tetrahedron Lett 28:6013CrossRefGoogle Scholar
  819. 819.
    Bittner M, González F, Valdebenito H, Silva M, Paul VJ, Fenical W, Chen MHM, Clardy J (1987) A novel tetracyclic polyketal from the marine red alga Laurencia chilensis. Tetrahedron Lett 28:4031CrossRefGoogle Scholar
  820. 820.
    Uenishi J, Mimura Y, Yonemitsu O (1996) Synthetic studies on cyclic polyketides isolated from red alga. Symp Chem Nat Prod 38:667Google Scholar
  821. 821.
    Wiedenfeld H, Knoch F, Koch M (1985) The crystal structure of spiro-bis-pinnaketal, a new spiro compound from Laurencia pinnatifida Lamouroux. Arch Pharmacol 318:289CrossRefGoogle Scholar
  822. 822.
    Bernart MW, Gerwick WH, Corcoran EE, Lee AY, Clardy J (1992) Laurencione, a heterocycle from the red alga Laurencia spectabilis. Phytochemistry 31:1273CrossRefGoogle Scholar
  823. 823.
    De Kimpe N, Georgieva A, Boeykens M, Lazar L (1995) Synthesis of laurencione, a labile dihydro-3(2H)-furanone derivative from the red alga Laurencia spectabilis. J Org Chem 60:5262CrossRefGoogle Scholar
  824. 824.
    De Kimpe N, Georgieva A, Boeykens M, Kozekov I, Aelterman W (1996) New formal synthesis of laurencione, a labile dihydrofuranone derivative from the red alga Laurencia spectabilis. Synthesis 28:1131CrossRefGoogle Scholar
  825. 825.
    Aelterman W, De Kimpe N, Kalinin V (1997) One-step synthesis of laurencione. J Nat Prod 60:385CrossRefGoogle Scholar
  826. 826.
    Astashko D, Habrus Y, Yurevich S, Tyvorskii V (2013) Formal synthesis of laurencione via MgBr2-catalyzed rearrangement of α,β-epoxy ketones to 1,2-diketones. Chem Heterocycl Compd 49:676CrossRefGoogle Scholar
  827. 827.
    Arroyo P, Valencia E, Valenzuela E, Zarraga M (1995) A new cyclic ether from Laurencia chilensis. Bol Soc Chil Quim 40:221Google Scholar
  828. 828.
    Li YX, Li Y, Qian ZJ, Kim MM, Kim SK (2009) In vitro antioxidant activity of 5-HMF isolated from marine red alga Laurencia undulata in free radical mediated oxidative systems. J Microbiol Biotechnol 19:1319Google Scholar
  829. 829.
    Zeng L, Zhong Y, Su J, Wu H, Ma K (1996) A novel secondary metabolite of Chinese red alga Laurencia karlae. Chin J Chem 14:370Google Scholar
  830. 830.
    Du B, Zhong XY, Liao XJ, Xu WJ, Zhou XL, Xu SH (2010) A new antitumor arabinopyranoside from Laurencia majuscula induces G2/M cell cycle arrest. Phytother Res 24:1447CrossRefGoogle Scholar
  831. 831.
    Li Y, Li Y, Lee S, Qian Z, Kim S (2010) Inhibitors of oxidation and matrix metalloproteinases, floridoside, and d-isofloridoside from marine red alga Laurencia undulata. J Agric Food Chem 58:578CrossRefGoogle Scholar
  832. 832.
    Aplin RT, Durham LJ, Kanazawa Y, Safe S (1967) 2-O-α-d-Galactopyranosylglycerol from Laurencia pinnatifida. J Chem Soc C:1346Google Scholar
  833. 833.
    Siddhanta AK, Mody KH, Ramavat BK, Chauhan VD, Sharma M, Garg HS (1995) Characterization of sulfonoglycolipid from the red alga Laurencia pedicularioides. Bot Mar 38:329CrossRefGoogle Scholar
  834. 834.
