Skip to main content

Redox Regulation and Misfolding of SOD1: Therapeutic Strategies for Amyotrophic Lateral Sclerosis

  • Chapter
  • First Online:
Redox-Active Therapeutics

Abstract

Amyotrophic lateral sclerosis (ALS) is the most common neurodegenerative disease that affects upper and lower motor neurons leading to paralysis and death within 2–5 years after disease onset. The only FDA-approved drug currently used for ALS treatment is Riluzole, which improves survival by 2–3 months. The need for understanding the pathology of ALS and development of therapeutics is therefore still strong. A subset of familial ALS patients has mutations in Cu, Zn-superoxide dismutase (SOD1) that results in a toxic gain-of-function. In this review, the main hypotheses of SOD1 toxic gain-of-function properties are explained and evidence for the role of SOD1 in sporadic ALS is discussed. Of the wide variety of therapeutic strategies currently being developed, we have reviewed therapeutic strategies that focus on the role of SOD1 in the pathology of ALS. These include modification of cysteine 111, restoring SOD1 metal content and decreasing oxidative stress and immunization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALS:

Amyotrophic lateral sclerosis

CSF:

Cerebrospinal fluid

FALS:

Familial ALS

HD:

Huntington’s disease

SALS:

Sporadic ALS

SOD1:

Cu, Zn-superoxide dismutase

TG2:

Transglutaminase 2

WT:

Wild type

References

  1. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993;362(6415):59–62.

    Article  CAS  PubMed  Google Scholar 

  2. Forman HJ, Fridovich I. On the stability of bovine superoxide dismutase. The effects of metals. J Biol Chem. 1973;248(8):2645–9.

    CAS  PubMed  Google Scholar 

  3. Tainer JA, Getzoff ED, Beem KM, Richardson JS, Richardson DC. Determination and analysis of the 2 A-structure of copper, zinc superoxide dismutase. J Mol Biol. 1982;160(2):181–217.

    Article  CAS  PubMed  Google Scholar 

  4. Raha S, Robinson BH. Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem Sci. 2000;25(10):502–8.

    Article  CAS  PubMed  Google Scholar 

  5. Lippard SJ, Berg JM. Principles of bioinorganic chemistry. Mill Valley.: University Science Books; 1994. xvii, 411 p. p.

    Google Scholar 

  6. Pardo CA, Xu Z, Borchelt DR, Price DL, Sisodia SS, Cleveland DW. Superoxide dismutase is an abundant component in cell bodies, dendrites, and axons of motor neurons and in a subset of other neurons. Proc Natl Acad Sci U S A. 1995;92(4):954–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Okado-Matsumoto A, Fridovich I. Subcellular distribution of superoxide dismutases (SOD) in rat liver: Cu,Zn-SOD in mitochondria. J Biol Chem. 2001;276(42):38388–93.

    Article  CAS  PubMed  Google Scholar 

  8. Ido A, Fukuyama H, Urushitani M. Protein misdirection inside and outside motor neurons in Amyotrophic Lateral Sclerosis (ALS): a possible clue for therapeutic strategies. Int J Mol Sci. 2011;12(10):6980–7003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Urushitani M, Ezzi SA, Matsuo A, Tooyama I, Julien JP. The endoplasmic reticulum-Golgi pathway is a target for translocation and aggregation of mutant superoxide dismutase linked to ALS. FASEB J. 2008;22(7):2476–87.

    Article  CAS  PubMed  Google Scholar 

  10. Urushitani M, Sik A, Sakurai T, Nukina N, Takahashi R, Julien JP. Chromogranin-mediated secretion of mutant superoxide dismutase proteins linked to amyotrophic lateral sclerosis. Nat Neurosci. 2006;9(1):108–18.

    Article  CAS  PubMed  Google Scholar 

  11. Cleveland DW. From Charcot to SOD1: mechanisms of selective motor neuron death in ALS. Neuron. 1999;24(3):515–20.

    Article  CAS  PubMed  Google Scholar 

  12. Reaume AG, Elliott JL, Hoffman EK, Kowall NW, Ferrante RJ, Siwek DF, et al. Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat Genet. 1996;13(1):43–7.

    Article  CAS  PubMed  Google Scholar 

  13. Sies H, Jones D. Oxidative stress. In: Fink G, editor. Encyclopedia of stress. Amsterdam: Elsevier; 2007. p. 45–8.

    Chapter  Google Scholar 

  14. Shaw PJ, Ince PG, Falkous G, Mantle D. Oxidative damage to protein in sporadic motor neuron disease spinal cord. Ann Neurol. 1995;38(4):691–5.

    Article  CAS  PubMed  Google Scholar 

  15. Ferrante RJ, Browne SE, Shinobu LA, Bowling AC, Baik MJ, MacGarvey U, et al. Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J Neurochem. 1997;69(5):2064–74.

    Article  CAS  PubMed  Google Scholar 

  16. D’Amico E, Factor-Litvak P, Santella RM, Mitsumoto H. Clinical perspective on oxidative stress in sporadic amyotrophic lateral sclerosis. Free Radic Biol Med. 2013;65:509–27.

    Article  PubMed  CAS  Google Scholar 

  17. Abe K, Pan LH, Watanabe M, Konno H, Kato T, Itoyama Y. Upregulation of protein-tyrosine nitration in the anterior horn cells of amyotrophic lateral sclerosis. Neurol Res. 1997;19(2):124–8.

    Article  CAS  PubMed  Google Scholar 

  18. Beal MF, Ferrante RJ, Browne SE, Matthews RT, Kowall NW, Brown Jr RH. Increased 3-nitrotyrosine in both sporadic and familial amyotrophic lateral sclerosis. Ann Neurol. 1997;42(4):644–54.

