Skip to main content

Salen Manganese Complexes Mitigate Radiation Injury in Normal Tissues Through Modulation of Tissue Environment, Including Through Redox Mechanisms

  • Chapter
  • First Online:
Redox-Active Therapeutics

Abstract

Salen Mn complexes, including EUK-134, EUK-189, and the cyclized analog EUK-207, are synthetic SOD/catalase mimetics that have beneficial effects in many models of oxidative stress. As oxidative stress has been implicated by some investigators in delayed radiation injury, we are investigating whether these compounds can mitigate injury to normal tissues caused by ionizing radiation. This review describes some of this research, focusing on several tissues of interest, including the lung, kidney, and skin. These studies have demonstrated suppression of delayed radiation injury in animals treated with EUK-189 and/or EUK-207. While an antioxidant mechanism of action is postulated, it is likely that the mechanisms of radiation mitigation by these compounds in vivo are complex and may involve non-redox-related mechanisms and differ in various target tissues. It is notable, however, that indicators of oxidative stress are increased in lung and skin radiation injury models, and suppressed by salen Mn complexes. Furthermore, histological, gene expression, and other assessments suggest that salen Mn complex treatment promotes a more normalized tissue environment in irradiated animals, including preservation of microvasculature in the skin and lung. In certain experimental models, including irradiated cell cultures, salen Mn complexes have shown “mito-protective” properties, that is, attenuating mitochondrial injury. In summary, salen Mn complexes could be useful to mitigate delayed radiation injury to normal tissues following radiation therapy, accidental exposure, or radiological terrorism. Optimizing their mode of delivery and other key pharmaceutical properties, as well as gaining more understanding of their mechanism(s) of action as radiation mitigators, are key issues for future study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Greenberger JS, Epperly MW. Radioprotective antioxidant gene therapy: potential mechanisms of action. Gene Ther Mol Biol. 2004;8:31–44.

    Google Scholar 

  2. Zhao W, Diz DI, Robbins ME. Oxidative damage pathways in relation to normal tissue injury. Br J Radiol. 2007;80(Spec No 1):S23–31.

    Article  CAS  PubMed  Google Scholar 

  3. Zhao W, Robbins ME. Inflammation and chronic oxidative stress in radiation-induced late normal tissue injury: therapeutic implications. Curr Med Chem. 2009;16:130–43.

    Article  CAS  PubMed  Google Scholar 

  4. Stone HB, Moulder JE, Coleman CN, Ang KK, Anscher MS, Barcellos-Hoff MH, Dynan WS, Fike JR, Grdina DJ, Greenberger JS, Hauer-Jensen M, Hill RP, Kolesnick RN, Macvittie TJ, Marks C, McBride WH, Metting N, Pellmar T, Purucker M, Robbins ME, Schiestl RH, Seed TM, Tomaszewski JE, Travis EL, Wallner PE, Wolpert M, Zaharevitz D. Models for evaluating agents intended for the prophylaxis, mitigation and treatment of radiation injuries. Report of an NCI Workshop, December 3–4, 2003. Radiat Res. 2004;162:711–28.

    Article  CAS  PubMed  Google Scholar 

  5. Wambi CO, Sanzari JK, Sayers CM, Nuth M, Zhou Z, Davis J, Finnberg N, Lewis-Wambi JS, Ware JH, El-Deiry WS, Kennedy AR. Protective effects of dietary antioxidants on proton total-body irradiation-mediated hematopoietic cell and animal survival. Radiat Res. 2009;172:175–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bourgier C, Levy A, Vozenin MC, Deutsch E. Pharmacological strategies to spare normal tissues from radiation damage: useless or overlooked therapeutics? Cancer Metastasis Rev. 2012;31:699–712.

