Skip to main content

Quantum Dots in Photodynamic Therapy

  • Chapter
  • First Online:
Redox-Active Therapeutics

Abstract

The known capability of colloidal II–VI quantum dots of selectively transferring energy and/or charge to the surrounding species when excited by light has attracted scientists to apply them as photosensitizers in photodynamic therapy since 2000 and this chapter brings some background and the most important achievements and drawbacks on this subject.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wieder ME, et al. Intracellular photodynamic therapy with photosensitizer-nanoparticle conjugates: cancer therapy using a ‘Trojan horse’. Photochem Photobiol Sci. 2006;5(8):727–34.

    Article  CAS  Google Scholar 

  2. Allison RR, Bagnato VS, Sibata CH. Future of oncologic photodynamic therapy. Future Oncol. 2010;6(6):929–40.

    Article  CAS  PubMed  Google Scholar 

  3. Paszko E, et al. Nanodrug applications in photodynamic therapy. Photodiagnosis Photodyn Ther. 2011;8(1):14–29.

    Article  CAS  PubMed  Google Scholar 

  4. Raab O. Uber die Wirkung fluoreszierender Stoffe auf Infusorien. Z Biol. 1900;39(5):524–46.

    CAS  Google Scholar 

  5. Von Tappeiner H, Jesionek A. Therapeutische versuche mit fluoreszierenden stoffen. Munch Med Wochenschr. 1903;47:2042–4.

    Google Scholar 

  6. Diamond I, et al. Photodynamic therapy of malignant tumours. Lancet. 1972;300(7788):1175–7.

    Article  Google Scholar 

  7. Hanout M, et al. Therapies for neovascular age-related macular degeneration: current approaches and pharmacologic agents in development. Bio Med Res Int. 2013;2013:8.

    Google Scholar 

  8. Kharkwal GB, et al. Photodynamic therapy for infections: clinical applications. Lasers Surg Med. 2011;43(7):755–67.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wainwright M. Photodynamic therapy: the development of new photosensitisers. Anticancer Agents Med Chem. 2008;8(3):280–91.

    Article  CAS  PubMed  Google Scholar 

  10. Geszke-Moritz M, Moritz M. Quantum dots as versatile probes in medical sciences: synthesis, modification and properties. Mater Sci Eng C. 2013;33(3):1008–21.

    Article  CAS  Google Scholar 

  11. Bruchez M, et al. Semiconductor nanocrystals as fluorescent biological labels. Science. 1998;281(5385):2013–6.

    Article  CAS  PubMed  Google Scholar 

  12. Chan WCW, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science. 1998;281(5385):2016–8.

    Article  CAS  PubMed  Google Scholar 

  13. Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev. 2012;64:S206–12.

    Article  Google Scholar 

  14. Fontes A, Santos BS, editors. Quantum dots: applications in biology. In: Methods in molecular biology. 2nd ed. New York: Springer; 2014. p. 258.

    Google Scholar 

  15. Law W-C, et al. Aqueous-phase synthesis of highly luminescent CdTe/ZnTe core/shell quantum dots optimized for targeted bioimaging. Small. 2009;5(11):1302–10.

    Article  CAS  PubMed  Google Scholar 

  16. Tian J, et al. Synthesis of CdTe/CdS/ZnS quantum dots and their application in imaging of hepatocellular carcinoma cells and immunoassay for alpha fetoprotein. Nanotechnology. 2010;21(30):305101.

    Article  PubMed  Google Scholar 

  17. Vannoy CH, et al. Biosensing with quantum dots: a microfluidic approach. Sensors. 2011;11(10):9732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lira RB, et al. Non-specific interactions of CdTe/Cds quantum dots with human blood mononuclear cells. Micron. 2012;43(5):621–6.

    Article  CAS  PubMed  Google Scholar 

  19. Andrade CG, et al. Evaluation of glycophenotype in breast cancer by quantum dot-lectin histochemistry. Int J Nanomed. 2013;8:4623.

    Google Scholar 

  20. Samia ACS, Dayal S, Burda C. Quantum dot-based energy transfer: perspectives and potential for applications in photodynamic therapy. Photochem Photobiol. 2006;82(3):617–25.

    Article  CAS  PubMed  Google Scholar 

  21. Li Y, et al. Electrochemiluminescence biosensor based on CdSe quantum dots for the detection of thrombin. Electrochim Acta. 2012;65:1–6.

    Article  CAS  Google Scholar 

  22. Carvalho KHG, et al. Fluorescence plate reader for quantum dot-protein bioconjugation analysis. J Nanosci Nanotechnol. 2014;14(5):3320–7.