    Article  CAS  PubMed  Google Scholar 

  19. Wiedau-Pazos M, Goto JJ, Rabizadeh S, Gralla EB, Roe JA, Lee MK, et al. Altered reactivity of superoxide dismutase in familial amyotrophic lateral sclerosis. Science. 1996;271(5248):515–8.

    Article  CAS  PubMed  Google Scholar 

  20. Lyons TJ, Liu H, Goto JJ, Nersissian A, Roe JA, Graden JA, et al. Mutations in copper-zinc superoxide dismutase that cause amyotrophic lateral sclerosis alter the zinc binding site and the redox behavior of the protein. Proc Natl Acad Sci U S A. 1996;93(22):12240–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Crow JP, Sampson JB, Zhuang Y, Thompson JA, Beckman JS. Decreased zinc affinity of amyotrophic lateral sclerosis-associated superoxide dismutase mutants leads to enhanced catalysis of tyrosine nitration by peroxynitrite. J Neurochem. 1997;69(5):1936–44.

    Article  CAS  PubMed  Google Scholar 

  22. Sahawneh MA, Ricart KC, Roberts BR, Bomben VC, Basso M, Ye Y, et al. Cu, Zn-superoxide dismutase increases toxicity of mutant and zinc-deficient superoxide dismutase by enhancing protein stability. J Biol Chem. 2010;285(44):33885–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Estevez AG, Crow JP, Sampson JB, Reiter C, Zhuang Y, Richardson GJ, et al. Induction of nitric oxide-dependent apoptosis in motor neurons by zinc-deficient superoxide dismutase. Science. 1999;286(5449):2498–500.

    Article  CAS  PubMed  Google Scholar 

  24. Beckman JS, Carson M, Smith CD, Koppenol WH. ALS, SOD and peroxynitrite. Nature. 1993;364(6438):584.

    Article  CAS  PubMed  Google Scholar 

  25. Ermilova IP, Ermilov VB, Levy M, Ho E, Pereira C, Beckman JS. Protection by dietary zinc in ALS mutant G93A SOD transgenic mice. Neurosci Lett. 2005;379(1):42–6.

    Article  CAS  PubMed  Google Scholar 

  26. Rhoads TW, Lopez NI, Zollinger DR, Morre JT, Arbogast BL, Maier CS, et al. Measuring copper and zinc superoxide dismutase from spinal cord tissue using electrospray mass spectrometry. Anal Biochem. 2011;415(1):52–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lelie HL, Liba A, Bourassa MW, Chattopadhyay M, Chan PK, Gralla EB, et al. Copper and zinc metallation status of copper-zinc superoxide dismutase from amyotrophic lateral sclerosis transgenic mice. J Biol Chem. 2011;286(4):2795–806.

    Article  CAS  PubMed  Google Scholar 

  28. Roberts BR, Lim NK, McAllum EJ, Donnelly PS, Hare DJ, Doble PA, et al. Oral treatment with Cu(II)(atsm) increases mutant SOD1 in vivo but protects motor neurons and improves the phenotype of a transgenic mouse model of amyotrophic lateral sclerosis. J Neurosci. 2014;34(23):8021–31.

    Article  CAS  PubMed  Google Scholar 

  29. Soon CP, Donnelly PS, Turner BJ, Hung LW, Crouch PJ, Sherratt NA, et al. Diacetylbis(N(4)-methylthiosemicarbazonato) copper(II) (CuII(atsm)) protects against peroxynitrite-induced nitrosative damage and prolongs survival in amyotrophic lateral sclerosis mouse model. J Biol Chem. 2011;286(51):44035–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McAllum EJ, Lim NK, Hickey JL, Paterson BM, Donnelly PS, Li QX, et al. Therapeutic effects of CuII(atsm) in the SOD1-G37R mouse model of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener. 2013;14(7-8):586–90.

    Article  CAS  PubMed  Google Scholar 

  31. Subramaniam JR, Lyons WE, Liu J, Bartnikas TB, Rothstein J, Price DL, et al. Mutant SOD1 causes motor neuron disease independent of copper chaperone-mediated copper loading. Nat Neurosci. 2002;5(4):301–7.

    Article  CAS  PubMed  Google Scholar 

  32. Beckman JS, Esetvez AG, Barbeito L, Crow JP. CCS knockout mice establish an alternative source of copper for SOD in ALS. Free Radic Biol Med. 2002;33(10):1433–5.

    Article  CAS  PubMed  Google Scholar 

  33. Wang J, Slunt H, Gonzales V, Fromholt D, Coonfield M, Copeland NG, et al. Copper-binding-site-null SOD1 causes ALS in transgenic mice: aggregates of non-native SOD1 delineate a common feature. Hum Mol Genet. 2003;12(21):2753–64.

    Article  CAS  PubMed  Google Scholar 

  34. Bush AI. Is ALS, caused by an altered oxidative activity of mutant superoxide dismutase? Nat Neurosci. 2002;5(10):919. author reply 20.

    Article  CAS  PubMed  Google Scholar 

  35. Watanabe S, Nagano S, Duce J, Kiaei M, Li QX, Tucker SM, et al. Increased affinity for copper mediated by cysteine 111 in forms of mutant superoxide dismutase 1 linked to amyotrophic lateral sclerosis. Free Radic Biol Med. 2007;42(10):1534–42.

