Skip to main content

The Contribution of Nitroxidative Stress to Pathophysiological Pain and Opioid Analgesic Failure

  • Chapter
  • First Online:
Redox-Active Therapeutics

Abstract

Chronic pain affects nearly 10 % of the population worldwide and poses a tremendous socioeconomic burden. Current therapeutic strategies, which range from nonsteroidal anti-inflammatory drugs (NSAIDs) to powerful opioids like morphine and fentanyl, do not effectively manage chronic pain in the majority of patients. A better understanding of pathophysiological nociception and the therapeutic targets therein is necessary. The generation of nitroxidative (nitrative and oxidative) stress—that is, the formation of superoxide and nitric oxide in tandem, their subsequent reaction to afford peroxynitrite, and the reaction of peroxynitrite and its decomposition products with biological molecules—is clearly involved in various types of persistent pain. In this chapter, we will catalogue the mechanistic pharmacological studies that support the contribution of nitroxidative stress to chronic pain, identify the cellular and enzymatic sources of nitroxidative species involved in this pathology, and delineate the mechanisms by which nitroxidative stress impacts nociceptive processing to produce persistent pain. Specifically, we will highlight the contribution of peroxynitrite (e.g., through nitration chemistry) to enhanced pro-nociceptive neurotransmission (modifications of glutamatergic, vanilloid, and prostaglandin signaling), suppressed inhibitory neurotransmission (modifications of GABAergic and catecholamine signaling), and to changes in transcriptional regulation that underpin chronic pain. Our overall goal is to refine the current generalized understanding of roles of reactive oxygen and nitrogen species in persistent pain by defining nitroxidative stress as a specific, targetable pro-nociceptive mechanism for the ultimate treatment of chronic pain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

COX:

Cyclooxygenase

DA:

Dopamine

EAAC1:

Excitatory amino acid carrier 1

GABA:

Gamma aminobutyric acid

GLAST/EAAT1:

Glutamate aspartate transporter/excitatory amino acid transporter 1

GLT-1/EAAT2:

Glutamate transporter 1/excitatory amino acid transporter 2

GS:

Glutamine synthase

HDAC:

Histone deacetylase

MENK:

Met-enkephalin

NaV:

Voltage-gated sodium channel

NE:

Norepinephrine

NO:

Nitric oxide

NOS:

Nitric oxide synthase

NOX:

NADPH oxidase

NSAID:

Nonsteroidal anti-inflammatory drug

PAG:

Periaqueductal grey

PN:

Peroxynitrite

PNDC:

Peroxynitrite decomposition catalyst

PNI:

Peripheral nerve injury

PTM:

Post-translational modification

RVM:

Rostral ventromedial medulla

SC:

Spinal cord

PK:

Protein kinase

SO:

Superoxide

SOD:

Superoxide dismutase

SODm:

Superoxide dismutase mimetic

TH:

Tyrosine hydroxylase

TRP:

Transient receptor potential

XO:

Xanthine oxidase

References

  1. McCarberg BH, Nicholson BD, Todd KH, Palmer T, Penles L. The impact of pain on quality of life and the unmet needs of pain management: results from pain sufferers and physicians participating in an Internet survey. Am J Ther. 2008;15(4):312–20.

    Article  PubMed  Google Scholar 

  2. Salvemini D. Peroxynitrite and opiate antinociceptive tolerance: a painful reality. Arch Biochem Biophys. 2009;484(2):238–44.

    Article  CAS  PubMed  Google Scholar 

  3. Salvemini D, Neumann WL. Peroxynitrite: a strategic linchpin of opioid analgesic tolerance. Trends Pharmacol Sci. 2009;30(4):194–202.

    Article  CAS  PubMed  Google Scholar 

  4. Rausaria S, Ghaffari MM, Kamadulski A, Rodgers K, Bryant L, Chen Z, et al. Retooling manganese(III) porphyrin-based peroxynitrite decomposition catalysts for selectivity and oral activity: a potential new strategy for treating chronic pain. J Med Chem. 2011;54(24):8658–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Little JW, Doyle T, Salvemini D. Reactive nitroxidative species and nociceptive processing: determining the roles for nitric oxide, superoxide, and peroxynitrite in pain. Amino Acids. 2012;42(1):75–94.

    Article  CAS  PubMed  Google Scholar 

  6. Janes K, Neumann WL, Salvemini D. Anti-superoxide and anti-peroxynitrite strategies in pain suppression. Biochim Biophys Acta. 2012;1822(5):815–21.

    Article  CAS  PubMed  Google Scholar 

  7. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A. 1990;87(4):1620–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Khattab MM. TEMPOL, a membrane-permeable radical scavenger, attenuates peroxynitrite- and superoxide anion-enhanced carrageenan-induced paw edema and hyperalgesia: a key role for superoxide anion. Eur J Pharmacol. 2006;548(1-3):167–73.

    Article  CAS  PubMed  Google Scholar 

  9. Lee I, Kim HK, Kim JH, Chung K, Chung JM. The role of reactive oxygen species in capsaicin-induced mechanical hyperalgesia and in the activities of dorsal horn neurons. Pain. 2007;133(1-3):9–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gao X, Kim HK, Chung JM, Chung K. Reactive oxygen species (ROS) are involved in enhancement of NMDA-receptor phosphorylation in animal models of pain. Pain. 2007;131(3):262–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schwartz ES, Kim HY, Wang J, Lee I, Klann E, Chung JM, et al. Persistent pain is dependent on spinal mitochondrial antioxidant levels. J Neurosci. 2009;29(1):159–68.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Schwartz ES, Lee I, Chung K, Chung JM. Oxidative stress in the spinal cord is an important contributor in capsaicin-induced mechanical secondary hyperalgesia in mice. Pain. 2008;138(3):514–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang J, Cochran V, Abdi S, Chung JM, Chung K, Kim HK. Phenyl N-t-butylnitrone, a reactive oxygen species scavenger, reduces zymosan-induced visceral pain in rats. Neurosci Lett. 2008;439(2):216–9.

    Article  CAS  PubMed  Google Scholar 

  14. Tang N, Ong WY, Yeo JF, Farooqui AA. Anti-allodynic effect of intracerebroventricularly administered antioxidant and free radical scavenger in a mouse model of orofacial pain. J Orofac Pain. 2009;23(2):167–73.

    PubMed  Google Scholar 

  15. Park ES, Gao X, Chung JM, Chung K. Levels of mitochondrial reactive oxygen species increase in rat neuropathic spinal dorsal horn neurons. Neurosci Lett. 2006;391(3):108–11.

    Article  CAS  PubMed  Google Scholar 

  16. Siniscalco D, Fuccio C, Giordano C, Ferraraccio F, Palazzo E, Luongo L, et al. Role of reactive oxygen species and spinal cord apoptotic genes in the development of neuropathic pain. Pharmacol Res. 2007;55(2):158–66.

    Article  CAS  PubMed  Google Scholar 

  17. Tal M. A novel antioxidant alleviates heat hyperalgesia in rats with an experimental painful peripheral neuropathy. Neuroreport. 1996;7(8):1382–4.

    Article  CAS  PubMed  Google Scholar 

  18. Muscoli C, Cuzzocrea S, Riley DP, Zweier JL, Thiemermann C, Wang ZQ, et al. On the selectivity of superoxide dismutase mimetics and its importance in pharmacological studies. Br J Pharmacol. 2003;140(3):445–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Salvemini D, Doyle TM, Cuzzocrea S. Superoxide, peroxynitrite and oxidative/nitrative stress in inflammation. Biochem Soc Trans. 2006;34(Pt 5):965–70.

    Article  CAS  PubMed  Google Scholar 

  20. Salvemini D, Riley DP, Cuzzocrea S. SOD mimetics are coming of age. Nat Rev Drug Discov. 2002;1(5):367–74.

    Article  CAS  PubMed  Google Scholar 

  21. Batinic-Haberle I, Reboucas JS, Spasojevich I. Superoxide dismutase mimics: chemistry, pharmacology and therapeutic potential. Antioxid Redox Signal. 2010;13(6):877–918.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Salvemini D, Wang ZQ, Zweier JL, Samouilov A, Macarthur H, Misko TP, et al. A nonpeptidyl mimic of superoxide dismutase with therapeutic activity in rats. Science. 1999;286(5438):304–6.

    Article  CAS  PubMed  Google Scholar 

  23. Salvemini D, Neumann W. Targeting peroxynitrite driven nitroxidative stress with synzymes: A novel therapeutic approach in chronic pain management. Life Sci. 2010;86(15-16):604–14.

    Article  CAS  PubMed  Google Scholar 

  24. Salvemini D, Riley DP. Nonpeptidyl mimetics of superoxide dismutase in clinical therapies for diseases. Cell Mol Life Sci. 2000;57(11):1489–92.

    Article  CAS  PubMed  Google Scholar 

  25. Filipovic MR, Duerr K, Mojovic M, Simeunovic V, Zimmermann R, Niketic V, et al. NO dismutase activity of seven-coordinate manganese(II) pentaazamacrocyclic complexes. Angew Chem Int Ed Engl. 2008;47(45):8735–9.

    Article  CAS  PubMed  Google Scholar 

  26. Filipovic MR, Koh AC, Arbault S, Niketic V, Debus A, Schleicher U, et al. Striking inflammation from both sides: manganese(II) pentaazamacrocyclic SOD mimics act also as nitric oxide dismutases: a single-cell study. Angew Chem Int Ed Engl. 2010;49(25):4228–32.

    Article  CAS  PubMed  Google Scholar 

  27. Wang ZQ, Porreca F, Cuzzocrea S, Galen K, Lightfoot R, Masini E, et al. A newly identified role for superoxide in inflammatory pain. J Pharmacol Exp Ther. 2004;309(3):869–78.