    Article  CAS  PubMed  Google Scholar 

  7. Cohen EP, Fish BL, Irving AA, Rajapurkar MM, Shah SV, Moulder JE. Radiation nephropathy is not mitigated by antagonists of oxidative stress. Radiat Res. 2009;172:260–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Calveley VL, Jelveh S, Langan A, Mahmood J, Yeung IW, Van Dyk J, Hill RP. Genistein can mitigate the effect of radiation on rat lung tissue. Radiat Res. 2010;173:602–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jiang J, Stoyanovsky DA, Belikova NA, Tyurina YY, Zhao Q, Tungekar MA, Kapralova V, Huang Z, Mintz AH, Greenberger JS, Kagan VE. A mitochondria-targeted triphenylphosphonium-conjugated nitroxide functions as a radioprotector/mitigator. Radiat Res. 2009;172:706–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rabbani ZN, Batinic-Haberle I, Anscher MS, Huang J, Day BJ, Alexander E, Dewhirst MW, Vujaskovic Z. Long-term administration of a small molecular weight catalytic metalloporphyrin antioxidant, AEOL 10150, protects lungs from radiation-induced injury. Int J Radiat Oncol Biol Phys. 2007;67:573–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gauter-Fleckenstein B, Fleckenstein K, Owzar K, Jiang C, Reboucas JS, Batinic-Haberle I, Vujaskovic Z. Early and late administration of MnTE-2-PyP5+ in mitigation and treatment of radiation-induced lung damage. Free Radic Biol Med. 2010;48:1034–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Batinic-Haberle I, Tovmasyan A, Roberts ER, Vujaskovic Z, Leong KW, Spasojevic I. SOD therapeutics: latest insights into their structure-activity relationships and impact on the cellular redox-based signaling pathways. Antioxid Redox Signal. 2014;20:2372–415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Doctrow SR, Huffman K, Marcus CB, Tocco G, Malfroy E, Adinolfi CA, Kruk H, Baker K, Lazarowych N, Mascarenhas J, Malfroy B. Salen-manganese complexes as catalytic scavengers of hydrogen peroxide and cytoprotective agents: structure-activity relationship studies. J Med Chem. 2002;45:4549–58.

    Article  CAS  PubMed  Google Scholar 

  14. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 4th ed. Oxford: Oxford University Press; 2007.

    Google Scholar 

  15. Robbins ME, Zhao W. Chronic oxidative stress and radiation-induced late normal tissue injury: a review. Int J Radiat Biol. 2004;80:251–9.

    Article  CAS  PubMed  Google Scholar 

  16. Rosenthal RA, Fish B, Hill RP, Huffman KD, Lazarova Z, Mahmood J, Medhora M, Molthen R, Moulder JE, Sonis ST, Tofilon PJ, Doctrow SR. Salen Mn complexes mitigate radiation injury in normal tissues. Anticancer Agents Med Chem. 2011;11:359–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kouvaris JR, Kouloulias VE, Vlahos LJ. Amifostine: the first selective-target and broad-spectrum radioprotector. Oncologist. 2007;12:738–47.

    Article  CAS  PubMed  Google Scholar 

  18. Grdina DJ, Murley JS, Kataoka Y, Baker KL, Kunnavakkam R, Coleman MC, Spitz DR. Amifostine induces antioxidant enzymatic activities in normal tissues and a transplantable tumor that can affect radiation response. Int J Radiat Oncol Biol Phys. 2009;73:886–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rosenthal RA, Huffman KD, Fisette LW, Damphousse CA, Callaway WB, Malfroy B, Doctrow SR. Orally available Mn porphyrins with superoxide dismutase and catalase activities. J Biol Inorg Chem. 2009;14:979–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev. 1979;59:527–605.

    CAS  Google Scholar 

  21. Sharpe MA, Ollosson R, Stewart VC, Clark JB. Oxidation of nitric oxide by oxomanganese salen complexes: a new mechanism for cellular protection by superoxide dismutase/catalase mimetics. Biochem J. 2002;366:97–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rong Y, Doctrow SR, Tocco G, Baudry M. EUK-134, a synthetic superoxide dismutase and catalase mimetic, prevents oxidative stress and attenuates kainate-induced neuropathology. Proc Natl Acad Sci U S A. 1999;96:9897–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pong K, Doctrow SR, Baudry M. Prevention of 1-methyl-4-phenylpyridinium- and 6-hydroxydopamine-induced nitration of tyrosine hydroxylase and neurotoxicity by EUK-134, a superoxide dismutase and catalase mimetic, in cultured dopaminergic neurons. Brain Res. 2000;881:182–9.

