Skip to main content

Nanoionic RRAMs

  • Chapter
  • First Online:
Emerging Resistive Switching Memories

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

  • 636 Accesses

Abstract

Ions can be produced through an electrochemical process. They can migrate under an electric field. The ion migration can change the doping and thus the resistance of some semiconductors. In addition, metal ions can be electrochemically reduced and form conductive filaments. The formation or rupture of conductive filaments can lead to the set and reset of devices. The study on nanoionic RRAMs dates back to 1976. Hirose and Hirose observed bipolar resistive switching behavior on a device, Ag/Ag–As2S3/Mo [1]. Late, it was reported that anion migration in semiconductors could also significantly change the resistance of the semiconductors [2, 3]. The nanoionic RRAMs can be classified into anion migration and cation migration devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hirose Y, Hirose H (1976) Polarity‐dependent memory switching and behavior of Ag dendrite in Ag‐photodoped amorphous As2S3 films. J Appl Phys 47:2767

    Article  Google Scholar 

  2. Pan F, Gao S, Chen C, Song C, Zeng F (2014) Recent progress in resistive random access memories: materials, switching mechanisms, and performance. Mater Sci Eng R 83:1

    Article  Google Scholar 

  3. Waser R, Dittmann R, Staikov G, Szot K (2009) Redox-based resistive switching memories—nanoionic mechanisms, prospects, and challenges. Adv Mater 21:2632

    Article  Google Scholar 

  4. Lin YS, Zeng F, Tang SG, Liu HY, Chen C, Gao S, Wang YG, Pan F (2013) Resistive switching mechanisms relating to oxygen vacancies migration in both interfaces in Ti/HfOx/Pt memory devices. J Appl Phys 113:064510

    Article  Google Scholar 

  5. Hu SG, Liu Y, Chen TP, Liu Z, Yu Q, Deng LJ, Yin Y, Hosaka S (2013) Emulating the Ebbinghaus forgetting curve of the human brain with a NiO-based memristor. Appl Phys Lett 103:133701

    Article  Google Scholar 

  6. Cao X, Li X, Gao X, Yu W, Liu X, Zhang Y, Chen L, Cheng X (2009) Forming-free colossal resistive switching effect in rare-earth-oxide Gd2O3 films for memristor applications. J Appl Phys 106:073723

    Article  Google Scholar 

  7. Yang JJ, Pickett MD, Li X, Ohlberg DA, Stewart DR, Williams RS (2008) Memristive switching mechanism for metal/oxide/metal nanodevices. Nat Nanotechnol 3:429

    Article  Google Scholar 

  8. Torrezan AC, Strachan JP, Medeiros-Ribero G, Williams RS (2011) Sub-nanosecond switching of a tantalum oxide memristor. Nanotechnology 22:485203

    Article  Google Scholar 

  9. Szot K, Rogala M, Speier W, Klusek Z, Besmehn A, Waser R (2011) TiO2—a prototypical memristive material. Nanotechnology 22:254001

    Article  Google Scholar 

  10. Kim HD, Yun MJ, Hong SM, Kim TG (2014) Size-dependent resistive switching properties of the active region in nickel nitride-based crossbar array resistive random access memory. J Nanosci Nanotechnol 14:9088

    Article  Google Scholar 

  11. Kim HD, Yun MJ, Hong SM, Kim TG (2014) Effect of nanopyramid bottom electrodes on bipolar resistive switching phenomena in nickel nitride films-based crossbar arrays. Nanotechnology 25:125201

    Article  Google Scholar 

  12. Wong HSP, Lee HY, Yu S, Chen YS, Wu Y, Chen PS, Lee B, Chen FT, Tsai MJ (2012) Metal–oxide RRAM. Proc IEEE 100:1951

    Article  Google Scholar 

  13. Yang JJ, Inoue IH, Mikolajick T, Hwang CS (2012) Metal oxide memories based on thermochemical and valence change mechanisms. MRS Bull 37:131

    Article  Google Scholar 

  14. Kinoshtia K, Okutani T, Tanaka H, Hinoki T, Yazawa K, Ohmi K, Kishida S (2010) Opposite bias polarity dependence of resistive switching in n-type Ga-doped-ZnO and p-type NiO thin films. Appl Phys Lett 96:143505