    Article  CAS  PubMed  Google Scholar 

  28. Di Cesare Mannelli L, Bani D, Bencini A, Brandi ML, Calosi L, Cantore M, et al. Therapeutic effects of the superoxide dismutase mimetic compound MnIIMe2DO2A on experimental articular pain in rats. Mediators Inflamm. 2013;2013:905360.

    PubMed  PubMed Central  Google Scholar 

  29. Day BJ, Fridovich I, Crapo JD. Manganic porphyrins possess catalase activity and protect endothelial cells against hydrogen peroxide-mediated injury. Arch Biochem Biophys. 1997;347(2):256–62.

    Article  CAS  PubMed  Google Scholar 

  30. Lee JB, Hunt JA, Groves JT. Manganese porphyrins as redox-coupled peroxynitrite reductases. J Am Chem Soc. 1998;120(24):6053–61.

    Article  CAS  Google Scholar 

  31. Doyle T, Finley A, Chen Z, Salvemini D. Role for peroxynitrite in sphingosine-1-phosphate-induced hyperalgesia in rats. Pain. 2011;152(3):643–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen Z, Muscoli C, Doyle T, Bryant L, Cuzzocrea S, Mollace V, et al. NMDA-receptor activation and nitroxidative regulation of the glutamatergic pathway during nociceptive processing. Pain. 2010;149(1):100–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kwak KH, Jung H, Park JM, Yeo JS, Kim H, Lee HC, et al. A peroxynitrite decomposition catalyst prevents mechanical allodynia and NMDA receptor activation in the hind-paw ischemia reperfusion injury rats. Exp Ther Med. 2014;7(2):508–12.

    CAS  PubMed  Google Scholar 

  34. Doyle T, Chen Z, Muscoli C, Bryant L, Esposito E, Cuzzocrea S, et al. Targeting the overproduction of peroxynitrite for the prevention and reversal of paclitaxel-induced neuropathic pain. J Neurosci. 2012;32(18):6149–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Doyle T, Esposito E, Bryant L, Cuzzocrea S, Salvemini D. NADPH-oxidase 2 activation promotes opioid-induced antinociceptive tolerance in mice. Neuroscience. 2013;241:1–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Muscoli C, Cuzzocrea S, Ndengele MM, Mollace V, Porreca F, Fabrizi F, et al. Therapeutic manipulation of peroxynitrite attenuates the development of opiate-induced antinociceptive tolerance in mice. J Clin Invest. 2007;117(11):3530–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Little JW, Chen Z, Doyle T, Porreca F, Ghaffari M, Bryant L, et al. Supraspinal peroxynitrite modulates pain signaling by suppressing the endogenous opioid pathway. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2012;32(32):10797–808.

    Article  CAS  Google Scholar 

  38. Batinic-Haberle I, Cuzzocrea S, Reboucas JS, Ferrer-Sueta G, Mazzon E, Di Paola R, et al. Pure MnTBAP selectively scavenges peroxynitrite over superoxide: comparison of pure and commercial MnTBAP samples to MnTE-2-PyP in two models of oxidative stress injury, an SOD-specific Escherichia coli model and carrageenan-induced pleurisy. Free Radic Biol Med. 2009;46(2):192–201.

    Article  CAS  PubMed  Google Scholar 

  39. Reboucas JS, Spasojevic I, Batinic-Haberle I. Pure manganese(III) 5,10,15,20-tetrakis(4-benzoic acid)porphyrin (MnTBAP) is not a superoxide dismutase mimic in aqueous systems: a case of structure-activity relationship as a watchdog mechanism in experimental therapeutics and biology. J Biol Inorg Chem. 2008;13(2):289–302.

    Article  CAS  PubMed  Google Scholar 

  40. Ndengele MM, Cuzzocrea S, Esposito E, Mazzon E, Di Paola R, Matuschak GM, et al. Cyclooxygenases 1 and 2 contribute to peroxynitrite-mediated inflammatory pain hypersensitivity. FASEB J. 2008;22(9):3154–64.

    Article  CAS  PubMed  Google Scholar 

  41. Cheton PL, Archibald FS. Manganese complexes and the generation and scavenging of hydroxyl free radicals. Free Radic Biol Med. 1988;5(5-6):325–33.

    Article  CAS  PubMed  Google Scholar 

  42. Batinic-Haberle I, Ndengele MM, Cuzzocrea S, Reboucas JS, Spasojevic I, Salvemini D. Lipophilicity is a critical parameter that dominates the efficacy of metalloporphyrins in blocking the development of morphine antinociceptive tolerance through peroxynitrite-mediated pathways. Free Radic Biol Med. 2009;46(2):212–9.

    Article  CAS  PubMed  Google Scholar 

  43. Reboucas JS, DeFreitas-Silva G, Spasojevic I, Idemori YM, Benov L, Batinic-Haberle I. Impact of electrostatics in redox modulation of oxidative stress by Mn porphyrins: protection of SOD-deficient Escherichia coli via alternative mechanism where Mn porphyrin acts as a Mn carrier. Free Radic Biol Med. 2008;45(2):201–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rausaria S, Kamadulski A, Rath NP, Bryant L, Chen Z, Salvemini D, et al. Manganese(III) complexes of bis(hydroxyphenyl)dipyrromethenes are potent orally active peroxynitrite scavengers. J Am Chem Soc. 2011;133(12):4200–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS. Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol. 2005;6(2):150–66.

    Article  CAS  PubMed  Google Scholar 

  46. Ischiropoulos H. Protein tyrosine nitration--an update. Arch Biochem Biophys. 2009;484(2):117–21.

    Article  CAS  PubMed  Google Scholar 

  47. Sawa T, Akaike T, Maeda H. Tyrosine nitration by peroxynitrite formed from nitric oxide and superoxide generated by xanthine oxidase. J Biol Chem. 2000;275(42):32467–74.

    Article  CAS  PubMed  Google Scholar 

  48. Radi R, Cassina A, Hodara R, Quijano C, Castro L. Peroxynitrite reactions and formation in mitochondria. Free Radic Biol Med. 2002;33(11):1451–64.

    Article  CAS  PubMed  Google Scholar 

  49. Radi R. Nitric oxide, oxidants, and protein tyrosine nitration. Proc Natl Acad Sci U S A. 2004;101(12):4003–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Szabo C, Ischiropoulos H, Radi R. Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat Rev Drug Discov. 2007;6(8):662–80.

    Article  CAS  PubMed  Google Scholar 

  51. Irie Y, Saeki M, Kamisaki Y, Martin E, Murad F. Histone H1.2 is a substrate for denitrase, an activity that reduces nitrotyrosine immunoreactivity in proteins. Proc Natl Acad Sci U S A. 2003;100(10):5634–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kamisaki Y, Wada K, Bian K, Balabanli B, Davis K, Martin E, et al. An activity in rat tissues that modifies nitrotyrosine-containing proteins. Proc Natl Acad Sci U S A. 1998;95(20):11584–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. McCord JM, Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969;244(22):6049–55.

    CAS  PubMed  Google Scholar 

  54. Viggiano A, Monda M, Viggiano A, Viggiano D, Viggiano E, Chiefari M, et al. Trigeminal pain transmission requires reactive oxygen species production. Brain Res. 2005;1050(1-2):72–8.

    Article  CAS  PubMed  Google Scholar 

  55. Cardey B, Foley S, Enescu M. Mechanism of thiol oxidation by the superoxide radical. J Phys Chem A. 2007;111(50):13046–52.

    Article  CAS  PubMed  Google Scholar 

  56. Drose S, Brandt U. Molecular mechanisms of superoxide production by the mitochondrial respiratory chain. Adv Exp Med Biol. 2012;748:145–69.

    Article  PubMed  CAS  Google Scholar 

  57. Bleier L, Wittig I, Heide H, Steger M, Brandt U, Drose S. Generator-specific targets of mitochondrial reactive oxygen species. Free Radic Biol Med. 2015;78:1–10.

    Article  CAS  PubMed  Google Scholar 

  58. Kim HY, Chung JM, Chung K. Increased production of mitochondrial superoxide in the spinal cord induces pain behaviors in mice: the effect of mitochondrial electron transport complex inhibitors. Neurosci Lett. 2008;447(1):87–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cordero MD, De Miguel M, Moreno Fernandez AM, Carmona Lopez IM, Garrido Maraver J, Cotan D, et al. Mitochondrial dysfunction and mitophagy activation in blood mononuclear cells of fibromyalgia patients: implications in the pathogenesis of the disease. Arthritis Res Ther. 2010;12(1):R17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Janes K, Doyle T, Bryant L, Esposito E, Cuzzocrea S, Ryerse J, et al. Bioenergetic deficits in peripheral nerve sensory axons during chemotherapy-induced neuropathic pain resulting from peroxynitrite-mediated post-translational nitration of mitochondrial superoxide dismutase. Pain. 2013;154(11):2432–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zherebitskaya E, Akude E, Smith DR, Fernyhough P. Development of selective axonopathy in adult sensory neurons isolated from diabetic rats: role of glucose-induced oxidative stress. Diabetes. 2009;58(6):1356–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Stavniichuk R, Shevalye H, Lupachyk S, Obrosov A, Groves JT, Obrosova IG, et al. Peroxynitrite and protein nitration in the pathogenesis of diabetic peripheral neuropathy. Diabetes Metab Res Rev. 2014;30(8):669–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Doyle T, Bryant L, Batinic-Haberle I, Little J, Cuzzocrea S, Masini E, et al. Supraspinal inactivation of mitochondrial superoxide dismutase is a source of peroxynitrite in the development of morphine antinociceptive tolerance. Neuroscience. 2009;164(2):702–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Little JW, Cuzzocrea S, Bryant L, Esposito E, Doyle T, Rausaria S, et al. Spinal mitochondrial-derived peroxynitrite enhances neuroimmune activation during morphine hyperalgesia and antinociceptive tolerance. Pain. 2013;154(7):978–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Babior BM, Lambeth JD, Nauseef W. The neutrophil NADPH oxidase. Arch Biochem Biophys. 2002;397(2):342–4.