    Article  CAS  PubMed  Google Scholar 

  24. Doctrow SR, Huffman K, Marcus CB, Musleh W, Bruce A, Baudry M, Malfroy B. Salen-manganese complexes: combined superoxide dismutase/catalase mimics with broad pharmacological efficacy. In: Sies H, editor. Antioxidants in disease mechanisms and therapeutic strategies. New York: Academic Press; 1997. p. 247–70.

    Google Scholar 

  25. Doctrow SR, Adinolfi C, Baudry M, Huffman K, Malfroy B, Marcus CB, Melov S, Pong K, Rong Y, Smart J, Tocco G. Salen manganese complexes, combined superoxide dismutase/catalase mimetics demonstrate potential for treating neurodegenerative and other age-associated diseases. In: Rodriguez H, Cutler R, editors. Oxidative stress and aging: advances in basic science, diagnostics, and intervention. Singapore: World Scientific; 2003. p. 1324–42.

    Google Scholar 

  26. Doctrow SR, Baudry M, Huffman K, Malfroy B, Melov S. Salen Mn complexes: multifunctional catalytic antioxidants protective in models for neurodegenerative disease and aging. In: Doctrow SR, Sessler JL, McMurry TJ, Lippard SJ, editors. Medicinal inorganic chemistry. New York: American Chemical Society and Oxford University Press; 2005. p. 319–47.

    Chapter  Google Scholar 

  27. Liu R, Liu IY, Bi X, Thompson RF, Doctrow SR, Malfroy B, Baudry M. Reversal of age-related learning deficits and brain oxidative stress in mice with superoxide dismutase/catalase mimetics. Proc Natl Acad Sci U S A. 2003;100:8526–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jung C, Rong Y, Doctrow S, Baudry M, Malfroy B, Xu Z. Synthetic superoxide dismutase/catalase mimetics reduce oxidative stress and prolong survival in a mouse amyotrophic lateral sclerosis model. Neurosci Lett. 2001;304:157–60.

    Article  CAS  PubMed  Google Scholar 

  29. Malfroy-Camine B, Doctrow SR. Cyclic salen-manganese compounds: reactive oxygen species scavengers useful as antioxidants in the treatment and prevention of diseases. U.S. Patent Number 7,122,537, 2006.

    Google Scholar 

  30. Clausen A, Doctrow S, Baudry M. Prevention of cognitive deficits and brain oxidative stress with superoxide dismutase/catalase mimetics in aged mice. Neurobiol Aging (online 2008). 2010;31:425–33.

    Article  CAS  Google Scholar 

  31. Rajagopalan MS, Stone B, Rwigema JC, Salimi U, Epperly MW, Goff J, Franicola D, Dixon T, Cao S, Zhang X, Buchholz BM, Bauer AJ, Choi S, Bakkenist C, Wang H, Greenberger JS. Intraesophageal manganese superoxide dismutase-plasmid liposomes ameliorates novel total-body and thoracic radiation sensitivity of NOS1-/- mice. Radiat Res. 2010;174:297–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Epperly MW, Epstein CJ, Travis EL, Greenberger JS. Decreased pulmonary radiation resistance of manganese superoxide dismutase (MnSOD)-deficient mice is corrected by human manganese superoxide dismutase-Plasmid/Liposome (SOD2-PL) intratracheal gene therapy. Radiat Res. 2000;154:365–74.

    Article  CAS  PubMed  Google Scholar 

  33. Hinerfeld D, Traini MD, Weinberger RP, Cochran B, Doctrow SR, Harry J, Melov S. Endogenous mitochondrial oxidative stress: neurodegeneration, proteomic analysis, specific respiratory chain defects, and efficacious antioxidant therapy in superoxide dismutase 2 null mice. J Neurochem. 2004;88:657–67.