    Article  CAS  PubMed  Google Scholar 

  36. Liu H, Zhu H, Eggers DK, Nersissian AM, Faull KF, Goto JJ, et al. Copper(2+) binding to the surface residue cysteine 111 of His46Arg human copper-zinc superoxide dismutase, a familial amyotrophic lateral sclerosis mutant. Biochemistry. 2000;39(28):8125–32.

    Article  CAS  PubMed  Google Scholar 

  37. Porath J, Carlsson J, Olsson I, Belfrage G. Metal chelate affinity chromatography, a new approach to protein fractionation. Nature. 1975;258(5536):598–9.

    Article  CAS  PubMed  Google Scholar 

  38. Kishigami H, Nagano S, Bush AI, Sakoda S. Monomerized Cu, Zn-superoxide dismutase induces oxidative stress through aberrant Cu binding. Free Radic Biol Med. 2010;48(7):945–52.

    Article  CAS  PubMed  Google Scholar 

  39. Johnston JA, Dalton MJ, Gurney ME, Kopito RR. Formation of high molecular weight complexes of mutant Cu, Zn-superoxide dismutase in a mouse model for familial amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A. 2000;97(23):12571–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim J, Lee H, Lee JH, Kwon DY, Genovesio A, Fenistein D, et al. Dimerization, oligomerization, and aggregation of human amyotrophic lateral sclerosis copper/zinc superoxide dismutase 1 protein mutant forms in live cells. J Biol Chem. 2014;289(21):15094–103.

    Article  CAS  PubMed  Google Scholar 

  41. Bruijn LI, Houseweart MK, Kato S, Anderson KL, Anderson SD, Ohama E, et al. Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science. 1998;281(5384):1851–4.

    Article  CAS  PubMed  Google Scholar 

  42. Furukawa Y, O’Halloran TV. Amyotrophic lateral sclerosis mutations have the greatest destabilizing effect on the apo- and reduced form of SOD1, leading to unfolding and oxidative aggregation. J Biol Chem. 2005;280(17):17266–74.

    Article  CAS  PubMed  Google Scholar 

  43. Rakhit R, Chakrabartty A. Structure, folding, and misfolding of Cu, Zn superoxide dismutase in amyotrophic lateral sclerosis. Biochim Biophys Acta. 2006;1762(11-12):1025–37.

    Article  CAS  PubMed  Google Scholar 

  44. Furukawa Y, O’Halloran TV. Posttranslational modifications in Cu, Zn-superoxide dismutase and mutations associated with amyotrophic lateral sclerosis. Antioxid Redox Signal. 2006;8(5-6):847–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Banci L, Bertini I, Cantini F, Kozyreva T, Massagni C, Palumaa P, et al. Human superoxide dismutase 1 (hSOD1) maturation through interaction with human copper chaperone for SOD1 (hCCS). Proc Natl Acad Sci U S A. 2012;109(34):13555–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Son M, Elliott JL. Mitochondrial defects in transgenic mice expressing Cu, Zn superoxide dismutase mutations, the role of copper chaperone for SOD1. J Neurol Sci. 2014;336(1-2):1–7.

    Article  CAS  PubMed  Google Scholar 

  47. Banci L, Barbieri L, Bertini I, Luchinat E, Secci E, Zhao Y, et al. Atomic-resolution monitoring of protein maturation in live human cells by NMR. Nat Chem Biol. 2013;9(5):297–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tiwari A, Hayward LJ. Familial amyotrophic lateral sclerosis mutants of copper/zinc superoxide dismutase are susceptible to disulfide reduction. J Biol Chem. 2003;278(8):5984–92.

    Article  CAS  PubMed  Google Scholar 

  49. Bourassa MW, Brown HH, Borchelt DR, Vogt S, Miller LM. Metal-deficient aggregates and diminished copper found in cells expressing SOD1 mutations that cause ALS. Front Aging Neurosci. 2014;6:110.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Rakhit R, Cunningham P, Furtos-Matei A, Dahan S, Qi XF, Crow JP, et al. Oxidation-induced misfolding and aggregation of superoxide dismutase and its implications for amyotrophic lateral sclerosis. J Biol Chem. 2002;277(49):47551–6.

    Article  CAS  PubMed  Google Scholar 

  51. Banci L, Bertini I, Boca M, Girotto S, Martinelli M, Valentine JS, et al. SOD1 and amyotrophic lateral sclerosis: mutations and oligomerization. PLoS One. 2008;3(2), e1677.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Furukawa Y, Fu R, Deng HX, Siddique T, O’Halloran TV. Disulfide cross-linked protein represents a significant fraction of ALS-associated Cu, Zn-superoxide dismutase aggregates in spinal cords of model mice. Proc Natl Acad Sci U S A. 2006;103(18):7148–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Niwa J, Yamada S, Ishigaki S, Sone J, Takahashi M, Katsuno M, et al. Disulfide bond mediates aggregation, toxicity, and ubiquitylation of familial amyotrophic lateral sclerosis-linked mutant SOD1. J Biol Chem. 2007;282(38):28087–95.

    Article  CAS  PubMed  Google Scholar 

  54. Brotherton TE, Li Y, Glass JD. Cellular toxicity of mutant SOD1 protein is linked to an easily soluble, non-aggregated form in vitro. Neurobiol Dis. 2013;49:49–56.

    Article  CAS  PubMed  Google Scholar 

  55. Trumbull KA, Beckman JS. A role for copper in the toxicity of zinc-deficient superoxide dismutase to motor neurons in amyotrophic lateral sclerosis. Antioxid Redox Signal. 2009;11(7):1627–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lee JP, Gerin C, Bindokas VP, Miller R, Ghadge G, Roos RP. No correlation between aggregates of Cu/Zn superoxide dismutase and cell death in familial amyotrophic lateral sclerosis. J Neurochem. 2002;82(5):1229–38.