    Article  CAS  PubMed  Google Scholar 

  66. Muzaffar S, Shukla N, Angelini GD, Jeremy JY. Superoxide auto-augments superoxide formation and upregulates gp91(phox) expression in porcine pulmonary artery endothelial cells: inhibition by iloprost. Eur J Pharmacol. 2006;538(1-3):108–14.

    Article  CAS  PubMed  Google Scholar 

  67. Puntambekar P, Mukherjea D, Jajoo S, Ramkumar V. Essential role of Rac1/NADPH oxidase in nerve growth factor induction of TRPV1 expression. J Neurochem. 2005;95(6):1689–703.

    Article  CAS  PubMed  Google Scholar 

  68. Abramov AY, Canevari L, Duchen MR. Beta-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase. J Neurosci. 2004;24(2):565–75.

    Article  CAS  PubMed  Google Scholar 

  69. Green SP, Cairns B, Rae J, Errett-Baroncini C, Hongo JA, Erickson RW, et al. Induction of gp91-phox, a component of the phagocyte NADPH oxidase, in microglial cells during central nervous system inflammation. J Cereb Blood Flow Metab. 2001;21(4):374–84.

    Article  CAS  PubMed  Google Scholar 

  70. Tejada-Simon MV, Serrano F, Villasana LE, Kanterewicz BI, Wu GY, Quinn MT, et al. Synaptic localization of a functional NADPH oxidase in the mouse hippocampus. Mol Cell Neurosci. 2005;29(1):97–106.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Ibi M, Matsuno K, Shiba D, Katsuyama M, Iwata K, Kakehi T, et al. Reactive oxygen species derived from NOX1/NADPH oxidase enhance inflammatory pain. J Neurosci. 2008;28(38):9486–94.

    Article  CAS  PubMed  Google Scholar 

  72. Kim D, You B, Jo EK, Han SK, Simon MI, Lee SJ. NADPH oxidase 2-derived reactive oxygen species in spinal cord microglia contribute to peripheral nerve injury-induced neuropathic pain. Proc Natl Acad Sci U S A. 2010;107(33):14851–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Janes K, Esposito E, Doyle T, Cuzzocrea S, Tosh DK, Jacobson KA, et al. A3 adenosine receptor agonist prevents the development of paclitaxel-induced neuropathic pain by modulating spinal glial-restricted redox-dependent signaling pathways. Pain. 2014;155(12):2560–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kallenborn-Gerhardt W, Schroder K, Geisslinger G, Schmidtko A. NOXious signaling in pain processing. Pharmacol Ther. 2013;137(3):309–17.

    Article  CAS  PubMed  Google Scholar 

  75. Lim H, Kim D, Lee SJ. Toll-like receptor 2 mediates peripheral nerve injury-induced NADPH oxidase 2 expression in spinal cord microglia. J Biol Chem. 2013;288(11):7572–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Choi SR, Roh DH, Yoon SY, Kang SY, Moon JY, Kwon SG, et al. Spinal sigma-1 receptors activate NADPH oxidase 2 leading to the induction of pain hypersensitivity in mice and mechanical allodynia in neuropathic rats. Pharmacol Res. 2013;74:56–67.

    Article  CAS  PubMed  Google Scholar 

  77. Ibi M, Matsuno K, Matsumoto M, Sasaki M, Nakagawa T, Katsuyama M, et al. Involvement of NOX1/NADPH oxidase in morphine-induced analgesia and tolerance. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2011;31(49):18094–103.

    Article  CAS  Google Scholar 

  78. Doyle T, Bryant L, Muscoli C, Cuzzocrea S, Esposito E, Chen Z, et al. Spinal NADPH oxidase is a source of superoxide in the development of morphine-induced hyperalgesia and antinociceptive tolerance. Neurosci Lett. 2010;483(2):85–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kallenborn-Gerhardt W, Schroder K, Del Turco D, Lu R, Kynast K, Kosowski J, et al. NADPH oxidase-4 maintains neuropathic pain after peripheral nerve injury. J Neurosci. 2012;32(30):10136–45.

    Article  CAS  PubMed  Google Scholar 

  80. Im YB, Jee MK, Jung JS, Choi JI, Jang JH, Kang SK. miR23b ameliorates neuropathic pain in spinal cord by silencing NADPH oxidase 4. Antioxid Redox Signal. 2012;16(10):1046–60.

    Article  CAS  PubMed  Google Scholar 

  81. Connor M. Allopurinol for pain relief: more than just crystal clearance? Br J Pharmacol. 2009;156(1):4–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kwak KH, Han CG, Lee SH, Jeon Y, Park SS, Kim SO, et al. Reactive oxygen species in rats with chronic post-ischemia pain. Acta Anaesthesiol Scand. 2009;53(5):648–56.

    Article  CAS  PubMed  Google Scholar 

  83. Melov S. Mitochondrial oxidative stress. Physiologic consequences and potential for a role in aging. Ann N Y Acad Sci. 2000;908:219–25.

    Article  CAS  PubMed  Google Scholar 

  84. Ho YS, Magnenat JL, Gargano M, Cao J. The nature of antioxidant defense mechanisms: a lesson from transgenic studies. Environ Health Perspect. 1998;106 Suppl 5:1219–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. MacMillan-Crow LA, Thompson JA. Tyrosine modifications and inactivation of active site manganese superoxide dismutase mutant (Y34F) by peroxynitrite. Arch Biochem Biophys. 1999;366(1):82–8.

    Article  CAS  PubMed  Google Scholar 

  86. Muscoli C, Mollace V, Wheatley J, Masini E, Ndengele M, Wang ZQ, et al. Superoxide-mediated nitration of spinal manganese superoxide dismutase: a novel pathway in N-methyl-D-aspartate-mediated hyperalgesia. Pain. 2004;111(1-2):96–103.

    Article  CAS  PubMed  Google Scholar 

  87. Bredt DS, Snyder SH. Nitric oxide, a novel neuronal messenger. Neuron. 1992;8(1):3–11.

    Article  CAS  PubMed  Google Scholar 

  88. Dawson TM, Dawson VL, Snyder SH. A novel neuronal messenger molecule in brain: the free radical, nitric oxide. Ann Neurol. 1992;32(3):297–311.

    Article  CAS  PubMed  Google Scholar 

  89. Meller ST, Gebhart GF. Nitric oxide (NO) and nociceptive processing in the spinal cord. Pain. 1993;52(2):127–36.

    Article  CAS  PubMed  Google Scholar 

  90. O'Dell TJ, Hawkins RD, Kandel ER, Arancio O. Tests of the roles of two diffusible substances in long-term potentiation: evidence for nitric oxide as a possible early retrograde messenger. Proc Natl Acad Sci U S A. 1991;88(24):11285–9.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Ignarro LJ. Haem-dependent activation of guanylate cyclase and cyclic GMP formation by endogenous nitric oxide: a unique transduction mechanism for transcellular signaling. Pharmacol Toxicol. 1990;67(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  92. Ignarro LJ. Heme-dependent activation of guanylate cyclase by nitric oxide: a novel signal transduction mechanism. Blood Vessels. 1991;28(1-3):67–73.

    CAS  PubMed  Google Scholar 

  93. Schmidtko A, Tegeder I, Geisslinger G. No NO, no pain? The role of nitric oxide and cGMP in spinal pain processing. Trends Neurosci. 2009;32(6):339–46.

    Article  CAS  PubMed  Google Scholar 

  94. Tegeder I, Scheving R, Wittig I, Geisslinger G. SNO-ing at the nociceptive synapse? Pharmacol Rev. 2011;63(2):366–89.

    Article  CAS  PubMed  Google Scholar 

  95. Tanabe M, Nagatani Y, Saitoh K, Takasu K, Ono H. Pharmacological assessments of nitric oxide synthase isoforms and downstream diversity of NO signaling in the maintenance of thermal and mechanical hypersensitivity after peripheral nerve injury in mice. Neuropharmacology. 2009;56(3):702–8.

    Article  CAS  PubMed  Google Scholar 

  96. Riedel W, Neeck G. Nociception, pain, and antinociception: current concepts. Z Rheumatol. 2001;60(6):404–15.

    Article  CAS  PubMed  Google Scholar 

  97. Cury Y, Picolo G, Gutierrez VP, Ferreira SH. Pain and analgesia: The dual effect of nitric oxide in the nociceptive system. Nitric Oxide. 2011;25(3):243–54.

    Article  CAS  PubMed  Google Scholar 

  98. Schmidt HH, Pollock JS, Nakane M, Forstermann U, Murad F. Ca2+/calmodulin-regulated nitric oxide synthases. Cell Calcium. 1992;13(6-7):427–34.

    Article  CAS  PubMed  Google Scholar 

  99. Forstermann U, Closs EI, Pollock JS, Nakane M, Schwarz P, Gath I, et al. Nitric oxide synthase isozymes. Characterization, purification, molecular cloning, and functions. Hypertension. 1994;23(6 Pt 2):1121–31.

    Article  CAS  PubMed  Google Scholar 

  100. Bredt DS, Hwang PM, Snyder SH. Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature. 1990;347(6295):768–70.

    Article  CAS  PubMed  Google Scholar 

  101. Cao J, Viholainen JI, Dart C, Warwick HK, Leyland ML, Courtney MJ. The PSD95-nNOS interface: a target for inhibition of excitotoxic p38 stress-activated protein kinase activation and cell death. J Cell Biol. 2005;168(1):117–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ahlawat A, Rana A, Goyal N, Sharma S. Potential role of nitric oxide synthase isoforms in pathophysiology of neuropathic pain. Inflammopharmacology. 2014;22(5):269–78.

    Article  CAS  PubMed  Google Scholar 

  103. Keilhoff G, Schroder H, Peters B, Becker A. Time-course of neuropathic pain in mice deficient in neuronal or inducible nitric oxide synthase. Neurosci Res. 2013;77(4):215–21.