    Barma DK, Lu B, Baati R, Mioskowski C, Falck JR (2008) Convenient preparation of (Z)-α-halo-α,β-unsaturated aldehydes: synthesis of a Laurencia flexilis toxin. Tetrahedron Lett 49:4359CrossRefGoogle Scholar
  835. 835.
    Basavaiah D, Suguna Hyma R (1996) Synthetic applications of the Baylis-Hillman reaction: simple synthesis of (2E)-2-butyloct-2-enal and (2E)-2-tridecylheptadec-2-enal. Tetrahedron 52:1253CrossRefGoogle Scholar
  836. 836.
    Cardellina JH II, Moore RE (1978) Sphingosine derivatives from red algae of the Ceramiales. Phytochemistry 17:554CrossRefGoogle Scholar
  837. 837.
    Higgs MD, Mulheirn LJ (1981) Hybridalactone; an unusual fatty acid metabolite from red alga Laurencia hybrida (Rhodophyta; Rhodomelaceae). Tetrahedron 37:4259CrossRefGoogle Scholar
  838. 838.
    Corey EJ, De B, Ponder JW, Berg JM (1984) The stereochemistry and biosynthesis of hybridalactone, an eicosanoid from Laurencia hybrida. Tetrahedron Lett 25:1015CrossRefGoogle Scholar
  839. 839.
    Corey EJ, De B (1984) Total synthesis and stereochemistry of hybridalactone. J Am Chem Soc 106:2735CrossRefGoogle Scholar
  840. 840.
    Ota K, Sugata N, Ohshiro Y, Kawashima E, Miyaoka H (2012) Total synthesis of marine eicosanoid (–)-hybridalactone. Chem Eur J 18:13531CrossRefGoogle Scholar
  841. 841.
    Hickmann V, Kondoh A, Gabor B, Alcarazo M, Fürstner A (2011) Catalysis-based and protecting-group-free total syntheses of the marine oxylipins hybridalactone and the ecklonialactones A, B and C. J Am Chem Soc 133:13471CrossRefGoogle Scholar
  842. 842.
    Maru N, Ohno O, Koyama T, Yamada K, Uemura D (2010) Papillamide, a novel fatty acid amide from the red alga Laurencia papillosa. Chem Lett 39:366CrossRefGoogle Scholar
  843. 843.
    Higgs MD (1981) Antimicrobial components of the red alga Laurencia hybrida (Rhodophyta; Rhodomelaceae). Tetrahedron 37:4255CrossRefGoogle Scholar
  844. 844.
    Bernart M, Gerwick WH (1988) Isolation of 12-(S)-HEPE from red alga Murrayella periclados and revision of structure of an acyclic icosanoid from Laurencia hybrida. Implications to the biosynthesis of the marine prostanoid hybridolactone. Tetrahedron Lett 29:2015Google Scholar
  845. 845.
    Feng MT, Yu XQ, Yang P, Yang H, Lin K, Mao SC (2015) Two new antifungal polyunsaturated fatty acid ethyl esters from the red alga Laurencia okamurai. Chem Nat Comp 51:418CrossRefGoogle Scholar
  846. 846.
    Khotimchenko SV, Gusarova IS (2004) Red algae of Peter the Great Bay as a source of arachidonic and eicosapentaenoic acids. Russ J Mar Biol 30:183CrossRefGoogle Scholar
  847. 847.
    Vlietinck AJ, Apers S (2001) Biological screening methods in the search for pharmacologically active natural products. In: Tringali C (ed) Bioactive compounds from natural sources. Taylor & Francis, London, p 1Google Scholar
  848. 848.
    Kittakoop P (2015) Anticancer drugs and potential anticancer leads inspired by natural products. In: Atta-ur-Rahman (ed) Studies in natural products chemistry, vol 44. Elsevier, Amserdam, p 251Google Scholar
  849. 849.