    Article  CAS  PubMed  Google Scholar 

  57. Chen X, Shang H, Qiu X, Fujiwara N, Cui L, Li XM, et al. Oxidative modification of cysteine 111 promotes disulfide bond-independent aggregation of SOD1. Neurochem Res. 2012;37(4):835–45.

    Article  CAS  PubMed  Google Scholar 

  58. Cozzolino M, Amori I, Pesaresi MG, Ferri A, Nencini M, Carri MT. Cysteine 111 affects aggregation and cytotoxicity of mutant Cu, Zn-superoxide dismutase associated with familial amyotrophic lateral sclerosis. J Biol Chem. 2008;283(2):866–74.

    Article  CAS  PubMed  Google Scholar 

  59. Alegre-Cebollada J, Kosuri P, Rivas-Pardo JA, Fernandez JM. Direct observation of disulfide isomerization in a single protein. Nat Chem. 2011;3(11):882–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Solsona C, Kahn TB, Badilla CL, Alvarez-Zaldiernas C, Blasi J, Fernandez JM, et al. Altered Thiol Chemistry in Human Amyotrophic Lateral Sclerosis-linked Mutants of Superoxide Dismutase 1. J Biol Chem. 2014.

    Google Scholar 

  61. Gruzman A, Wood WL, Alpert E, Prasad MD, Miller RG, Rothstein JD, et al. Common molecular signature in SOD1 for both sporadic and familial amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A. 2007;104(30):12524–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fujiwara N, Nakano M, Kato S, Yoshihara D, Ookawara T, Eguchi H, et al. Oxidative modification to cysteine sulfonic acid of Cys111 in human copper-zinc superoxide dismutase. J Biol Chem. 2007;282(49):35933–44.

    Article  CAS  PubMed  Google Scholar 

  63. Kabashi E, Valdmanis PN, Dion P, Rouleau GA. Oxidized/misfolded superoxide dismutase-1: the cause of all amyotrophic lateral sclerosis? Ann Neurol. 2007;62(6):553–9.

    Article  CAS  PubMed  Google Scholar 

  64. Ezzi SA, Urushitani M, Julien JP. Wild-type superoxide dismutase acquires binding and toxic properties of ALS-linked mutant forms through oxidation. J Neurochem. 2007;102(1):170–8.

    Article  PubMed  CAS  Google Scholar 

  65. Gemma C, Vila J, Bachstetter A, Bickford PC. Oxidative stress and the aging brain: from theory to prevention. In: Riddle DR, editor. Brain aging: models, methods, and mechanisms. Boca Raton: Frontiers in Neuroscience; 2007.

    Google Scholar 

  66. Berlett BS, Stadtman ER. Protein oxidation in aging, disease, and oxidative stress. J Biol Chem. 1997;272(33):20313–6.

    Article  CAS  PubMed  Google Scholar 

  67. Martins D, English AM. SOD1 oxidation and formation of soluble aggregates in yeast: relevance to sporadic ALS development. Redox Biol. 2014;2:632–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Guareschi S, Cova E, Cereda C, Ceroni M, Donetti E, Bosco DA, et al. An over-oxidized form of superoxide dismutase found in sporadic amyotrophic lateral sclerosis with bulbar onset shares a toxic mechanism with mutant SOD1. Proc Natl Acad Sci U S A. 2012;109(13):5074–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fink RC, Scandalios JG. Molecular evolution and structure--function relationships of the superoxide dismutase gene families in angiosperms and their relationship to other eukaryotic and prokaryotic superoxide dismutases. Arch Biochem Biophys. 2002;399(1):19–36.

    Article  CAS  PubMed  Google Scholar 

  70. Urushitani M, Ezzi SA, Julien JP. Therapeutic effects of immunization with mutant superoxide dismutase in mice models of amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A. 2007;104(7):2495–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Brotherton TE, Li Y, Cooper D, Gearing M, Julien JP, Rothstein JD, et al. Localization of a toxic form of superoxide dismutase 1 protein to pathologically affected tissues in familial ALS. Proc Natl Acad Sci U S A. 2012;109(14):5505–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bosco DA, Morfini G, Karabacak NM, Song Y, Gros-Louis F, Pasinelli P, et al. Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS. Nat Neurosci. 2010;13(11):1396–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ayers JI, Xu G, Pletnikova O, Troncoso JC, Hart PJ, Borchelt DR. Conformational specificity of the C4F6 SOD1 antibody; low frequency of reactivity in sporadic ALS cases. Acta Neuropathol Commun. 2014;2:55.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Rotunno MS, Auclair JR, Maniatis S, Shaffer SA, Agar J, Bosco DA. Identification of a misfolded region in superoxide dismutase 1 that is exposed in amyotrophic lateral sclerosis. J Biol Chem. 2014;289(41):28527–38.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Molnar KS, Karabacak NM, Johnson JL, Wang Q, Tiwari A, Hayward LJ, et al. A common property of amyotrophic lateral sclerosis-associated variants: destabilization of the copper/zinc superoxide dismutase electrostatic loop. J Biol Chem. 2009;284(45):30965–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fukada K, Nagano S, Satoh M, Tohyama C, Nakanishi T, Shimizu A, et al. Stabilization of mutant Cu/Zn superoxide dismutase (SOD1) protein by coexpressed wild SOD1 protein accelerates the disease progression in familial amyotrophic lateral sclerosis mice. Eur J Neurosci. 2001;14(12):2032–6.