    Article  CAS  PubMed  Google Scholar 

  104. Mukherjee P, Cinelli MA, Kang S, Silverman RB. Development of nitric oxide synthase inhibitors for neurodegeneration and neuropathic pain. Chem Soc Rev. 2014;43(19):6814–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Annedi SC, Maddaford SP, Mladenova G, Ramnauth J, Rakhit S, Andrews JS, et al. Discovery of N-(3-(1-methyl-1,2,3,6-tetrahydropyridin-4-yl)-1H-indol-6-yl) thiophene-2-carboximidamide as a selective inhibitor of human neuronal nitric oxide synthase (nNOS) for the treatment of pain. J Med Chem. 2011;54(20):7408–16.

    Article  CAS  PubMed  Google Scholar 

  106. Mihara Y, Egashira N, Sada H, Kawashiri T, Ushio S, Yano T, et al. Involvement of spinal NR2B-containing NMDA receptors in oxaliplatin-induced mechanical allodynia in rats. Mol Pain. 2011;7:8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Vareniuk I, Pacher P, Pavlov IA, Drel VR, Obrosova IG. Peripheral neuropathy in mice with neuronal nitric oxide synthase gene deficiency. Int J Mol Med. 2009;23(5):571–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Knowles RG, Moncada S. Nitric oxide synthases in mammals. Biochem J. 1994;298(Pt 2):249–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Bonnefous C, Payne JE, Roppe J, Zhuang H, Chen X, Symons KT, et al. Discovery of inducible nitric oxide synthase (iNOS) inhibitor development candidate KD7332, part 1: Identification of a novel, potent, and selective series of quinolinone iNOS dimerization inhibitors that are orally active in rodent pain models. J Med Chem. 2009;52(9):3047–62.

    Article  CAS  PubMed  Google Scholar 

  110. Kuboyama K, Tsuda M, Tsutsui M, Toyohara Y, Tozaki-Saitoh H, Shimokawa H, et al. Reduced spinal microglial activation and neuropathic pain after nerve injury in mice lacking all three nitric oxide synthases. Mol Pain. 2011;7:50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Cassuto J, Dou H, Czikora I, Szabo A, Patel VS, Kamath V, et al. Peroxynitrite disrupts endothelial caveolae leading to eNOS uncoupling and diminished flow-mediated dilation in coronary arterioles of diabetic patients. Diabetes. 2014;63(4):1381–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Luo S, Lei H, Qin H, Xia Y. Molecular mechanisms of endothelial NO synthase uncoupling. Curr Pharm Des. 2014;20(22):3548–53.

    Article  CAS  PubMed  Google Scholar 

  113. Zhang C, Li PL. Membrane raft redox signalosomes in endothelial cells. Free Radic Res. 2010;44(8):831–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Felley-Bosco E, Bender F, Quest AF. Caveolin-1-mediated post-transcriptional regulation of inducible nitric oxide synthase in human colon carcinoma cells. Biol Res. 2002;35(2):169–76.

    Article  CAS  PubMed  Google Scholar 

  115. Carozzi VA, Canta A, Chiorazzi A, Cavaletti G. Chemotherapy-induced peripheral neuropathy: What do we know about mechanisms? Neurosci Lett. 2015;596:90–107.

    Article  CAS  PubMed  Google Scholar 

  116. Osikowicz M, Mika J, Przewlocka B. The glutamatergic system as a target for neuropathic pain relief. Exp Physiol. 2013;98(2):372–84.

    Article  CAS  PubMed  Google Scholar 

  117. Hutchinson MR, Shavit Y, Grace PM, Rice KC, Maier SF, Watkins LR. Exploring the neuroimmunopharmacology of opioids: an integrative review of mechanisms of central immune signaling and their implications for opioid analgesia. Pharmacol Rev. 2011;63(3):772–810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Latremoliere A, Woolf CJ. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain. 2009;10(9):895–926.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Ossipov MH, Lai J, Malan Jr TP, Porreca F. Spinal and supraspinal mechanisms of neuropathic pain. Ann N Y Acad Sci. 2000;909:12–24.

    Article  CAS  PubMed  Google Scholar 

  120. De Felipe C, Herrero JF, O'Brien JA, Palmer JA, Doyle CA, Smith AJ, et al. Altered nociception, analgesia and aggression in mice lacking the receptor for substance P. Nature. 1998;392(6674):394–7.

    Article  PubMed  Google Scholar 

  121. Bleakman D, Alt A, Nisenbaum ES. Glutamate receptors and pain. Semin Cell Dev Biol. 2006;17(5):592–604.

    Article  CAS  PubMed  Google Scholar 

  122. Hertz L. Functional interactions between neurons and astrocytes I. Turnover and metabolism of putative amino acid transmitters. Prog Neurobiol. 1979;13(3):277–323.

    Article  CAS  PubMed  Google Scholar 

  123. Choi BH. Radial glia of developing human fetal spinal cord: Golgi, immunohistochemical and electron microscopic study. Brain Res. 1981;227(2):249–67.

    Article  CAS  PubMed  Google Scholar 

  124. Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, et al. Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science. 1997;276(5319):1699–702.

    Article  CAS  PubMed  Google Scholar 

  125. Brustovetsky T, Purl K, Young A, Shimizu K, Dubinsky JM. Dearth of glutamate transporters contributes to striatal excitotoxicity. Exp Neurol. 2004;189(2):222–30.

    Article  CAS  PubMed  Google Scholar 

  126. Jabaudon D, Scanziani M, Gahwiler BH, Gerber U. Acute decrease in net glutamate uptake during energy deprivation. Proc Natl Acad Sci U S A. 2000;97(10):5610–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Mennerick S, Shen W, Xu W, Benz A, Tanaka K, Shimamoto K, et al. Substrate turnover by transporters curtails synaptic glutamate transients. J Neurosci. 1999;19(21):9242–51.

    CAS  PubMed  Google Scholar 

  128. Semba J, Wakuta MS. Regional differences in the effects of glutamate uptake inhibitor L-trans-pyrrolidine-2,4-dicarboxylic acid on extracellular amino acids and dopamine in rat brain: an in vivo microdialysis study. Gen Pharmacol. 1998;31(3):399–404.

    Article  CAS  PubMed  Google Scholar 

  129. Mennerick S, Zorumski CF. Glial contributions to excitatory neurotransmission in cultured hippocampal cells. Nature. 1994;368(6466):59–62.

    Article  CAS  PubMed  Google Scholar 

  130. Rothstein JD, Martin L, Levey AI, Dykes-Hoberg M, Jin L, Wu D, et al. Localization of neuronal and glial glutamate transporters. Neuron. 1994;13(3):713–25.

    Article  CAS  PubMed  Google Scholar 

  131. Danbolt NC. Glutamate uptake. Prog Neurobiol. 2001;65(1):1–105.

    Article  CAS  PubMed  Google Scholar 

  132. Minana MD, Kosenko E, Marcaida G, Hermenegildo C, Montoliu C, Grisolia S, et al. Modulation of glutamine synthesis in cultured astrocytes by nitric oxide. Cell Mol Neurobiol. 1997;17(4):433–45.

    Article  CAS  PubMed  Google Scholar 

  133. Gorg B, Qvartskhava N, Bidmon HJ, Palomero-Gallagher N, Kircheis G, Zilles K, et al. Oxidative stress markers in the brain of patients with cirrhosis and hepatic encephalopathy. Hepatology. 2010;52(1):256–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Gorg B, Qvartskhava N, Voss P, Grune T, Haussinger D, Schliess F. Reversible inhibition of mammalian glutamine synthetase by tyrosine nitration. FEBS Lett. 2007;581(1):84–90.

    Article  PubMed  CAS  Google Scholar 

  135. Gorg B, Wettstein M, Metzger S, Schliess F, Haussinger D. Lipopolysaccharide-induced tyrosine nitration and inactivation of hepatic glutamine synthetase in the rat. Hepatology. 2005;41(5):1065–73.

    Article  PubMed  CAS  Google Scholar 

  136. Schliess F, Gorg B, Fischer R, Desjardins P, Bidmon HJ, Herrmann A, et al. Ammonia induces MK-801-sensitive nitration and phosphorylation of protein tyrosine residues in rat astrocytes. FASEB J. 2002;16(7):739–41.

    CAS  PubMed  Google Scholar 

  137. Bidmon HJ, Gorg B, Palomero-Gallagher N, Schleicher A, Haussinger D, Speckmann EJ, et al. Glutamine synthetase becomes nitrated and its activity is reduced during repetitive seizure activity in the pentylentetrazole model of epilepsy. Epilepsia. 2008;49(10):1733–48.

    Article  CAS  PubMed  Google Scholar 

  138. Trotti D, Rolfs A, Danbolt NC, Brown Jr RH, Hediger MA. SOD1 mutants linked to amyotrophic lateral sclerosis selectively inactivate a glial glutamate transporter. Nat Neurosci. 1999;2(9):848.

    Article  CAS  PubMed  Google Scholar 

  139. Trotti D, Rossi D, Gjesdal O, Levy LM, Racagni G, Danbolt NC, et al. Peroxynitrite inhibits glutamate transporter subtypes. J Biol Chem. 1996;271(11):5976–9.

    Article  CAS  PubMed  Google Scholar 

  140. Arriza JL, Kavanaugh MP, Fairman WA, Wu YN, Murdoch GH, North RA, et al. Cloning and expression of a human neutral amino acid transporter with structural similarity to the glutamate transporter gene family. J Biol Chem. 1993;268(21):15329–32.

    CAS  PubMed  Google Scholar 

  141. Fairman WA, Vandenberg RJ, Arriza JL, Kavanaugh MP, Amara SG. An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature. 1995;375(6532):599–603.