    Article  CAS  PubMed  Google Scholar 

  34. Melov S, Doctrow SR, Schneider JA, Haberson J, Patel M, Coskun PE, Huffman K, Wallace DC, Malfroy B. Lifespan extension and rescue of spongiform encephalopathy in superoxide dismutase 2 nullizygous mice treated with superoxide dismutase-catalase mimetics. J Neurosci. 2001;21:8348–53.

    CAS  PubMed  Google Scholar 

  35. Liesa M, Luptak I, Qin F, Hyde BB, Sahin E, Siwik DA, Zhu Z, Pimentel DR, Xu XJ, Ruderman NB, Huffman KD, Doctrow SR, Richey L, Colucci WS, Shirihai OS. Mitochondrial transporter ATP binding cassette mitochondrial erythroid is a novel gene required for cardiac recovery after ischemia/reperfusion. Circulation. 2011;124:806–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Smith RA, Murphy MP. Animal and human studies with the mitochondria-targeted antioxidant MitoQ. Ann N Y Acad Sci. 2010;1201:96–103.

    Article  CAS  PubMed  Google Scholar 

  37. Doctrow SR, Liesa M, Melov S, Shirihai OS, Tofilon PJ. Salen Mn complexes are superoxide dismutase and catalase mimetics that protect the mitochondria. Curr Inorg Chem. 2012;2:325–34.

    Article  CAS  Google Scholar 

  38. Zhang HJ, Doctrow SR, Xu L, Oberley LW, Beecher B, Morrison J, Oberley TD, Kregel KC. Redox modulation of the liver with chronic antioxidant enzyme mimetic treatment prevents age-related oxidative damage associated with environmental stress. Faseb J. 2004;18:1547–9.

    CAS  PubMed  Google Scholar 

  39. Peng J, Stevenson FF, Doctrow SR, Andersen JK. Superoxide dismutase/catalase mimetics are neuroprotective against selective paraquat-mediated dopaminergic neuron death in the substantial nigra: implications for Parkinson disease. J Biol Chem. 2005;280:29194–8.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang HJ, Drake VJ, Xu L, Xie L, Oberley LW, Kregel KC. Heat-induced liver injury in old rats is associated with exaggerated oxidative stress and altered transcription factor activation. FASEB J. 2003;17:2293–5.

    CAS  PubMed  Google Scholar 

  41. Tocco G, Illigens BM, Malfroy B, Benichou G. Prolongation of alloskin graft survival by catalytic scavengers of reactive oxygen species. Cell Immunol. 2006;241:59–65.

    Article  CAS  PubMed  Google Scholar 

  42. Kash JC, Xiao Y, Davis AS, Walters KA, Chertow DS, Easterbrook JD, Dunfee RL, Sandouk A, Jagger BW, Schwartzman LM, Kuestner RE, Wehr NB, Huffman K, Rosenthal RA, Ozinsky A, Levine RL, Doctrow SR, Taubenberger JK. Treatment with the reactive oxygen species scavenger EUK-207 reduces lung damage and increases survival during 1918 influenza virus infection in mice. Free Radic Biol Med. 2013;67:235–47.

    Article  PubMed  Google Scholar 

  43. Vorotnikova E, Rosenthal RA, Tries M, Doctrow SR, Braunhut SJ. Novel synthetic SOD/catalase mimetics mitigate capillary endothelial cell apoptosis. Radiation Res. 2010;173:748–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Otterson MF, Nie L, Link BJ, Schmidt JL, Rafiee P. Protective effect of EUK-207 on irradiated human intestinal microvascular endothelial cells (HIMEC). Abstracts, Experimental Biology 2011, 2011.

    Google Scholar 

  45. Thomas SR, Witting PK, Drummond GR. Redox control of endothelial function and dysfunction: molecular mechanisms and therapeutic opportunities. Antioxid Redox Signal. 2008;10:1713–65.

    Article  CAS  Google Scholar 

  46. Sonis ST, Peterson RL, Edwards LJ, Lucey CA, Wang L, Mason L, Login G, Ymamkawa M, Moses G, Bouchard P, Hayes LL, Bedrosian C, Dorner AJ. Defining mechanisms of action of interleukin-11 on the progression of radiation-induced oral mucositis in hamsters. Oral Oncol. 2000;36:373–81.