    Article  CAS  PubMed  Google Scholar 

  77. Wang L, Deng HX, Grisotti G, Zhai H, Siddique T, Roos RP. Wild-type SOD1 overexpression accelerates disease onset of a G85R SOD1 mouse. Hum Mol Genet. 2009;18(9):1642–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Witan H, Kern A, Koziollek-Drechsler I, Wade R, Behl C, Clement AM. Heterodimer formation of wild-type and amyotrophic lateral sclerosis-causing mutant Cu/Zn-superoxide dismutase induces toxicity independent of protein aggregation. Hum Mol Genet. 2008;17(10):1373–85.

    Article  CAS  PubMed  Google Scholar 

  79. Weichert A, Besemer AS, Liebl M, Hellmann N, Koziollek-Drechsler I, Ip P, et al. Wild-type Cu/Zn superoxide dismutase stabilizes mutant variants by heterodimerization. Neurobiol Dis. 2014;62:479–88.

    Article  CAS  PubMed  Google Scholar 

  80. Raoul C, Estevez AG, Nishimune H, Cleveland DW. deLapeyriere O, Henderson CE, et al. Motoneuron death triggered by a specific pathway downstream of Fas. potentiation by ALS-linked SOD1 mutations. Neuron. 2002;35(6):1067–83.

    Article  CAS  PubMed  Google Scholar 

  81. Tortarolo M, Veglianese P, Calvaresi N, Botturi A, Rossi C, Giorgini A, et al. Persistent activation of p38 mitogen-activated protein kinase in a mouse model of familial amyotrophic lateral sclerosis correlates with disease progression. Mol Cell Neurosci. 2003;23(2):180–92.

    Article  CAS  PubMed  Google Scholar 

  82. Hu JH, Chernoff K, Pelech S, Krieger C. Protein kinase and protein phosphatase expression in the central nervous system of G93A mSOD over-expressing mice. J Neurochem. 2003;85(2):422–31.

    Article  CAS  PubMed  Google Scholar 

  83. Wengenack TM, Holasek SS, Montano CM, Gregor D, Curran GL, Poduslo JF. Activation of programmed cell death markers in ventral horn motor neurons during early presymptomatic stages of amyotrophic lateral sclerosis in a transgenic mouse model. Brain Res. 2004;1027(1-2):73–86.

    Article  CAS  PubMed  Google Scholar 

  84. Raoul C, Buhler E, Sadeghi C, Jacquier A, Aebischer P, Pettmann B, et al. Chronic activation in presymptomatic amyotrophic lateral sclerosis (ALS) mice of a feedback loop involving Fas, Daxx, and FasL. Proc Natl Acad Sci U S A. 2006;103(15):6007–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Franco MC, Ye Y, Refakis CA, Feldman JL, Stokes AL, Basso M, et al. Nitration of Hsp90 induces cell death. Proc Natl Acad Sci U S A. 2013;110(12):E1102–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Petri S, Kiaei M, Wille E, Calingasan NY, Flint BM. Loss of Fas ligand-function improves survival in G93A-transgenic ALS mice. J Neurol Sci. 2006;251(1-2):44–9.

    Article  CAS  PubMed  Google Scholar 

  87. Niforou K, Cheimonidou C, Trougakos IP. Molecular chaperones and proteostasis regulation during redox imbalance. Redox Biol. 2014;2:323–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Okado-Matsumoto A, Fridovich I. Amyotrophic lateral sclerosis: a proposed mechanism. Proc Natl Acad Sci U S A. 2002;99(13):9010–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kieran D, Kalmar B, Dick JR, Riddoch-Contreras J, Burnstock G, Greensmith L. Treatment with arimoclomol, a coinducer of heat shock proteins, delays disease progression in ALS mice. Nat Med. 2004;10(4):402–5.

    Article  CAS  PubMed  Google Scholar 

  90. Kalmar B, Lu CH, Greensmith L. The role of heat shock proteins in amyotrophic lateral sclerosis: the therapeutic potential of Arimoclomol. Pharmacol Ther. 2014;141(1):40–54.

    Article  CAS  PubMed  Google Scholar 

  91. Auclair JR, Johnson JL, Liu Q, Salisbury JP, Rotunno MS, Petsko GA, et al. Post-translational modification by cysteine protects Cu/Zn-superoxide dismutase from oxidative damage. Biochemistry. 2013;52(36):6137–44.

    Article  CAS  PubMed  Google Scholar 

  92. Johnson JM, Strobel FH, Reed M, Pohl J, Jones DP. A rapid LC-FTMS method for the analysis of cysteine, cystine and cysteine/cystine steady-state redox potential in human plasma. Clin Chim Acta. 2008;396(1-2):43–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Dalle-Donne I, Rossi R, Giustarini D, Colombo R, Milzani A. S-glutathionylation in protein redox regulation. Free Radic Biol Med. 2007;43(6):883–98.

    Article  CAS  PubMed  Google Scholar 

  94. Barber SC, Mead RJ, Shaw PJ. Oxidative stress in ALS: a mechanism of neurodegeneration and a therapeutic target. Biochim Biophys Acta. 2006;1762(11-12):1051–67.

    Article  CAS  PubMed  Google Scholar 

  95. Tohgi H, Abe T, Yamazaki K, Murata T, Ishizaki E, Isobe C. Increase in oxidized NO products and reduction in oxidized glutathione in cerebrospinal fluid from patients with sporadic form of amyotrophic lateral sclerosis. Neurosci Lett. 1999;260(3):204–6.

    Article  CAS  PubMed  Google Scholar 

  96. Townsend DM. S-glutathionylation: indicator of cell stress and regulator of the unfolded protein response. Mol Interv. 2007;7(6):313–24.