    Article  CAS  PubMed  Google Scholar 

  142. Kanai Y, Hediger MA. Primary structure and functional characterization of a high-affinity glutamate transporter. Nature. 1992;360(6403):467–71.

    Article  CAS  PubMed  Google Scholar 

  143. Pines G, Danbolt NC, Bjoras M, Zhang Y, Bendahan A, Eide L, et al. Cloning and expression of a rat brain L-glutamate transporter. Nature. 1992;360(6403):464–7.

    Article  CAS  PubMed  Google Scholar 

  144. Robinson MB, Dowd LA. Heterogeneity and functional properties of subtypes of sodium-dependent glutamate transporters in the mammalian central nervous system. Adv Pharmacol. 1997;37:69–115.

    Article  CAS  PubMed  Google Scholar 

  145. Storck T, Schulte S, Hofmann K, Stoffel W. Structure, expression, and functional analysis of a Na(+)-dependent glutamate/aspartate transporter from rat brain. Proc Natl Acad Sci U S A. 1992;89(22):10955–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Chen Y, Swanson RA. The glutamate transporters EAAT2 and EAAT3 mediate cysteine uptake in cortical neuron cultures. J Neurochem. 2003;84(6):1332–9.

    Article  CAS  PubMed  Google Scholar 

  147. Shanker G, Allen JW, Mutkus LA, Aschner M. The uptake of cysteine in cultured primary astrocytes and neurons. Brain Res. 2001;902(2):156–63.

    Article  CAS  PubMed  Google Scholar 

  148. Himi T, Ikeda M, Yasuhara T, Nishida M, Morita I. Role of neuronal glutamate transporter in the cysteine uptake and intracellular glutathione levels in cultured cortical neurons. J Neural Transm. 2003;110(12):1337–48.

    Article  CAS  PubMed  Google Scholar 

  149. Dringen R, Pfeiffer B, Hamprecht B. Synthesis of the antioxidant glutathione in neurons: supply by astrocytes of CysGly as precursor for neuronal glutathione. J Neurosci. 1999;19(2):562–9.

    CAS  PubMed  Google Scholar 

  150. Aoyama K, Matsumura N, Watabe M, Nakaki T. Oxidative stress on EAAC1 is involved in MPTP-induced glutathione depletion and motor dysfunction. Eur J Neurosci. 2008;27(1):20–30.

    Article  PubMed  Google Scholar 

  151. Tao YX, Gu J, Stephens Jr RL. Role of spinal cord glutamate transporter during normal sensory transmission and pathological pain states. Mol Pain. 2005;1:30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Muscoli C, Visalli V, Colica C, Nistico R, Palma E, Costa N, et al. The effect of inflammatory stimuli on NMDA-related activation of glutamine synthase in human cultured astroglial cells. Neurosci Lett. 2005;373(3):184–8.

    Article  CAS  PubMed  Google Scholar 

  153. Suarez I, Bodega G, Fernandez B. Glutamine synthetase in brain: effect of ammonia. Neurochem Int. 2002;41(2-3):123–42.

    Article  CAS  PubMed  Google Scholar 

  154. Kimelberg HK, Goderie SK, Higman S, Pang S, Waniewski RA. Swelling-induced release of glutamate, aspartate, and taurine from astrocyte cultures. J Neurosci. 1990;10(5):1583–91.

    CAS  PubMed  Google Scholar 

  155. Rose C, Kresse W, Kettenmann H. Acute insult of ammonia leads to calcium-dependent glutamate release from cultured astrocytes, an effect of pH. J Biol Chem. 2005;280(22):20937–44.

    Article  CAS  PubMed  Google Scholar 

  156. Mishra OP, Delivoria-Papadopoulos M. Cellular mechanisms of hypoxic injury in the developing brain. Brain Res Bull. 1999;48(3):233–8.

    Article  CAS  PubMed  Google Scholar 

  157. Zanelli SA, Ashraf QM, Delivoria-Papadopoulos M, Mishra OP. Peroxynitrite-induced modification of the N-methyl-D-aspartate receptor in the cerebral cortex of the guinea pig fetus at term. Neurosci Lett. 2000;296(1):5–8.

    Article  CAS  PubMed  Google Scholar 

  158. Zanelli SA, Ashraf QM, Mishra OP. Nitration is a mechanism of regulation of the NMDA receptor function during hypoxia. Neuroscience. 2002;112(4):869–77.

    Article  CAS  PubMed  Google Scholar 

  159. South SM, Kohno T, Kaspar BK, Hegarty D, Vissel B, Drake CT, et al. A conditional deletion of the NR1 subunit of the NMDA receptor in adult spinal cord dorsal horn reduces NMDA currents and injury-induced pain. J Neurosci. 2003;23(12):5031–40.

    CAS  PubMed  Google Scholar 

  160. Lin SL, Tsai RY, Shen CH, Lin FH, Wang JJ, Hsin ST, et al. Co-administration of ultra-low dose naloxone attenuates morphine tolerance in rats via attenuation of NMDA receptor neurotransmission and suppression of neuroinflammation in the spinal cords. Pharmacol Biochem Behav. 2010;96(2):236–45.

    Article  CAS  PubMed  Google Scholar 

  161. Mao J, Price DD, Phillips LL, Lu J, Mayer DJ. Increases in protein kinase C gamma immunoreactivity in the spinal cord of rats associated with tolerance to the analgesic effects of morphine. Brain Res. 1995;677(2):257–67.

    Article  CAS  PubMed  Google Scholar 

  162. Robles-Flores M, Melendez L, Garcia W, Mendoza-Hernandez G, Lam TT, Castaneda-Patlan C, et al. Posttranslational modifications on protein kinase c isozymes. Effects of epinephrine and phorbol esters. Biochim Biophys Acta. 2008;1783(5):695–712.

    Article  CAS  PubMed  Google Scholar 

  163. Balafanova Z, Bolli R, Zhang J, Zheng Y, Pass JM, Bhatnagar A, et al. Nitric oxide (NO) induces nitration of protein kinase Cepsilon (PKCepsilon), facilitating PKCepsilon translocation via enhanced PKCepsilon -RACK2 interactions: a novel mechanism of no-triggered activation of PKCepsilon. J Biol Chem. 2002;277(17):15021–7.

    Article  CAS  PubMed  Google Scholar 

  164. Brenner GJ, Ji RR, Shaffer S, Woolf CJ. Peripheral noxious stimulation induces phosphorylation of the NMDA receptor NR1 subunit at the PKC-dependent site, serine-896, in spinal cord dorsal horn neurons. Eur J Neurosci. 2004;20(2):375–84.

    Article  PubMed  Google Scholar 

  165. Yang ZJ, Wang B, Kwansa H, Heitmiller KD, Hong G, Carter EL, et al. Adenosine A2A receptor contributes to ischemic brain damage in newborn piglet. J Cereb Blood Flow Metab. 2013;33(10):1612–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Palkar R, Lippoldt EK, McKemy DD. The molecular and cellular basis of thermosensation in mammals. Curr Opin Neurobiol. 2015;34C:14–9.

    Article  CAS  Google Scholar 

  167. Islam MS, editor. Transient receptor potential channels. Dordrecht: Springer; 2011.

    Google Scholar 

  168. Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, et al. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron. 1998;21(3):531–43.

    Article  CAS  PubMed  Google Scholar 

  169. Szallasi A, Blumberg PM. Vanilloid (Capsaicin) receptors and mechanisms. Pharmacol Rev. 1999;51(2):159–212.

    CAS  PubMed  Google Scholar 

  170. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature. 1997;389(6653):816–24.

    Article  CAS  PubMed  Google Scholar 

  171. Pingle SC, Matta JA, Ahern GP. Capsaicin receptor: TRPV1 a promiscuous TRP channel. Handb Exp Pharmacol. 2007;179:155–71.

    Article  CAS  Google Scholar 

  172. Valtschanoff JG, Rustioni A, Guo A, Hwang SJ. Vanilloid receptor VR1 is both presynaptic and postsynaptic in the superficial laminae of the rat dorsal horn. J Comp Neurol. 2001;436(2):225–35.

    Article  CAS  PubMed  Google Scholar 

  173. Carlton SM, Coggeshall RE. Peripheral capsaicin receptors increase in the inflamed rat hindpaw: a possible mechanism for peripheral sensitization. Neurosci Lett. 2001;310(1):53–6.

    Article  CAS  PubMed  Google Scholar 

  174. Mezey E, Toth ZE, Cortright DN, Arzubi MK, Krause JE, Elde R, et al. Distribution of mRNA for vanilloid receptor subtype 1 (VR1), and VR1-like immunoreactivity, in the central nervous system of the rat and human. Proc Natl Acad Sci U S A. 2000;97(7):3655–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  175. Cui Y, Chen Y, Zhi JL, Guo RX, Feng JQ, Chen PX. Activation of p38 mitogen-activated protein kinase in spinal microglia mediates morphine antinociceptive tolerance. Brain Res. 2006;1069(1):235–43.

    Article  CAS  PubMed  Google Scholar 

  176. Davis JB, Gray J, Gunthorpe MJ, Hatcher JP, Davey PT, Overend P, et al. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature. 2000;405(6783):183–7.

    Article  CAS  PubMed  Google Scholar 

  177. Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science. 2000;288(5464):306–13.

    Article  CAS  PubMed  Google Scholar 

  178. Palazzo E, de Novellis V, Marabese I, Cuomo D, Rossi F, Berrino L, et al. Interaction between vanilloid and glutamate receptors in the central modulation of nociception. Eur J Pharmacol. 2002;439(1-3):69–75.

    Article  CAS  PubMed  Google Scholar 

  179. Jin YH, Bailey TW, Li BY, Schild JH, Andresen MC. Purinergic and vanilloid receptor activation releases glutamate from separate cranial afferent terminals in nucleus tractus solitarius. J Neurosci. 2004;24(20):4709–17.