    Cragg GM, Grothaus PG, Newman DJ (2009) Impact of natural products on developing new anti-cancer agents. Chem Rev 109:3012CrossRefGoogle Scholar
  850. 850.
    Bagya SK, Rajashree PV, Sam KG (2011) Preliminary anticancer screening and standardization of some indigenous medicinal plants using cell-biology and molecular biotechnology based models. Res J Med Plant 5:728CrossRefGoogle Scholar
  851. 851.
    Fedorov SN, Shubina LK, Bode AM, Stonik VA, Dong Z (2007) Dactylone inhibits epidermal growth factor-induced transformation and phenotype expression of human cancer cells and induced G1-S arrest and apoptosis. Cancer Res 67:5914CrossRefGoogle Scholar
  852. 852.
    San-Martin BA, Rovirosa RJ, Darias JJ, Astudillo SYL (1996) Semisintesis y actividad biologicade derivados del sesquiterpeno pacifenol. Bol Soc Chil Quim 41:403Google Scholar
  853. 853.
    Liu J, Ma L, Wu N, Liu G, Zheng L, Lin X (2014) Aplysin sensitizes cancer cells to TRAIL by suppressing P38 MAPK/surviving pathway. Mar Drugs 12:5072CrossRefGoogle Scholar
  854. 854.
    Kim MM, Mendis E, Kim SK (2008) Laurencia okamurai extract containing laurinterol induces apoptosis in melanoma cells. J Med Food 11:260CrossRefGoogle Scholar
  855. 855.
    König GM, Wright AD, Franzblau SG (2000) Assessment of antimycobacterial activity of a series of mainly marine derived natural products. Planta Med 66:337CrossRefGoogle Scholar
  856. 856.
    Lang KL, Silva IT, Zimmermann LA, Lhullier C, Mañalich Arana MV, Palermo JA, Falkenberg M, Simões CMO, Schenkel EP, Durán FJ (2012) Cytotoxic activity of semi-synthetic derivatives of elatol and isoobtusol. Mar Drugs 10:2254CrossRefGoogle Scholar
  857. 857.
    Campos A, Souza CB, Lhullier C, Falkenberg M, Schenkel EP, Ribeiro-do-Valle RM, Siqueira JM (2012) Anti-tumour effects of elatol, a marine derivative compound obtained from red algae Laurencia microcladia. J Pharm Pharmacol 64:1146CrossRefGoogle Scholar
  858. 858.
    Su JH, Dai CF, Huang HH, Wu YC, Sung PJ, Hsu CH, Sheu JH (2007) Terpenoid-related metabolites from a Formosan soft coral Nephthea chabrolii. Chem Pharm Bull 55:594CrossRefGoogle Scholar
  859. 859.
    Huang XC, Sun YL, Salim AA, Chen ZS, Capon RJ (2013) Parguerenes: marine red alga bromoditerpenes as inhibitors of P-glycoprotein (ABCB1) in multidrug resistant human cancer cells. Biochem Pharmacol 85:1257CrossRefGoogle Scholar
  860. 860.
    Awad NE (2004) Bioactive brominated diterpenes from the marine red alga Jania rubens (L.) Lamx. Phytother Res 18:275Google Scholar
  861. 861.
    Kumar SC, Gadewal N, Mohammed SMM (2013) Identification of leads from marine seaweeds against human β-tubulin. Lett Drug Design Discov 10:67CrossRefGoogle Scholar
  862. 862.
    Athinaios N, Kazantzis A, Putzker K, Lewis J, Pitsinos EN (2009) Synthesis of novel laurenditerpenol analogues and their evaluation as HIF-1 activation inhibitors. Lett Org Chem 6:269CrossRefGoogle Scholar
  863. 863.