    Article  CAS  Google Scholar 

  23. Tenório DPLA, et al. CdTe quantum dots conjugated to concanavalin A as potential fluorescent molecular probes for saccharides detection in Candida albicans. J Photochem Photobiol B Biol. 2015;142:237–43.

    Article  Google Scholar 

  24. Ma Q, Su X. Recent advances and applications in QDs-based sensors. Analyst. 2011;136(23):4883–93.

    Article  CAS  PubMed  Google Scholar 

  25. Medintz IL, Mattoussi H. Quantum dot-based resonance energy transfer and its growing application in biology. Phys Chem Chem Phys. 2009;11(1):17–45.

    Article  CAS  PubMed  Google Scholar 

  26. Santos BS, Farias PMA, Fontes A. Semiconductor quantum dots for biological applications. In: Henini M, editor. Handbook of self assembled semiconductor nanostructures for novel devices in photonics and electronics. Amsterdam: Elsevier; 2008. p. 773–98.

    Chapter  Google Scholar 

  27. Choi AO, Maysinger D. Applications of quantum dots in biomedicine. In: Rogach AL, editor. Semiconductor nanocrystal quantum dots. Vienna: Springer; 2008. p. 349–65.

    Chapter  Google Scholar 

  28. Chan WCW, et al. Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol. 2002;13(1):40–6.

    Article  CAS  PubMed  Google Scholar 

  29. Mićić OI, Nozik AJ. Colloidal quantum dots of III–V semiconductors (Chapter 5). In: Nalwa HS, editor. Nanostructured materials and nanotechnology. San Diego: Academic Press; 2002. p. 183–205.

    Google Scholar 

  30. Gaponik N, et al. Efficient phase transfer of luminescent thiol-capped nanocrystals: from water to nonpolar organic solvents. Nano Lett. 2002;2(8):803–6.

    Article  CAS  Google Scholar 

  31. Fontes A, et al. Quantum dots in biomedical research. In: Hudak R, editor. Biomedical engineering—technical applications in medicine. Rijeka: InTech; 2012.

    Google Scholar 

  32. Yu WW, et al. experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater. 2003;15(14):2854–60.

    Article  CAS  Google Scholar 

  33. Dagtepe P, et al. Quantized growth of CdTe quantum dots; observation of magic-sized CdTe quantum dots. J Phys Chem C. 2007;111(41):14977–83.

    Article  CAS  Google Scholar 

  34. Dabbousi BO, et al. (CdSe)ZnS core−shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B. 1997;101(46):9463–75.

    Article  CAS  Google Scholar 

  35. Dai T, et al. Concepts and principles of photodynamic therapy as an alternative antifungal discovery platform. Front Microbiol. 2012;3:120.

    Article  CAS  PubMed Central  Google Scholar 

  36. Lira RB, et al. Studies on intracellular delivery of carboxyl-coated CdTe quantum dots mediated by fusogenic liposomes. J Mater Chem B. 2013;1(34):4297–305.

    Article  CAS  Google Scholar 

  37. Jaiswal JK, et al. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol. 2003;21(1):47–51.

    Article  CAS  PubMed  Google Scholar 

  38. Nawrot T, et al. Cadmium-related mortality and long-term secular trends in the cadmium body burden of an environmentally exposed population. Environ Health Perspect. 2008;116(12):1620–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yong K-T, et al. Nanotoxicity assessment of quantum dots: from cellular to primate studies. Chem Soc Rev. 2013;42(3):1236–50.

    Article  CAS  PubMed  Google Scholar 

  40. Xu M, et al. Free cadmium ions released from CdTe-based nanoparticles and their cytotoxicity on Phaeodactylum tricornutum. Metallomics. 2010;2(7):469–73.

    Article  CAS  PubMed  Google Scholar 

  41. Su Y, et al. In vivo distribution, pharmacokinetics, and toxicity of aqueous synthesized cadmium-containing quantum dots. Biomaterials. 2011;32(25):5855–62.

    Article  CAS  PubMed  Google Scholar 

  42. Hauck TS, et al. In vivo quantum-dot toxicity assessment. Small. 2010;6(1):138–44.

    Article  CAS  PubMed  Google Scholar 

  43. Samia ACS, Chen X, Burda C. Semiconductor quantum dots for photodynamic therapy. J Am Chem Soc. 2003;125(51):15736–7.

    Article  CAS  PubMed  Google Scholar 

  44. Chen J-Y, et al. Quantum dot-mediated photoproduction of reactive oxygen species for cancer cell annihilation. Photochem Photobiol. 2010;86(2):431–7.

    Article  CAS  PubMed  Google Scholar 

  45. Cho SJ, et al. Long-term exposure to CdTe quantum dots causes functional impairments in live cells. Langmuir. 2007;23(4):1974–80.