    Article  CAS  PubMed  Google Scholar 

  180. Marinelli S, Vaughan CW, Christie MJ, Connor M. Capsaicin activation of glutamatergic synaptic transmission in the rat locus coeruleus in vitro. J Physiol. 2002;543(Pt 2):531–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Musella A, De Chiara V, Rossi S, Prosperetti C, Bernardi G, Maccarrone M, et al. TRPV1 channels facilitate glutamate transmission in the striatum. Mol Cell Neurosci. 2009;40(1):89–97.

    Article  CAS  PubMed  Google Scholar 

  182. Yang K, Kumamoto E, Furue H, Yoshimura M. Capsaicin facilitates excitatory but not inhibitory synaptic transmission in substantia gelatinosa of the rat spinal cord. Neurosci Lett. 1998;255(3):135–8.

    Article  CAS  PubMed  Google Scholar 

  183. Li HB, Mao RR, Zhang JC, Yang Y, Cao J, Xu L. Antistress effect of TRPV1 channel on synaptic plasticity and spatial memory. Biol Psychiatry. 2008;64(4):286–92.

    Article  CAS  PubMed  Google Scholar 

  184. Wong GY, Gavva NR. Therapeutic potential of vanilloid receptor TRPV1 agonists and antagonists as analgesics: Recent advances and setbacks. Brain Res Rev. 2009;60(1):267–77.

    Article  CAS  PubMed  Google Scholar 

  185. Schumacher MA. Transient receptor potential channels in pain and inflammation: therapeutic opportunities. Pain Pract. 2010;10(3):185–200.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Palazzo E, Luongo L, de Novellis V, Berrino L, Rossi F, Maione S. Moving towards supraspinal TRPV1 receptors for chronic pain relief. Mol Pain. 2010;6:66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  187. Schultz HD, Ustinova EE. Capsaicin receptors mediate free radical-induced activation of cardiac afferent endings. Cardiovasc Res. 1998;38(2):348–55.

    Article  CAS  PubMed  Google Scholar 

  188. Ustinova EE, Schultz HD. Activation of cardiac vagal afferents by oxygen-derived free radicals in rats. Circ Res. 1994;74(5):895–903.

    Article  CAS  PubMed  Google Scholar 

  189. Knapp LT, Kanterewicz BI, Hayes EL, Klann E. Peroxynitrite-induced tyrosine nitration and inhibition of protein kinase C. Biochem Biophys Res Commun. 2001;286(4):764–70.

    Article  CAS  PubMed  Google Scholar 

  190. Cerutti PA. Mechanisms of action of oxidant carcinogens. Cancer Detect Prev. 1989;14(2):281–4.

    CAS  PubMed  Google Scholar 

  191. Gopalakrishna R, Jaken S. Protein kinase C signaling and oxidative stress. Free Radic Biol Med. 2000;28(9):1349–61.

    Article  CAS  PubMed  Google Scholar 

  192. Schilling T, Eder C. Importance of the non-selective cation channel TRPV1 for microglial reactive oxygen species generation. J Neuroimmunol. 2009;216(1-2):118–21.

    Article  CAS  PubMed  Google Scholar 

  193. Westlund KN, Kochukov MY, Lu Y, McNearney TA. Impact of central and peripheral TRPV1 and ROS levels on proinflammatory mediators and nociceptive behavior. Mol Pain. 2010;6:46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Tominaga M, Tominaga T. Structure and function of TRPV1. Pflugers Arch. 2005;451(1):143–50.

    Article  CAS  PubMed  Google Scholar 

  195. Mohapatra DP, Wang SY, Wang GK, Nau C. A tyrosine residue in TM6 of the Vanilloid Receptor TRPV1 involved in desensitization and calcium permeability of capsaicin-activated currents. Mol Cell Neurosci. 2003;23(2):314–24.

    Article  CAS  PubMed  Google Scholar 

  196. Ito N, Ruegg UT, Kudo A, Miyagoe-Suzuki Y, Takeda S. Activation of calcium signaling through Trpv1 by nNOS and peroxynitrite as a key trigger of skeletal muscle hypertrophy. Nat Med. 2013;19(1):101–6.

    Article  CAS  PubMed  Google Scholar 

  197. Chuang HH, Lin S. Oxidative challenges sensitize the capsaicin receptor by covalent cysteine modification. Proc Natl Acad Sci U S A. 2009;106(47):20097–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Susankova K, Tousova K, Vyklicky L, Teisinger J, Vlachova V. Reducing and oxidizing agents sensitize heat-activated vanilloid receptor (TRPV1) current. Mol Pharmacol. 2006;70(1):383–94.

    CAS  PubMed  Google Scholar 

  199. Gazzieri D, Trevisani M, Springer J, Harrison S, Cottrell GS, Andre E, et al. Substance P released by TRPV1-expressing neurons produces reactive oxygen species that mediate ethanol-induced gastric injury. Free Radic Biol Med. 2007;43(4):581–9.

    Article  CAS  PubMed  Google Scholar 

  200. Sato H, Shibata M, Shimizu T, Shibata S, Toriumi H, Ebine T, et al. Differential cellular localization of antioxidant enzymes in the trigeminal ganglion. Neuroscience. 2013;248:345–58.

    Article  CAS  PubMed  Google Scholar 

  201. Schilling T, Eder C. Stimulus-dependent requirement of ion channels for microglial NADPH oxidase-mediated production of reactive oxygen species. J Neuroimmunol. 2010;225(1-2):190–4.

    Article  CAS  PubMed  Google Scholar 

  202. Ma F, Zhang L, Westlund KN. Reactive oxygen species mediate TNFR1 increase after TRPV1 activation in mouse DRG neurons. Mol Pain. 2009;5:31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Patwardhan AM, Akopian AN, Ruparel NB, Diogenes A, Weintraub ST, Uhlson C, et al. Heat generates oxidized linoleic acid metabolites that activate TRPV1 and produce pain in rodents. J Clin Invest. 2010;120(5):1617–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Patwardhan AM, Scotland PE, Akopian AN, Hargreaves KM. Activation of TRPV1 in the spinal cord by oxidized linoleic acid metabolites contributes to inflammatory hyperalgesia. Proc Natl Acad Sci U S A. 2009;106(44):18820–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Taylor-Clark TE, Ghatta S, Bettner W, Undem BJ. Nitrooleic acid, an endogenous product of nitrative stress, activates nociceptive sensory nerves via the direct activation of TRPA1. Mol Pharmacol. 2009;75(4):820–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Green DP, Ruparel S, Roman L, Henry MA, Hargreaves KM. Role of endogenous TRPV1 agonists in a postburn pain model of partial-thickness injury. Pain. 2013;154(11):2512–20.

    Article  CAS  PubMed  Google Scholar 

  207. Salvemini D, Wang ZQ, Wyatt PS, Bourdon DM, Marino MH, Manning PT, et al. Nitric oxide: a key mediator in the early and late phase of carrageenan-induced rat paw inflammation. Br J Pharmacol. 1996;118(4):829–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Cuzzocrea S, Salvemini D. Molecular mechanisms involved in the reciprocal regulation of cyclooxygenase and nitric oxide synthase enzymes. Kidney Int. 2007;71(4):290–7.

    Article  CAS  PubMed  Google Scholar 

  209. Mollace V, Muscoli C, Masini E, Cuzzocrea S, Salvemini D. Modulation of prostaglandin biosynthesis by nitric oxide and nitric oxide donors. Pharmacol Rev. 2005;57(2):217–52.

    Article  CAS  PubMed  Google Scholar 

  210. Ricciotti E, FitzGerald GA. Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol. 2011;31(5):986–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Gold MS, Levine JD, Correa AM. Modulation of TTX-R INa by PKC and PKA and their role in PGE2-induced sensitization of rat sensory neurons in vitro. J Neurosci. 1998;18(24):10345–55.

    CAS  PubMed  Google Scholar 

  212. Sachs D, Villarreal C, Cunha F, Parada C, Ferreira S. The role of PKA and PKCepsilon pathways in prostaglandin E2-mediated hypernociception. Br J Pharmacol. 2009;156(5):826–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Kawabata A. Prostaglandin E2 and pain—an update. Biol Pharm Bull. 2011;34(8):1170–3.

    Article  CAS  PubMed  Google Scholar 

  214. Minami T, Nakano H, Kobayashi T, Sugimoto Y, Ushikubi F, Ichikawa A, et al. Characterization of EP receptor subtypes responsible for prostaglandin E2-induced pain responses by use of EP1 and EP3 receptor knockout mice. Br J Pharmacol. 2001;133(3):438–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Nakayama Y, Omote K, Kawamata T, Namiki A. Role of prostaglandin receptor subtype EP1 in prostaglandin E2-induced nociceptive transmission in the rat spinal dorsal horn. Brain Res. 2004;1010(1-2):62–8.

    Article  CAS  PubMed  Google Scholar 

  216. Nakayama Y, Omote K, Namiki A. Role of prostaglandin receptor EP1 in the spinal dorsal horn in carrageenan-induced inflammatory pain. Anesthesiology. 2002;97(5):1254–62.

    Article  CAS  PubMed  Google Scholar 

  217. Durrenberger PF, Facer P, Casula MA, Yiangou Y, Gray RA, Chessell IP, et al. Prostanoid receptor EP1 and Cox-2 in injured human nerves and a rat model of nerve injury: a time-course study. BMC Neurol. 2006;6:1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  218. Salvemini D, Misko TP, Masferrer JL, Seibert K, Currie MG, Needleman P. Nitric oxide activates cyclooxygenase enzymes. Proc Natl Acad Sci U S A. 1993;90(15):7240–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Yang T, Zhang A, Pasumarthy A, Zhang L, Warnock Z, Schnermann JB. Nitric oxide stimulates COX-2 expression in cultured collecting duct cells through MAP kinases and superoxide but not cGMP. Am J Physiol. 2006;291(4):F891–5.