    Article  Google Scholar 

  15. Oka K, Yanagida T, Nagashima K, Kawai T, Kim JS, Park BH (2010) Resistive-switching memory effects of NiO nanowire/metal junctions. J Am Chem Soc 132:6634

    Article  Google Scholar 

  16. Hu SG, Liu Y, Liu Z, Chen TP, Yu Q, Deng LJ, Yin Y, Hosaka S (2014) Synaptic long-term potentiation realized in Pavlov’s Dog model based on a NiOx-based memristor. J Appl Phys 116:214502

    Google Scholar 

  17. Yaganida T, Nagashima K, Oka K, Kanai M, Klamchuen A, Park BH, Kawai T (2013) Scaling effect on unipolar and bipolar resistive switching of metal oxides. Sci Rep 3:1657

    Google Scholar 

  18. Yang JJ, Miao F, Pickett MD, Ohlberg DAA, Stewart DR, Lau CN, Williams RS (2009) The mechanism of electroforming of metal oxide memristive switches. Nanotechnology 20:215201

    Article  Google Scholar 

  19. Kim KM, Jeong DS, Hwang CS (2011) Nanofilamentary resistive switching in binary oxide system; a review on the present status and outlook. Nanotechnology 22:254002

    Article  Google Scholar 

  20. Kim KM, Hwang CS (2009) The conical shape filament growth model in unipolar resistance switching of TiO2 thin film. Appl Phys Lett 94:122109

    Article  Google Scholar 

  21. Christian JD, Gilbreath WP (1975) Defect structure of NiO and rates and mechanisms of formation from atomic oxygen and nickel. Oxid Met 9:1

    Article  Google Scholar 

  22. Park S, Ahn HS, Lee CK, Kim H, Jin J, Lee HS, Seo S, Yu J, Han S (2008) Interaction and ordering of vacancy defects in NiO. Phys Rev B 77:134103

    Article  Google Scholar 

  23. Jung K, Seo H, Kim Y, Im H, Hong J, Park JW, Lee JK (2007) Temperature dependence of high- and Low-resistance bistable states in polycrystalline NiO films. Appl Phys Lett 90:052104

    Article  Google Scholar 

  24. Lee MJ, Han S, Jeon SH, Park BH, Kang BS, Ahn SE, Kim KH, Lee CB, Kim CJ, Yoo IK, Seo DH, Li XS, Park JB, Lee JH, Park Y (2009) Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory. Nano Lett 9:1476

    Article  Google Scholar 

  25. Yoo IK, Kang BS, Ahn SE, Lee CB, Lee MJ, Park GS, Li XS (2010) Fractal dimension of conducting paths in nickel oxide (NiO) thin films during resistance switching. IEEE Trans Nanotechnol 9:131

    Article  Google Scholar 

  26. Park GS, Li XS, Kim DC, Jung RJ, Lee MJ, Seo S (2007) Observation of electric-field induced Ni filament channels in polycrystalline NiOx film. Appl Phys Lett 91:222103

    Article  Google Scholar 

  27. Tappertzhofen S, Valov I, Tsuruoka T, Hasegawa T, Waser R, Aono M (2013) Generic relevance of counter charges for cation-based nanoscale resistive switching memories. ACS Nano 7:6396

    Article  Google Scholar 

  28. Valov I, Waser R, Jameson JR, Kozicki MN (2011) Electrochemical metallization memories—fundamentals, applications, prospects. Nanotechnology 22:254003

    Article  Google Scholar 

  29. Lee W, Park J, Son M, Lee J, Jung S, Kim S, Park S, Shin J, Hwang H (2011) Excellent state stability of Cu/SiC/Pt programmable metallization cells for nonvolatile memory applications. IEEE Electron Dev Lett 32:680

    Article  Google Scholar 

  30. Lu W, Jeong DS, Kozicki M, Waser R (2012) Electrochemical metallization cells—blending nanoionics into nanoelectronics? MRS Bull 37:124