    Matsuzawa S, Suzuki T, Suzuki M, Matsuda A, Kawamura T, Mizuno Y, Kikuchi K (1994) Thyrsiferyl 23-acetate is a novel specific inhibitor of protein phosphatase PP2A. FEBS Lett 356:272CrossRefGoogle Scholar
  864. 864.
    Matsuzawa S, Kawamura T, Mitsuhashi S, Suzuki T, Matsuo Y, Suzuki M, Mizuno Y, Kikuchi K (1999) Thyrsiferyl 23-acetate and its derivatives induce apoptosis in various T- and B-leukemia cells. Bioorg Med Chem 7:381CrossRefGoogle Scholar
  865. 865.
    Morita H, Kishi E, Takeya K, Itokawa H, Iitaka Y (1993) Squalene derivatives from Eurycoma longifolia. Phytochemistry 34:765CrossRefGoogle Scholar
  866. 866.
    Pec MK, Moser-Thier K, Fernández JJ, Souto ML, Kubista E (1999) Growth inhibition by dehydrothyrsiferol — a non-Pgp modulator, derived from a marine red alga — in human breast cancer cell lines. Int J Oncol 14:739Google Scholar
  867. 867.
    Pec MK, Hellan M, Moser-Thier K, Fernández JJ, Souto ML, Kubista E (1998) Inhibitory effects of a novel marine terpenoid on sensitive and multidrug resistant KB cell lines. Anticancer Res 18:3027Google Scholar
  868. 868.
    Pec MK, Aguirre A, Fernández JJ, Souto ML, Dorta JF, Villar J (2002) Dehydrothyrsiferol does not modulate multidrug resistance-associated protein 1 resistance: a functional screening system for MRP1 substrates. Int J Mol Med 10:605Google Scholar
  869. 869.
    Pec MK, Aguirre A, Moser-Thier K, Fernández JJ, Souto ML, Dorta J, Diáz-González F, Villar J (2003) Induction of apoptosis in estrogen dependent and independent breast cancer cells by the marine terpenoid dehydrothyrsiferol. Biochem Pharmacol 65:1451CrossRefGoogle Scholar
  870. 870.
    Pec MK, Artwohl M, Fernández JJ, Souto ML, Alvarez de la Rosa D, Giraldez T, Valenzuela-Fernández A, Díaz-González F (2007) Chemical modulation of VLA integrin affinity in human breast cancer cells. Exp Cell Res 313:1121CrossRefGoogle Scholar
  871. 871.
    Souto ML, Manríquez CP, Norte M, Leira F, Fernández JJ (2003) The inhibitory effects of squalene-derived triterpenes on protein phosphatse PP2A. Bioorg Med Chem 13:1261CrossRefGoogle Scholar
  872. 872.
    Nishiguchi GA, Graham J, Bouraoui A, Jacobs RS, Little RD (2006) 7,11-epi-Thyrsiferol: completion of its synthesis, evaluation of its antimitotic properties, and the further development of an SAR model. J Org Chem 71:5936CrossRefGoogle Scholar
  873. 873.
    Vera B, Rodríguez AD, La Clair JL (2011) Aplysqualenol A binds to the light chain of dynein type 1 (DYNLL1). Angew Chem Int Ed 50:8134CrossRefGoogle Scholar
  874. 874.
    Brogi S, Kladi M, Vagias C, Papazafiri P, Roussis V, Tafi A (2009) Pharmacophore modeling for qualitative prediction of antiestrogenic activity. J Chem Inf Model 49:2489CrossRefGoogle Scholar
  875. 875.
    The Lancet. Editorial (2009) Urgently needed: new antibiotics. Lancet 374:1868Google Scholar
  876. 876.
    Vairappan CS (2003) Potent antibacterial activity of halogenated metabolites from Malaysian red algae Laurencia majuscula (Rhodomelaceae, Ceramiales). Biomol Eng 20:255CrossRefGoogle Scholar
  877. 877.