    Article  CAS  PubMed  Google Scholar 

  47. Sonis ST, Lindquist L, Vugt AV, Stewart AA, Stam K, Qu GY, Iwata KK, Haley JD. Prevention of chemotherapy-induced ulcerative mucositis by TGF-beta. Cancer Res. 1994;54:1135–8.

    CAS  PubMed  Google Scholar 

  48. Murphy CK, Fey EG, Watkins BA, Wong V, Rothstein D, Sonis ST. Efficacy of superoxide dismutase mimetic M40403 in attenuating radiation-induced oral mucositis in hamsters. Clin Cancer Res. 2008;14:4292–7.

    Article  CAS  PubMed  Google Scholar 

  49. Salvemini D, Wang ZQ, Zweier JL, Samouilov A, Macarther H, Misko TP, Currie MG, Cuzzocrea S, Sikorski JA, Riley DP. A nonpeptidyl mimic of superoxide dismutase with therapeutic activity in rats. Science. 1999;286:304–6.

    Article  CAS  PubMed  Google Scholar 

  50. Roy S, Khanna S, Nallu K, Hunt TK, Sen CK. Dermal wound healing is subject to redox control. Mol Ther. 2006;13:211–20.

    Article  CAS  PubMed  Google Scholar 

  51. Marks LB, Yu X, Vujaskovic Z, Small WJ, Folz R, Anscher MS. Radiation-induced lung injury. Sem Radiat Oncol. 2003;13:333–45.

    Article  Google Scholar 

  52. Fleckenstein K, Zgonjanin L, Chen L, Rabbani Z, Jackson IL, Thrasher B, Kirkpatrick J, Foster WM, Vujaskovic Z. Temporal onset of hypoxia and oxidative stress after pulmonary irradiation. Int J Radiat Oncol Biol Phys. 2007;68:196–204.

    Article  CAS  PubMed Central  Google Scholar 

  53. Finkelstein JN, Johnston CJ, Baggs R, Rubin P. Early alterations in extracellular matrix and transforming growth factor beta gene expression in mouse lung indicative of late radiation fibrosis. Int J Radiat Oncol Biol Phys. 1994;28:621–31.

    Article  CAS  PubMed  Google Scholar 

  54. Langan AR, Khan MA, Yeung IW, Van Dyk J, Hill RP. Partial volume rat lung irradiation: the protective/mitigating effects of Eukarion-189, a superoxide dismutase-catalase mimetic. Radiother Oncol. 2006;79:231–8.

    Article  CAS  PubMed  Google Scholar 

  55. Mahmood J, Jelveh S, Calveley V, Zaidi A, Doctrow SR, Hill RP. Mitigation of radiation-induced lung injury by genistein and EUK-207. Int J Radiat Biol. 2011;87:889–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gao F, Fish BL, Szabo A, Doctrow SR, Kma L, Molthen RC, Moulder JE, Jacobs ER, Medhora M. Short-term treatment with a SOD/catalase mimetic, EUK-207, mitigates pneumonitis and fibrosis after single-dose total-body or whole-thoracic irradiation. Radiat Res. 2012;178:468–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gao F, Fish BL, Moulder JE, Jacobs ER, Medhora M. Enalapril mitigates radiation-induced pneumonitis and pulmonary fibrosis if started 35 days after whole-thorax irradiation. Radiat Res. 2013;180:546–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cohen E, Moulder J. Radiation nephropathy. In: Cohen E, editor. Cancer and the kidney. Oxford: Oxford University Press; 2011. p. 193–204.

    Google Scholar 

  59. Moulder JE, Fish BL, Cohen EP. ACE inhibitors and AII receptor antagonists in the treatment and prevention of bone marrow transplant nephropathy. Curr Pharm Des. 2003;9:737–49.