    Article  Google Scholar 

  31. Yang YC, Zhang XX, Gao M, Zeng F, Zhou WY, Xie SS, Pan F (2011) Nonvolatile resistive switching in single crystalline ZnO nanowires. Nanoscale 3:1917

    Article  Google Scholar 

  32. Zhuge F, Li K, Fu B, Zhang H, Li J, Chen H, Liang L, Gao J, Cao H, Liu Z, Luo H (2015) Mechanism for resistive switching in chalcogenide-based electrochemical metallization memory cells. AIP Adv 5:057125

    Article  Google Scholar 

  33. Kozicki MN, Park M, Mitkova M (2005) IEEE Trans Nanotechnol 4:331

    Article  Google Scholar 

  34. Ozaki S, Kato T, Kawae T, Morimoto A (2014) Nanoscale memory elements based on solid-state electrolytes. J Vac Sci Technol 32:031213

    Article  Google Scholar 

  35. Nedic S, Chun YT, Hong WK, Chu D, Welland M (2014) High performance non-volatile ferroelectric copolymer memory based on a ZnO nanowire transistor fabricated on a transparent substrate. Appl Phys Lett 104:033101

    Article  Google Scholar 

  36. Tappertzhofen S, Valov I, Waser R (2012) Quantum conductance and switching kinetics of AgI-based microcrossbar cells. Nanotechnology 23:145703

    Article  Google Scholar 

  37. Ebrahim R, Kumar RM, Badi N, Wu N, Ignatiev A (2015) Filamentary bipolar electric pulse induced resistance switching in amorphous silicon resistive random access memory. J Vac Sci Technol 33:032205

    Article  Google Scholar 

  38. Zhuge F, Dai W, He CL, Wang AY, Liu YW, Li M, Wu YH, Cui P, Li RW (2010) Nonvolatile resistive switching memory based on amorphous carbon. Appl Phys Lett 96:163505

    Article  Google Scholar 

  39. Ssenyange S, Yan H, McCreery RL (2006) Redox-driven conductance switching via filament formation and dissolution in carbon/molecule/TiO2/Ag molecular electronic junctions. Langmuir 22:10689

    Article  Google Scholar 

  40. Joo WJ, Choi TL, Lee KH, Chung Y (2007) Study on threshold behavior of operation voltage in metal filament-based polymer memory. J Phys Chem B 111:7756

    Article  Google Scholar 

  41. Zou S, Xu P, Hamilton MC (2013) Resistive switching characteristics in printed Cu/CuO/(AgO)/Ag memristors. Electron Lett 49:829

    Google Scholar 

  42. Duraisamy N, Muhammad NM, Kim HC, Jo JD, Dhoi KH (2012) Fabrication of TiO2 thin film memristor device using electrohydrodynamic inkjet printing. Thin Solid Films 520:5070

    Article  Google Scholar 

  43. Ghoneim MT, Zidan MA, Ssalama KN, Hussain MM (2014) Towards neuromorphic electronics: memristors on foldable silicon fabric. Microelectron J 45:1392

    Article  Google Scholar 

  44. Macaluso R, Mosca M, Costanza V, D’Angelo A, Lullo G, Caruso F, Cali C, F Di Franco Santamaria M, Di Quarto F (2014) Resistive switching behaviour in ZnO and VO2 memristors grown by pulsed laser deposition. Electron Lett 50:262

    Google Scholar 

  45. Zeng F, Li S, Yang J, Pan F, Guo D (2014) Learning processes modulated by the interface effects in a Ti/conducting polymer/Ti resistive switching cell. RSC Adv 4:14822

    Article  Google Scholar 

  46. Huang JS, Yen WC, Lin SM, Lee CY, Wu J, Wang ZM, Chin TS, Chueh YL (2014) Amorphous zinc-doped silicon oxide (SZO) resistive switching memory: manipulated bias control from selector to memristor. J Mater Chem C 2:4401

    Article  Google Scholar 

  47. Wu S, Ren L, Yu F, Yang K, Yang M, Wang Y, Meng M, Zhou W, Li S (2014) Colossal resistance switching in Pt/BiFeO3/Nb:SrTiO3 memristor. Appl Phys A 116:1741