    Article  CAS  PubMed  Google Scholar 

  97. Wilcox KC, Zhou L, Jordon JK, Huang Y, Yu Y, Redler RL, et al. Modifications of superoxide dismutase (SOD1) in human erythrocytes: a possible role in amyotrophic lateral sclerosis. J Biol Chem. 2009;284(20):13940–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Redler RL, Wilcox KC, Proctor EA, Fee L, Caplow M, Dokholyan NV. Glutathionylation at Cys-111 induces dissociation of wild type and FALS mutant SOD1 dimers. Biochemistry. 2011;50(32):7057–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. McAlary L, Yerbury JJ, Aquilina JA. Glutathionylation potentiates benign superoxide dismutase 1 variants to the toxic forms associated with amyotrophic lateral sclerosis. Sci Rep. 2013;3:3275.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Redler RL, Fee L, Fay JM, Caplow M, Dokholyan NV. Non-native soluble oligomers of Cu/Zn superoxide dismutase (SOD1) contain a conformational epitope linked to cytotoxicity in amyotrophic lateral sclerosis (ALS). Biochemistry. 2014;53(14):2423–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. de Beus MD, Chung J, Colon W. Modification of cysteine 111 in Cu/Zn superoxide dismutase results in altered spectroscopic and biophysical properties. Protein Sci. 2004;13(5):1347–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Okado-Matsumoto A, Guan Z, Fridovich I. Modification of cysteine 111 in human Cu,Zn-superoxide dismutase. Free Radic Biol Med. 2006;41(12):1837–46.

    Article  CAS  PubMed  Google Scholar 

  103. Calabrese L, Federici G, Bannister WH, Bannister JV, Rotilio G, Finazzi-Agro A. Labile sulfur in human Superoxide dismutase. Eur J Biochem. 1975;56(1):305–9.

    Article  CAS  PubMed  Google Scholar 

  104. Li L, Rose P, Moore PK. Hydrogen sulfide and cell signaling. Annu Rev Pharmacol Toxicol. 2011;51:169–87.

    Article  CAS  PubMed  Google Scholar 

  105. Zhao J, Qian Y, Zhang L, Ding S, Deng X, He C, et al. A fluorescent probe for rapid detection of hydrogen sulfide in blood plasma and brain tissues in mice. Chem Sci. 2012;3(10):2920–3.

    Article  CAS  Google Scholar 

  106. Auclair JR, Boggio KJ, Petsko GA, Ringe D, Agar JN. Strategies for stabilizing superoxide dismutase (SOD1), the protein destabilized in the most common form of familial amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A. 2010;107(50):21394–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Oono M, Okado-Matsumoto A, Shodai A, Ido A, Ohta Y, Abe K, et al. Transglutaminase 2 accelerates neuroinflammation in amyotrophic lateral sclerosis through interaction with misfolded superoxide dismutase 1. J Neurochem. 2014;128(3):403–18.

    Article  CAS  PubMed  Google Scholar 

  108. Ruan Q, Johnson GV. Transglutaminase 2 in neurodegenerative disorders. Front Biosci. 2007;12:891–904.

    Article  CAS  PubMed  Google Scholar 

  109. Andringa G, Lam KY, Chegary M, Wang X, Chase TN, Bennett MC. Tissue transglutaminase catalyzes the formation of alpha-synuclein crosslinks in Parkinson’s disease. FASEB J. 2004;18(7):932–4.

    CAS  PubMed  Google Scholar 

  110. Ho GJ, Gregory EJ, Smirnova IV, Zoubine MN, Festoff BW. Cross-linking of beta-amyloid protein precursor catalyzed by tissue transglutaminase. FEBS Lett. 1994;349(1):151–4.

    Article  CAS  PubMed  Google Scholar 

  111. Karpuj MV, Garren H, Slunt H, Price DL, Gusella J, Becher MW, et al. Transglutaminase aggregates huntingtin into nonamyloidogenic polymers, and its enzymatic activity increases in Huntington’s disease brain nuclei. Proc Natl Acad Sci U S A. 1999;96(13):7388–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lesort M, Chun W, Johnson GV, Ferrante RJ. Tissue transglutaminase is increased in Huntington’s disease brain. J Neurochem. 1999;73(5):2018–27.

    CAS  PubMed  Google Scholar 

  113. Karpuj MV, Becher MW, Steinman L. Evidence for a role for transglutaminase in Huntington’s disease and the potential therapeutic implications. Neurochem Int. 2002;40(1):31–6.

    Article  CAS  PubMed  Google Scholar 

  114. Fujita K, Honda M, Hayashi R, Ogawa K, Ando M, Yamauchi M, et al. Transglutaminase activity in serum and cerebrospinal fluid in sporadic amyotrophic lateral sclerosis: a possible use as an indicator of extent of the motor neuron loss. J Neurol Sci. 1998;158(1):53–7.

    Article  CAS  PubMed  Google Scholar 

  115. Lesort M, Lee M, Tucholski J, Johnson GV. Cystamine inhibits caspase activity. Implications for the treatment of polyglutamine disorders. J Biol Chem. 2003;278(6):3825–30.

    Article  CAS  PubMed  Google Scholar 

  116. Yoshino H, Kimura A. Investigation of the therapeutic effects of edaravone, a free radical scavenger, on amyotrophic lateral sclerosis (Phase II study). Amyotroph Lateral Scler. 2006;7(4):241–5.