    CAS  Google Scholar 

  220. Cheng HF, Zhang MZ, Harris RC. Nitric oxide stimulates cyclooxygenase-2 in cultured cTAL cells through a p38-dependent pathway. Am J Physiol. 2006;290(6):F1391–7.

    CAS  Google Scholar 

  221. Salvemini D, Kim SF, Mollace V. Reciprocal regulation of the nitric oxide and cyclooxygenase pathway in pathophysiology: relevance and clinical implications. Am J Physiol Regul Integr Comp Physiol. 2013;304(7):R473–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Kim SF, Huri DA, Snyder SH. Inducible nitric oxide synthase binds, S-nitrosylates, and activates cyclooxygenase-2. Science. 2005;310(5756):1966–70.

    Article  CAS  PubMed  Google Scholar 

  223. Ferrari LF, Bogen O, Reichling DB, Levine JD. Accounting for the delay in the transition from acute to chronic pain: axonal and nuclear mechanisms. J Neurosci. 2015;35(2):495–507.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Markey CM, Alward A, Weller PE, Marnett LJ. Quantitative studies of hydroperoxide reduction by prostaglandin H synthase. Reducing substrate specificity and the relationship of peroxidase to cyclooxygenase activities. J Biol Chem. 1987;262(13):6266–79.

    CAS  PubMed  Google Scholar 

  225. Landino LM, Crews BC, Timmons MD, Morrow JD, Marnett LJ. Peroxynitrite, the coupling product of nitric oxide and superoxide, activates prostaglandin biosynthesis. Proc Natl Acad Sci U S A. 1996;93(26):15069–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Zou M, Jendral M, Ullrich V. Prostaglandin endoperoxide-dependent vasospasm in bovine coronary arteries after nitration of prostacyclin synthase. Br J Pharmacol. 1999;126(6):1283–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Bachschmid M, Thurau S, Zou MH, Ullrich V. Endothelial cell activation by endotoxin involves superoxide/NO-mediated nitration of prostacyclin synthase and thromboxane receptor stimulation. FASEB J. 2003;17(8):914–6.

    CAS  PubMed  Google Scholar 

  228. Roques BP, Fournie-Zaluski MC, Wurm M. Inhibiting the breakdown of endogenous opioids and cannabinoids to alleviate pain. Nat Rev Drug Discov. 2012;11(4):292–310.

    Article  CAS  PubMed  Google Scholar 

  229. Akil H, Watson SJ, Young E, Lewis ME, Khachaturian H, Walker JM. Endogenous opioids: biology and function. Annu Rev Neurosci. 1984;7:223–55.

    Article  CAS  PubMed  Google Scholar 

  230. Mika J, Obara I, Przewlocka B. The role of nociceptin and dynorphin in chronic pain: implications of neuro-glial interaction. Neuropeptides. 2011;45(4):247–61.

    Article  CAS  PubMed  Google Scholar 

  231. Laughlin TM, Larson AA, Wilcox GL. Mechanisms of induction of persistent nociception by dynorphin. J Pharmacol Exp Ther. 2001;299(1):6–11.

    CAS  PubMed  Google Scholar 

  232. Gardell LR, Vanderah TW, Gardell SE, Wang R, Ossipov MH, Lai J, et al. Enhanced evoked excitatory transmitter release in experimental neuropathy requires descending facilitation. J Neurosci. 2003;23(23):8370–9.

    CAS  PubMed  Google Scholar 

  233. Vera-Portocarrero LP, Zhang ET, King T, Ossipov MH, Vanderah TW, Lai J, et al. Spinal NK-1 receptor expressing neurons mediate opioid-induced hyperalgesia and antinociceptive tolerance via activation of descending pathways. Pain. 2007;129(1-2):35–45.

    Article  CAS  PubMed  Google Scholar 

  234. Przewlocki R, Przewlocka B. Opioids in chronic pain. Eur J Pharmacol. 2001;429(1-3):79–91.

    Article  CAS  PubMed  Google Scholar 

  235. Yi D, Smythe GA, Blount BC, Duncan MW. Peroxynitrite-mediated nitration of peptides: characterization of the products by electrospray and combined gas chromatography-mass spectrometry. Arch Biochem Biophys. 1997;344(2):253–9.

    Article  CAS  PubMed  Google Scholar 

  236. Fontana M, Pecci L, Schinina ME, Montefoschi G, Rosei MA. Oxidative and nitrative modifications of enkephalins by reactive nitrogen species. Free Radic Res. 2006;40(7):697–706.

    Article  CAS  PubMed  Google Scholar 

  237. Capuozzo E, Pecci L, Giovannitti F, Baseggio Conrado A, Fontana M. Oxidative and nitrative modifications of enkephalins by human neutrophils: effect of nitroenkephalin on leukocyte functional responses. Amino Acids. 2012;43(2):875–84.

    Article  CAS  PubMed  Google Scholar 

  238. Loew GH, Burt SK. Energy conformation study of Met-enkephalin and its D-Ala2 analogue and their resemblance to rigid opiates. Proc Natl Acad Sci U S A. 1978;75(1):7–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Schwyzer R. Molecular mechanism of opioid receptor selection. Biochemistry. 1986;25(20):6335–42.

    Article  CAS  PubMed  Google Scholar 

  240. Yokoyama K, Uhlin U, Stubbe J. Site-specific incorporation of 3-nitrotyrosine as a probe of pKa perturbation of redox-active tyrosines in ribonucleotide reductase. J Am Chem Soc. 2010;132(24):8385–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Ndengele MM, Cuzzocrea S, Masini E, Vinci MC, Esposito E, Muscoli C, et al. Spinal ceramide modulates the development of morphine antinociceptive tolerance via peroxynitrite-mediated nitroxidative stress and neuroimmune activation. J Pharmacol Exp Ther. 2009;329(1):64–75.

    Article  CAS  PubMed  Google Scholar 

  242. Muscoli C, Doyle T, Dagostino C, Bryant L, Chen Z, Watkins LR, et al. Counter-regulation of opioid analgesia by glial-derived bioactive sphingolipids. J Neurosci. 2010;30(46):15400–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Urban MO, Coutinho SV, Gebhart GF. Involvement of excitatory amino acid receptors and nitric oxide in the rostral ventromedial medulla in modulating secondary hyperalgesia produced by mustard oil. Pain. 1999;81(1-2):45–55.

    Article  CAS  PubMed  Google Scholar 

  244. Porreca F, Ossipov MH, Gebhart GF. Chronic pain and medullary descending facilitation. Trends Neurosci. 2002;25(6):319–25.

    Article  CAS  PubMed  Google Scholar 

  245. Ren K, Dubner R. Neuron-glia crosstalk gets serious: role in pain hypersensitivity. Curr Opin Anaesthesiol. 2008;21(5):570–9.

    Article  PubMed  PubMed Central  Google Scholar 

  246. Urban MO, Gebhart GF. Central mechanisms in pain. Med Clin North Am. 1999;83(3):585–96.

    Article  CAS  PubMed  Google Scholar 

  247. Wei F, Guo W, Zou S, Ren K, Dubner R. Supraspinal glial-neuronal interactions contribute to descending pain facilitation. J Neurosci. 2008;28(42):10482–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Millan MJ. Descending control of pain. Prog Neurobiol. 2002;66(6):355–474.

    Article  CAS  PubMed  Google Scholar 

  249. Vanegas H. To the descending pain-control system in rats, inflammation-induced primary and secondary hyperalgesia are two different things. Neurosci Lett. 2004;361(1-3):225–8.

    Article  CAS  PubMed  Google Scholar 

  250. Manning BH, Morgan MJ, Franklin KB. Morphine analgesia in the formalin test: evidence for forebrain and midbrain sites of action. Neuroscience. 1994;63(1):289–94.

    Article  CAS  PubMed  Google Scholar 

  251. Altier N, Stewart J. The role of dopamine in the nucleus accumbens in analgesia. Life Sci. 1999;65(22):2269–87.

    Article  CAS  PubMed  Google Scholar 

  252. Sheng HY, Qu CL, Huo FQ, Du JQ, Tang JS. D2-like but not D1-like dopamine receptors are involved in the ventrolateral orbital cortex-induced antinociception: a GABAergic modulation mechanism. Exp Neurol. 2009;215(1):128–34.

    Article  CAS  PubMed  Google Scholar 

  253. Cobacho N, de la Calle JL, Paino CL. Dopaminergic modulation of neuropathic pain: analgesia in rats by a D2-type receptor agonist. Brain Res Bull. 2014;106:62–71.

    Article  CAS  PubMed  Google Scholar 

  254. Pertovaara A. Noradrenergic pain modulation. Prog Neurobiol. 2006;80(2):53–83.

    Article  CAS  PubMed  Google Scholar 

  255. Pertovaara A. The noradrenergic pain regulation system: a potential target for pain therapy. Eur J Pharmacol. 2013;716(1-3):2–7.

    Article  CAS  PubMed  Google Scholar 

  256. d'Ischia M, Costantini C. Nitric oxide-induced nitration of catecholamine neurotransmitters: a key to neuronal degeneration? Bioorg Med Chem. 1995;3(7):923–7.

    Article  PubMed  Google Scholar 

  257. Macarthur H, Westfall TC, Riley DP, Misko TP, Salvemini D. Inactivation of catecholamines by superoxide gives new insights on the pathogenesis of septic shock. Proc Natl Acad Sci U S A. 2000;97(17):9753–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  258. Nagatsu T, Levitt M, Udenfriend S. tyrosine hydroxylase. The initial step in norepinephrine biosynthesis. J Biol Chem. 1964;239:2910–7.