    Article  CAS  Google Scholar 

  46. Lovrić J, et al. Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death. Chem Biol. 2005;12(11):1227–34.

    Article  PubMed  Google Scholar 

  47. Li L, et al. Quantum dot-aluminum phthalocyanine conjugates perform photodynamic reactions to kill cancer cells via fluorescence resonance energy transfer. Nanoscale Res Lett. 2012;7(1):1–8.

    Article  Google Scholar 

  48. Rakovich A, et al. CdTe quantum dot/dye hybrid system as photosensitizer for photodynamic therapy. Nanoscale Res Lett. 2010;5(4):753–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jhonsi MA, Renganathan R. Investigations on the photoinduced interaction of water soluble thioglycolic acid (TGA) capped CdTe quantum dots with certain porphyrins. J Colloid Interface Sci. 2010;344(2):596–602.

    Article  CAS  PubMed  Google Scholar 

  50. Wen Y, et al. Activation of porphyrin photosensitizers by semiconductor quantum dots via two-photon excitation. Appl Phys Lett. 2009;95(14):143702.

    Article  Google Scholar 

  51. Tsay JM, et al. Singlet oxygen production by peptide-coated quantum dot—photosensitizer conjugates. J Am Chem Soc. 2007;129(21):6865–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Clarke SJ, et al. Photophysics of dopamine-modified quantum dots and effects on biological systems. Nat Mater. 2006;5(5):409–17.

    Article  CAS  PubMed  Google Scholar 

  53. Viana O, et al. Comparative study on the efficiency of the photodynamic inactivation of Candida albicans using CdTe quantum dots, Zn(II) Porphyrin and their conjugates as photosensitizers. Molecules. 2015;20(5):8893.

    Article  CAS  Google Scholar 

  54. Ma J, et al. generation of singlet oxygen via the composites of water-soluble thiol-capped CdTe quantum dotssulfonated aluminum phthalocyanines. J Phys Chem B. 2008;112(15):4465–9.

    Article  CAS  PubMed  Google Scholar 

  55. Qi Z-D, et al. Biocompatible CdSe quantum dot-based photosensitizer under two-photon excitation for photodynamic therapy. J Mater Chem. 2011;21(8):2455–8.

    Article  CAS  Google Scholar 

  56. Tekdaş DA, et al. Photodynamic therapy potential of thiol-stabilized CdTe quantum dot-group 3A phthalocyanine conjugates (QD-Pc). Spectrochim Acta A Mol Biomol Spectrosc. 2012;93:313–20.

    Article  PubMed  Google Scholar 

  57. Rotomskis R, et al. Complexes of functionalized quantum dots and chlorin e6 in photodynamic therapy. Lithuanian J Phys. 2013;53(1).

    Google Scholar 

  58. Narband N, et al. Quantum dots as enhancers of the efficacy of bacterial lethal photosensitization. Nanotechnology. 2008;19(44):445102.

    Article  CAS  PubMed  Google Scholar 

  59. Planas O, et al. Newest approaches to singlet oxygen photosensitisation in biological media (Chapter 9). In: Fasani E, Albini A, editors. Photochemistry, vol. 42. London: Royal Society of Chemistry; 2015. p. 233–78.

    Google Scholar 

  60. Zenkevich EI, et al. Quantitative analysis of singlet oxygen (1O2) generation via energy transfer in nanocomposites based on semiconductor quantum dots and porphyrin ligands. J Phys Chem C. 2011;115(44):21535–45.

    Article  CAS  Google Scholar 

  61. Kunz L, et al. Photodynamic modification of disulfonated aluminium phthalocyanine fluorescence in a macrophage cell line. Photochem Photobiol Sci. 2007;6(9):940–8.

    Article  CAS  PubMed  Google Scholar 

  62. Biju V, Itoh T, Ishikawa M. Delivering quantum dots to cells: bioconjugated quantum dots for targeted and nonspecific extracellular and intracellular imaging. Chem Soc Rev. 2010;39(8):3031–56.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors are grateful for discussions with the members of Nanotecnologia Biomédica/UFPE research group. Funding from Fundação de Amparo a Ciência e Tecnologia do Estado de Pernambuco (FACEPE), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Academia Brasileira de Ciências, Instituto Nacional de Ciência e Tecnologia de Fotônica (INCT-INFo), and the Universidade Federal de Pernambuco (UFPE) is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osnir S. Viana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Viana, O.S., Ribeiro, M.S., Fontes, A., Santos, B.S. (2016). Quantum Dots in Photodynamic Therapy. In: Batinić-Haberle, I., Rebouças, J., Spasojević, I. (eds) Redox-Active Therapeutics. Oxidative Stress in Applied Basic Research and Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-319-30705-3_23

Download citation

Publish with us

Policies and ethics