    Article  CAS  PubMed  Google Scholar 

  117. Batinic-Haberle I, Rajic Z, Tovmasyan A, Reboucas JS, Ye X, Leong KW, et al. Diverse functions of cationic Mn(III) N-substituted pyridylporphyrins, recognized as SOD mimics. Free Radic Biol Med. 2011;51(5):1035–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  118. Batinic-Haberle I, Tovmasyan A, Roberts ER, Vujaskovic Z, Leong KW, Spasojevic I. SOD therapeutics: latest insights into their structure-activity relationships and impact on the cellular redox-based signaling pathways. Antioxid Redox Signal. 2014;20(15):2372–415.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  119. Crow JP, Calingasan NY, Chen J, Hill JL, Beal MF. Manganese porphyrin given at symptom onset markedly extends survival of ALS mice. Ann Neurol. 2005;58(2):258–65.

    Article  CAS  PubMed  Google Scholar 

  120. Crow JP. Catalytic antioxidants to treat amyotropic lateral sclerosis. Expert Opin Investig Drugs. 2006;15(11):1383–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Petri S, Kiaei M, Kipiani K, Chen J, Calingasan NY, Crow JP, et al. Additive neuroprotective effects of a histone deacetylase inhibitor and a catalytic antioxidant in a transgenic mouse model of amyotrophic lateral sclerosis. Neurobiol Dis. 2006;22(1):40–9.

    Article  CAS  PubMed  Google Scholar 

  122. Benatar M. Lost in translation: treatment trials in the SOD1 mouse and in human ALS. Neurobiol Dis. 2007;26(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  123. Orrell RW. AEOL-10150 (Aeolus). Curr Opin Investig Drugs. 2006;7(1):70–80.

    CAS  PubMed  Google Scholar 

  124. Jaramillo MC, Frye JB, Crapo JD, Briehl MM, Tome ME. Increased manganese superoxide dismutase expression or treatment with manganese porphyrin potentiates dexamethasone-induced apoptosis in lymphoma cells. Cancer Res. 2009;69(13):5450–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Jaramillo MC, Briehl MM, Crapo JD, Batinic-Haberle I, Tome ME. Manganese porphyrin, MnTE-2-PyP5+, Acts as a pro-oxidant to potentiate glucocorticoid-induced apoptosis in lymphoma cells. Free Radic Biol Med. 2012;52(8):1272–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Frakes AE, Ferraiuolo L, Haidet-Phillips AM, Schmelzer L, Braun L, Miranda CJ, et al. Microglia induce motor neuron death via the classical NF-kappaB pathway in amyotrophic lateral sclerosis. Neuron. 2014;81(5):1009–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Tokuda E, Ono S, Ishige K, Watanabe S, Okawa E, Ito Y, et al. Ammonium tetrathiomolybdate delays onset, prolongs survival, and slows progression of disease in a mouse model for amyotrophic lateral sclerosis. Exp Neurol. 2008;213(1):122–8.

    Article  CAS  PubMed  Google Scholar 

  128. Nagano S, Fujii Y, Yamamoto T, Taniyama M, Fukada K, Yanagihara T, et al. The efficacy of trientine or ascorbate alone compared to that of the combined treatment with these two agents in familial amyotrophic lateral sclerosis model mice. Exp Neurol. 2003;179(2):176–80.

    Article  CAS  PubMed  Google Scholar 

  129. Hottinger AF, Fine EG, Gurney ME, Zurn AD, Aebischer P. The copper chelator d-penicillamine delays onset of disease and extends survival in a transgenic mouse model of familial amyotrophic lateral sclerosis. Eur J Neurosci. 1997;9(7):1548–51.

    Article  CAS  PubMed  Google Scholar 

  130. Rakhit R, Robertson J, Vande Velde C, Horne P, Ruth DM, Griffin J, et al. An immunological epitope selective for pathological monomer-misfolded SOD1 in ALS. Nat Med. 2007;13(6):754–9.

    Article  CAS  PubMed  Google Scholar 

  131. Kerman A, Liu HN, Croul S, Bilbao J, Rogaeva E, Zinman L, et al. Amyotrophic lateral sclerosis is a non-amyloid disease in which extensive misfolding of SOD1 is unique to the familial form. Acta Neuropathol. 2010;119(3):335–44.

    Article  PubMed  Google Scholar 

  132. Prudencio M, Borchelt DR. Superoxide dismutase 1 encoding mutations linked to ALS adopts a spectrum of misfolded states. Mol Neurodegener. 2011;6:77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Gros-Louis F, Soucy G, Lariviere R, Julien JP. Intracerebroventricular infusion of monoclonal antibody or its derived Fab fragment against misfolded forms of SOD1 mutant delays mortality in a mouse model of ALS. J Neurochem. 2010;113(5):1188–99.

    CAS  PubMed  Google Scholar 

  134. Patel P, Kriz J, Gravel M, Soucy G, Bareil C, Gravel C, et al. Adeno-associated virus-mediated delivery of a recombinant single-chain antibody against misfolded superoxide dismutase for treatment of amyotrophic lateral sclerosis. Mol Ther. 2014;22(3):498–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Liu HN, Tjostheim S, Dasilva K, Taylor D, Zhao B, Rakhit R, et al. Targeting of monomer/misfolded SOD1 as a therapeutic strategy for amyotrophic lateral sclerosis. J Neurosci. 2012;32(26):8791–9.

    Article  CAS  PubMed  Google Scholar 

  136. Gilman S, Koller M, Black RS, Jenkins L, Griffith SG, Fox NC, et al. Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted trial. Neurology. 2005;64(9):1553–62.