    CAS  PubMed  Google Scholar 

  259. Ara J, Przedborski S, Naini AB, Jackson-Lewis V, Trifiletti RR, Horwitz J, et al. Inactivation of tyrosine hydroxylase by nitration following exposure to peroxynitrite and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Proc Natl Acad Sci U S A. 1998;95(13):7659–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Rubio-Osornio M, Montes S, Perez-Severiano F, Aguilera P, Floriano-Sanchez E, Monroy-Noyola A, et al. Copper reduces striatal protein nitration and tyrosine hydroxylase inactivation induced by MPP+ in rats. Neurochem Int. 2009;54(7):447–51.

    Article  CAS  PubMed  Google Scholar 

  261. Kasturi BS, MohanKumar SM, Sirivelu MP, Shin AC, Mohankumar PS. Chronic estradiol-17beta exposure suppresses hypothalamic norepinephrine release and the steroid-induced luteinizing hormone surge: role of nitration of tyrosine hydroxylase. Brain Res. 2013;1493:90–8.

    Article  CAS  PubMed  Google Scholar 

  262. Kuhn DM, Aretha CW, Geddes TJ. Peroxynitrite inactivation of tyrosine hydroxylase: mediation by sulfhydryl oxidation, not tyrosine nitration. J Neurosci. 1999;19(23):10289–94.

    CAS  PubMed  Google Scholar 

  263. Kuhn DM, Sadidi M, Liu X, Kreipke C, Geddes T, Borges C, et al. Peroxynitrite-induced nitration of tyrosine hydroxylase: identification of tyrosines 423, 428, and 432 as sites of modification by matrix-assisted laser desorption ionization time-of-flight mass spectrometry and tyrosine-scanning mutagenesis. J Biol Chem. 2002;277(16):14336–42.

    Article  CAS  PubMed  Google Scholar 

  264. Blanchard-Fillion B, Souza JM, Friel T, Jiang GC, Vrana K, Sharov V, et al. Nitration and inactivation of tyrosine hydroxylase by peroxynitrite. J Biol Chem. 2001;276(49):46017–23.

    Article  CAS  PubMed  Google Scholar 

  265. Gilmore TD. Introduction to NF-kappaB: players, pathways, perspectives. Oncogene. 2006;25(51):6680–4.

    Article  CAS  PubMed  Google Scholar 

  266. Niederberger E, Geisslinger G. The IKK-NF-kappaB pathway: a source for novel molecular drug targets in pain therapy? FASEB J. 2008;22(10):3432–42.

    Article  CAS  PubMed  Google Scholar 

  267. Poveda L, Hottiger M, Boos N, Wuertz K. Peroxynitrite induces gene expression in intervertebral disc cells. Spine. 2009;34(11):1127–33.

    Article  PubMed  Google Scholar 

  268. Livolsi A, Busuttil V, Imbert V, Abraham RT, Peyron JF. Tyrosine phosphorylation-dependent activation of NF-kappa B. Requirement for p56 LCK and ZAP-70 protein tyrosine kinases. Eur J Biochem. 2001;268(5):1508–15.

    Article  CAS  PubMed  Google Scholar 

  269. Gow AJ, Duran D, Malcolm S, Ischiropoulos H. Effects of peroxynitrite-induced protein modifications on tyrosine phosphorylation and degradation. FEBS Lett. 1996;385(1-2):63–6.

    Article  CAS  PubMed  Google Scholar 

  270. Brito C, Naviliat M, Tiscornia AC, Vuillier F, Gualco G, Dighiero G, et al. Peroxynitrite inhibits T lymphocyte activation and proliferation by promoting impairment of tyrosine phosphorylation and peroxynitrite-driven apoptotic death. J Immunol. 1999;162(6):3356–66.

    CAS  PubMed  Google Scholar 

  271. Matata BM, Galinanes M. Peroxynitrite is an essential component of cytokines production mechanism in human monocytes through modulation of nuclear factor-kappa B DNA binding activity. J Biol Chem. 2002;277(3):2330–5.

    Article  CAS  PubMed  Google Scholar 

  272. Park SW, Huq MD, Hu X, Wei LN. Tyrosine nitration on p65: a novel mechanism to rapidly inactivate nuclear factor-kappaB. Mol Cell Proteomics. 2005;4(3):300–9.

    Article  CAS  PubMed  Google Scholar 

  273. Loukili N, Rosenblatt-Velin N, Rolli J, Levrand S, Feihl F, Waeber B, et al. Oxidants positively or negatively regulate nuclear factor kappaB in a context-dependent manner. J Biol Chem. 2010;285(21):15746–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Genovese T, Mazzon E, Esposito E, Di Paola R, Murthy K, Neville L, et al. Effects of a metalloporphyrinic peroxynitrite decomposition catalyst, ww-85, in a mouse model of spinal cord injury. Free Radic Res. 2009;43(7):631–45.

    Article  CAS  PubMed  Google Scholar 

  275. Genovese T, Mazzon E, Esposito E, Muia C, Di Paola R, Bramanti P, et al. Beneficial effects of FeTSPP, a peroxynitrite decomposition catalyst, in a mouse model of spinal cord injury. Free Radic Biol Med. 2007;43(5):763–80.

    Article  CAS  PubMed  Google Scholar 

  276. Cortes-Mendoza J, Diaz de Leon-Guerrero S, Pedraza-Alva G, Perez-Martinez L. Shaping synaptic plasticity: the role of activity-mediated epigenetic regulation on gene transcription. Int J Dev Neurosci. 2013;31(6):359–69.

    Google Scholar 

  277. Buchheit T, Van de Ven T, Shaw A. Epigenetics and the transition from acute to chronic pain. Pain Med. 2012;13(11):1474–90.

    Article  PubMed  PubMed Central  Google Scholar 

  278. Zhang Z, Cai YQ, Zou F, Bie B, Pan ZZ. Epigenetic suppression of GAD65 expression mediates persistent pain. Nat Med. 2011;17(11):1448–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Bai G, Wei D, Zou S, Ren K, Dubner R. Inhibition of class II histone deacetylases in the spinal cord attenuates inflammatory hyperalgesia. Mol Pain. 2010;6:51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  280. Kukkar A, Singh N, Jaggi AS. Attenuation of neuropathic pain by sodium butyrate in an experimental model of chronic constriction injury in rats. J Formos Med Assoc. 2014;113(12):921–8.

    Article  CAS  PubMed  Google Scholar 

  281. Denk F, Huang W, Sidders B, Bithell A, Crow M, Grist J, et al. HDAC inhibitors attenuate the development of hypersensitivity in models of neuropathic pain. Pain. 2013;154(9):1668–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Matsushita Y, Araki K, Omotuyi O, Mukae T, Ueda H. HDAC inhibitors restore C-fibre sensitivity in experimental neuropathic pain model. Br J Pharmacol. 2013;170(5):991–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Liang DY, Sun Y, Shi XY, Sahbaie P, Clark JD. Epigenetic regulation of spinal cord gene expression controls opioid-induced hyperalgesia. Mol Pain. 2014;10:59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  284. Khan MA, Dixit K, Uddin M, Malik A, Alam K. Role of peroxynitrite-modified H2A histone in the induction and progression of rheumatoid arthritis. Scand J Rheumatol. 2012;41(6):426–33.

    Article  CAS  PubMed  Google Scholar 

  285. Khan MA, Dixit K, Moinuddin, Arif Z, Alam K. Studies on peroxynitrite-modified H1 histone: implications in systemic lupus erythematosus. Biochimie. 2014;97:104–13.

    Article  CAS  PubMed  Google Scholar 

  286. Ahmad R, Ahsan H. Role of peroxynitrite-modified biomolecules in the etiopathogenesis of systemic lupus erythematosus. Clin Exp Med. 2014;14(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  287. Osoata GO, Yamamura S, Ito M, Vuppusetty C, Adcock IM, Barnes PJ, et al. Nitration of distinct tyrosine residues causes inactivation of histone deacetylase 2. Biochem Biophys Res Commun. 2009;384(3):366–71.

    Article  CAS  PubMed  Google Scholar 

  288. Gonzalez-Zuniga M, Contreras PS, Estrada LD, Chamorro D, Villagra A, Zanlungo S, et al. c-Abl stabilizes HDAC2 levels by tyrosine phosphorylation repressing neuronal gene expression in Alzheimer's disease. Mol Cell. 2014;56(1):163–73.

    Article  CAS  PubMed  Google Scholar 

  289. Tran L, Schulkin J, Ligon CO, Greenwood-Van MB. Epigenetic modulation of chronic anxiety and pain by histone deacetylation. Mol Psychiatry. 2015;20(10):1219–31.

    Article  CAS  PubMed  Google Scholar 

  290. Cardinale A, de Stefano MC, Mollinari C, Racaniello M, Garaci E, Merlo D. Biochemical characterization of sirtuin 6 in the brain and its involvement in oxidative stress response. Neurochem Res. 2015;40(1):59–69.

    Article  CAS  PubMed  Google Scholar 

  291. Hu S, Liu H, Ha Y, Luo X, Motamedi M, Gupta MP, et al. Posttranslational modification of Sirt6 activity by peroxynitrite. Free Radic Biol Med. 2014;79C:176–85.

    Google Scholar 

  292. Muscoli C, Lauro F, Ilari S, Pucci B, Dagostino C, Gliozzi M, et al. Modulation of sirtuins during acute inflammatory pain: the role of ROS. FASEB J. 2013;27:887.6.

    Google Scholar 

Download references

Acknowledgment

We would like to acknowledge our funding support from NIH/NIDA RO1 DA024074 and the NIH/NCI RO1 CA169519.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ashley M. Symons-Liguori or Daniela Salvemini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Symons-Liguori, A.M., Janes, K., Neumann, W.L., Salvemini, D. (2016). The Contribution of Nitroxidative Stress to Pathophysiological Pain and Opioid Analgesic Failure. In: Batinić-Haberle, I., Rebouças, J., Spasojević, I. (eds) Redox-Active Therapeutics. Oxidative Stress in Applied Basic Research and Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-319-30705-3_25

Download citation

Publish with us

Policies and ethics