    Article  Google Scholar 

  48. Peng CN, Wang CW, Chan TC, Chang WY, Wang YC, Tsai HW, Wu WW, Chen LJ, Chueh YL (2012) Resistive switching of Au/ZnO/Au resistive memory: an in situ observation of conductive bridge formation. Nanoscale Res Lett 7:559

    Article  Google Scholar 

  49. Kozicki MN, Mitkova M (2006) Mass transport in chalcogenide electrolyte films—materials and applications. J Non-Cryst Solids 352:567

    Article  Google Scholar 

  50. Xiao B, Watanabe S (2015) Interface structure in Cu/Ta2O5/Pt resistance switch: a first-principles study. ACS Appl Mater Interfaces 7:519

    Article  Google Scholar 

  51. Pan F, Yin S, Subramanian V (2011) A detailed study of the forming stage of an electrochemical resistive switching memory by KMC simulation. IEEE Electron Dev Lett 32:949

    Article  Google Scholar 

  52. Xu Z, Bando Y, Wang W, Bai X, Golberg D (2010) Real-time in situ HRTEM-resolved resistance switching of Ag2S nanoscale ionic conductor. ACS Nano 4:2515

    Article  Google Scholar 

  53. Choi SJ, Park GS, Kim KH, Cho S, Yang WY, Li XS, Moon JH, Lee KJ, Kim K (2011) In situ observation of voltage-induced multilevel resistive switching in solid electrolyte memory. Adv Mater 23:3272

    Article  Google Scholar 

  54. Fujii T, Arita M, Takahashi Y, Fujiwara I (2011) In situ transmission electron microscopy analysis of conductive filament during solid electrolyte resistance switching. Appl Phys Lett 98:212104

    Article  Google Scholar 

  55. Schindler C, Meier M, Waser R, Kozicki MN (2007) Resistive switching in Ag-Ge-Se with extremely low write currents. Non-Volatile Memory Technol Symp 82

    Google Scholar 

  56. Peng S, Zhuge F, Chen X, Zhu X, Hu B, Pan L, Chen B, Li RW (2012) Mechanism for resistive switching in an oxide-based electrochemical metallization memory. Appl Phys Lett 100:072101

    Article  Google Scholar 

  57. Sun J, Liu Q, Xie H, Wu X, Xu F, Xu T, Long S, Lv H, Li Y, Sun L, Liu M (2013) In situ observation of nickel as an oxidizable electrode material for the solid-electrolyte-based resistive random access memory. Appl Phys Lett 102:053502

    Article  Google Scholar 

  58. Liu Q, Sun J, Lv H, Long S, Yin K, Wan N, Li Y, Sun L, Liu M (2012) Real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM. Adv Mater 24:1844

    Article  Google Scholar 

  59. Yang YC, Gao P, Gaba S, Chang T, Pan XQ, Lu W (2012) Observation of conducting filament growth in nanoscale resistive memories. Nat Commun 3:732

    Article  Google Scholar 

  60. Gao S, Song C, Chen C, Zeng F, Pan F (2013) Reply to “comment on ‘dynamic processes of resistive switching in metallic filament-based organic memory devices’”. J Phys Chem C 117:11881

    Article  Google Scholar 

  61. Gao S, Song C, Chen C, Zeng F, Pan F (2012) Dynamic processes of resistive switching in metallic filament-based organic memory devices. J Phys Chem C 116:17955

    Article  Google Scholar 

  62. Andrejs L, Oßmer H, Friedbacher G, Bernardi J, Limbeck A, Fleig J (2013) Conductive AFM and chemical analysis of highly conductive paths in DC degraded PZT with Ag/Pd electrodes. Solid State Ion 244:5

    Article  Google Scholar 

  63. Gao S, Song C, Chen C, Zeng F, Pan F (2013) Formation process of conducting filament in planar organic resistive memory. Appl Phys Lett 102:141606

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Ouyang, J. (2016). Nanoionic RRAMs. In: Emerging Resistive Switching Memories. SpringerBriefs in Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-31572-0_5

Download citation

Publish with us

Policies and ethics