    Vairappan CS, Kawamoto T, Miwa H, Suzuki M (2004) Potent antibacterial activity of halogenated compounds against antibiotic-resistant bacteria. Planta Med 70:1087CrossRefGoogle Scholar
  878. 878.
    Sims JJ, Donnell MS, Leary JV, Lacy GH (1975) Antimicrobial agents from marine algae. Antimicrob Agents Chemother 7:320CrossRefGoogle Scholar
  879. 879.
    Kayser O, Kiderlen AF, Croft SL (2003) Natural products as antiparasitic drugs. Parasitol Res 90:S55CrossRefGoogle Scholar
  880. 880.
    Veiga-Santos P, Pelizzaro-Rocha KJ, Santos AO, Ueda-Nakamura T, Dias Filho BP, Silva SO, Sudatti DB, Bianco EM, Perreira RC, Nakamura CV (2010) In vitro anti-trypanosomal activity of elatol isolated from red seaweed Laurencia dendroidea. Parasitology 137:1661CrossRefGoogle Scholar
  881. 881.
    Desoti VC, Lazarin-Bidóia D, Sudatti DB, Pereira RC, Alonso A, Ueda-Nakamura T, Filho BPD, Nakamura CV, Silva SDO (2012) Trypanosomal action of (–)-elatol involves an oxidative stress triggered by mitochondria dysfunction. Mar Drugs 10:1631CrossRefGoogle Scholar
  882. 882.
    Desoti VC, Lazarin-Bidóia D, Sudatti DB, Pereira RC, Ueda-Nakamura T, Nakamura CV, Silva SDO (2014) Additional evidence of the trypanocidal action of (–)-elatol on amastigote forms through the involvement of reactive oxygen species. Mar Drugs 12:4973CrossRefGoogle Scholar
  883. 883.
    Bianco EM, Pires L, Santos GKN, Dutra KA, Reis TNV, Vasconcelos ERTPP, Cocentino ALM, Navarro DMAF (2013) Larvicidal activity of seaweeds from northeastern Brazil and of a halogenated sesquiterpene against the dengue mosquito (Aedes aegypti). Ind Crops Prod 43:270CrossRefGoogle Scholar
  884. 884.
    Orhan I, Şener B, Kaiser M, Brun R, Tasdemir D (2010) Inhibitory activity of marine sponge-derived natural products against parasitic protozoa. Mar Drugs 8:47CrossRefGoogle Scholar
  885. 885.
    Gautam R, Jachak SM (2009) Recent developments in anti-inflammatory natural products. Med Res Rev 29:767CrossRefGoogle Scholar
  886. 886.
    Naik SR, Sheth UK (1976) Inflammatory process and screening methods for anti-inflammatory agents — a review. J Postgrad Med 22:5Google Scholar
  887. 887.
    Wijesinghe WAJP, Kim E-A, Kang MC, Lee WW, Lee HS, Vairappan CS, Jeon YJ (2014) Assessment of anti-inflammatory effect of 5β-hydroxypalisadin B isolated from red seaweed Laurencia snackeyi in zebrafish embryo in vivo model. Environ Toxicol Pharmacol 37:110CrossRefGoogle Scholar
  888. 888.
    Mayer AMS, Paul VJ, Fenical W, Norris JN, de Carvalho MS, Jacobs RS (1993) Phospholipase A2 inhibitors from marine algae. Hydrobiologia 260:521CrossRefGoogle Scholar
  889. 889.
    Gil B, Ferrándiz ML, Sanz MJ, Terencio MC, Ubeda A, Rovirosa J, San-Martin A, Alcaraz MJ, Payá M (1995) Inhibition of inflammatory responses by epitaondiol and other marine natural products. Life Sci 57:25CrossRefGoogle Scholar
  890. 890.