    Article  CAS  PubMed  Google Scholar 

  137. Al-Chalabi A, Jones A, Troakes C, King A, Al-Sarraj S, van den Berg LH. The genetics and neuropathology of amyotrophic lateral sclerosis. Acta Neuropathol. 2012;124(3):339–52.

    Article  CAS  PubMed  Google Scholar 

  138. Iguchi Y, Katsuno M, Ikenaka K, Ishigaki S, Sobue G. Amyotrophic lateral sclerosis: an update on recent genetic insights. J Neurol. 2013;260(11):2917–27.

    Article  CAS  PubMed  Google Scholar 

  139. Sreedharan J, Brown Jr RH. Amyotrophic lateral sclerosis: Problems and prospects. Ann Neurol. 2013;74(3):309–16.

    Article  CAS  PubMed  Google Scholar 

  140. Leblond CS, Kaneb HM, Dion PA, Rouleau GA. Dissection of genetic factors associated with amyotrophic lateral sclerosis. Exp Neurol. 2014;262 Pt B:91–101.

    Google Scholar 

  141. Ince PG, Highley JR, Kirby J, Wharton SB, Takahashi H, Strong MJ, et al. Molecular pathology and genetic advances in amyotrophic lateral sclerosis: an emerging molecular pathway and the significance of glial pathology. Acta Neuropathol. 2011;122(6):657–71.

    Article  CAS  PubMed  Google Scholar 

  142. Budini M, Baralle FE, Buratti E. Targeting TDP-43 in neurodegenerative diseases. Expert Opin Ther Targets. 2014;18(6):617–32.

    Article  CAS  PubMed  Google Scholar 

  143. Zhang KY, Yang S, Warraich ST, Blair IP. Ubiquilin 2: a component of the ubiquitin-proteasome system with an emerging role in neurodegeneration. Int J Biochem Cell Biol. 2014;50:123–6.

    Article  CAS  PubMed  Google Scholar 

  144. Scotter EL, Vance C, Nishimura AL, Lee YB, Chen HJ, Urwin H, et al. Differential roles of the ubiquitin proteasome system and autophagy in the clearance of soluble and aggregated TDP-43 species. J Cell Sci. 2014;127(Pt 6):1263–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Scotter EL, Chen HJ, Shaw CE. TDP-43 proteinopathy and als: insights into disease mechanisms and therapeutic targets. Neurotherapeutics. 2015;12(2):352–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Beck J, Poulter M, Hensman D, Rohrer JD, Mahoney CJ, Adamson G, et al. Large C9orf72 hexanucleotide repeat expansions are seen in multiple neurodegenerative syndromes and are more frequent than expected in the UK population. Am J Hum Genet. 2013;92(3):345–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Hukema RK, Riemslagh FW, Melhem S, van der Linde HC, Severijnen L, Edbauer D, et al. A new inducible transgenic mouse model for C9orf72-associated GGGGCC repeat expansion supports a gain-of-function mechanism in C9orf72 associated ALS and FTD. Acta Neuropathol Commun. 2014;2(1):166.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Liu EY, Russ J, Wu K, Neal D, Suh E, McNally AG, et al. C9orf72 hypermethylation protects against repeat expansion-associated pathology in ALS/FTD. Acta Neuropathol. 2014;128(4):525–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. McMillan CT, Russ J, Wood EM, Irwin DJ, Grossman M, McCluskey L, et al. C9orf72 promoter hypermethylation is neuroprotective: Neuroimaging and neuropathologic evidence. Neurology. 2015.

    Google Scholar 

  150. Jan A, Adolfsson O, Allaman I, Buccarello AL, Magistretti PJ, Pfeifer A, et al. Abeta42 neurotoxicity is mediated by ongoing nucleated polymerization process rather than by discrete Abeta42 species. J Biol Chem. 2011;286(10):8585–96.

    Article  CAS  PubMed  Google Scholar 

  151. Ryan TM, Roberts BR, McColl G, Hare DJ, Doble PA, Li QX, et al. Stabilization of nontoxic Abeta-oligomers: insights into the mechanism of action of hydroxyquinolines in Alzheimer’s disease. J Neurosci. 2015;35(7):2871–84.

    Article  CAS  PubMed  Google Scholar 

  152. Vashist S, Cushman M, Shorter J. Applying Hsp104 to protein-misfolding disorders. Biochem Cell Biol. 2010;88(1):1–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Jackrel ME, Shorter J. Engineering enhanced protein disaggregases for neurodegenerative disease. Prion. 2015;9(2):90–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Chiti F, Dobson CM. Amyloid formation by globular proteins under native conditions. Nat Chem Biol. 2009;5(1):15–22.

    Article  CAS  PubMed  Google Scholar 

  155. Kim J, Kim TY, Cho KS, Kim HN, Koh JY. Autophagy activation and neuroprotection by progesterone in the G93A-SOD1 transgenic mouse model of amyotrophic lateral sclerosis. Neurobiol Dis. 2013;59:80–5.

    Article  CAS  PubMed  Google Scholar 

  156. Morimoto N, Nagai M, Ohta Y, Miyazaki K, Kurata T, Morimoto M, et al. Increased autophagy in transgenic mice with a G93A mutant SOD1 gene. Brain Res. 2007;1167:112–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayako Okado-Matsumoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hubens, W., Okado-Matsumoto, A. (2016). Redox Regulation and Misfolding of SOD1: Therapeutic Strategies for Amyotrophic Lateral Sclerosis. In: Batinić-Haberle, I., Rebouças, J., Spasojević, I. (eds) Redox-Active Therapeutics. Oxidative Stress in Applied Basic Research and Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-319-30705-3_27

Download citation

Publish with us

Policies and ethics