    Chatter R, Othman RB, Rabhi S, Kladi M, Tarhouni S, Vagias C, Roussis V, Lamia Guizane-Tabbane L, Kharrat R (2011) In vivo and in vitro anti-inflammatory activity of neorogioltriol, a new diterpene extracted from the red algae Laurencia glandulifera. Mar Drugs 9:1293CrossRefGoogle Scholar
  891. 891.
    Kim M, Li YX, Dewapriya P, Ryu B, Kim SK (2013) Floridoside suppresses pro-inflammatory responses by blocking MAPK signaling in activated microglia. BMB Rep 46:398CrossRefGoogle Scholar
  892. 892.
    Farrokhnia M, Nabipour I (2014) Marine natural products as acetylcholinesterase inhibitor: comparative quantum mechanics and molecular docking study. Curr Comput Aid Drug Des 10:83CrossRefGoogle Scholar
  893. 893.
    Ge N, Liang H, Liu Y, Ma AG, Han L (2013) Protective effect of aplysin on hepatic injury in ethanol-treated rats. Food Chem Toxicol 62:361CrossRefGoogle Scholar
  894. 894.
    Kaul PN, Kulkarni SK, Kurosawa E (1978) Novel substances of marine origin as drug metabolism inhibitors. J Pharm Pharmacol 30:589CrossRefGoogle Scholar
  895. 895.
    Kaul PN, Kulkarni SK (1978) New drug metabolism inhibitor of marine origin. J Pharm Sci 67:1293CrossRefGoogle Scholar
  896. 896.
    Kaul PN (1982) Biomedical potential of the sea. Pure Appl Chem 54:1963CrossRefGoogle Scholar
  897. 897.
    Farrokhnia M, Nabipour I, Bargahi A (2012) A theoretical study of dactylyne stereoisomers: a marine natural product from Aplysia dactylomela. J Theor Comput Chem 11:833CrossRefGoogle Scholar
  898. 898.
    Hay ME, Fenical W, Gustafson K (1987) Chemical defense against diverse coral-reef herbivores. Ecology 68:1581CrossRefGoogle Scholar
  899. 899.
    Pereira RC, Da Gama BAP, Teixeira VL, Yoneshigue-Valentin Y (2003) Ecological roles of natural products of the Brazilian red seaweed Laurencia obtusa. Braz J Biol 63:665CrossRefGoogle Scholar
  900. 900.
    Izac RR, Poet SE, Fenical W, Van Engen D, Clardy J (1982) The structure of pacifigorgiol, an ichthyotoxic sesquiterpenoid from the Pacific gorgonian coral Pacifigorgia cf. adamsii. Tetrahedron Lett 23:3743CrossRefGoogle Scholar
  901. 901.
    Meyer BN, Ferrigni NR, Putmann JE, Jacobson LB, Nicols DE, McLaughlin JL (1982) Brine shrimp: a convenient bioassay for active plant constituents. Planta Med 45:31CrossRefGoogle Scholar
  902. 902.
    Burgess JG, Boyd KG, Armstrong E, Jiang Z, Yan L, Berggren M, May U, Pisacane T, Granmo A, Adams DR (2003) The development of a marine natural product-based antifouling paint. Biofouling 19:197CrossRefGoogle Scholar
  903. 903.
    Dobretsov S, Abed RMM, Teplitski M (2013) Inhibition of biofouling by marine microorganisms. Biofouling 29:423CrossRefGoogle Scholar
  904. 904.
    De Nys R, Leya T, Maximilien R, Afsar A, Nair PSR, Steinberg PD (1996) The need for standardized broad scale bioassay testing: a case study using the red alga Laurencia obtusa. Biofouling 10:213CrossRefGoogle Scholar
  905. 905.
    Novaczek I (2001) A guide to the common edible and medicinal sea plants of the Pacific Islands. The University of the South Pacific/Secretariat of the Pacific Community, SuvaGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Pharmacognosy and Chemistry of Natural Products, Faculty of PharmacyNational and Kapodistrian University of AthensAthensGreece

Personalised recommendations