    Article  CAS  PubMed  Google Scholar 

  60. Cohen EP, Fish BL, Moulder JE. Mitigation of radiation injuries via suppression of the renin-angiotensin system: emphasis on radiation nephropathy. Curr Drug Targets. 2010;11:1423–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jourdan MM, Lopez A, Olasz EB, Duncan NE, Demara M, Kittipongdaja W, Fish BL, Mader M, Schock A, Morrow NV, Semenenko VA, Baker JE, Moulder JE, Lazarova Z. Laminin 332 deposition is diminished in irradiated skin in an animal model of combined radiation and wound skin injury. Radiat Res. 2011;176:636–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Doctrow SR, Lopez A, Schock AM, Duncan NE, Jourdan MM, Olasz EB, Moulder JE, Fish BL, Mader M, Lazar J, Lazarova Z. A synthetic superoxide dismutase/catalase mimetic EUK-207 mitigates radiation dermatitis and promotes wound healing in irradiated rat skin. J Invest Dermatol. 2013;133:1088–96.

    Article  CAS  PubMed  Google Scholar 

  63. Jelveh S, Kaspler P, Bhogal N, Mahmood J, Lindsay PE, Okunieff P, Doctrow SR, Bristow RG, Hill RP. Investigations of antioxidant-mediated protection and mitigation of radiation-induced DNA damage and lipid peroxidation in murine skin. Int J Radiat Biol. 2013;89:618–27.

    Article  CAS  PubMed  Google Scholar 

  64. Sen CK, Roy S. Redox signals in wound healing. Biochim Biophys Acta. 1780;2008:1348–61.

    Google Scholar 

  65. Luo JD, Wang YY, Fu WL, Wu J, Chen AF. Gene therapy of endothelial nitric oxide synthase and manganese superoxide dismutase restores delayed wound healing in type 1 diabetic mice. Circulation. 2004;110:2484–93.

    Article  CAS  PubMed  Google Scholar 

  66. Demianenko IA, Vasilieva TV, Domnina LV, Dugina VB, Egorov MV, Ivanova OY, Ilinskaya OP, Pletjushkina OY, Popova EN, Sakharov IY, Fedorov AV, Chernyak BV. Novel mitochondria-targeted antioxidants, “Skulachev-ion” derivatives, accelerate dermal wound healing in animals. Biochemistry (Mosc). 2010;75:274–80.

    Article  CAS  Google Scholar 

  67. Meunier B, Cosledan F. Orally bioavailable low molecular weight metalloporphyrins. Eukarion, Inc., World Intellectual Property Organization (PCT application number 20060241095). 2005; p. 30.

    Google Scholar 

  68. Liang LP, Huang J, Fulton R, Day BJ, Patel M. An orally active catalytic metalloporphyrin protects against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity in vivo. J Neurosci. 2007;27:4326–33.

    Article  CAS  PubMed  Google Scholar 

  69. Trova MP, Gauuan PJ, Pechulis AD, Bubb SM, Bocckino SB, Crapo JD, Day BJ. Superoxide dismutase mimetics. Part 2: synthesis and structure-activity relationship of glyoxylate- and glyoxamide-derived metalloporphyrins. Bioorg Med Chem. 2003;11:2695–707.

    Article  CAS  PubMed  Google Scholar 

  70. Declercq L, Sente I, Hellemans L, Corstjens H, Maes D. Use of the synthetic superoxide dismutase/catalase mimetic EUK-134 to compensate for seasonal antioxidant deficiency by reducing pre-existing lipid peroxides at the human skin surface. Int J Cosmet Sci. 2004;26:255–63.

    Article  CAS  PubMed  Google Scholar 

  71. Mahmood J, Jelveh S, Zaidi A, Doctrow SR, Medhora M, Hill RP. Targeting the Renin-angiotensin system combined with an antioxidant is highly effective in mitigating radiation-induced lung damage. Int J Radiat Oncol Biol Phys. 2014;89:722–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lenarczyk M, Cohen EP, Fish BL, Irving AA, Sharma M, Driscoll CD, Moulder JE. Chronic oxidative stress as a mechanism for radiation nephropathy. Radiat Res. 2009;171:164–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cohen EP, Lenarczyk M, Fish BL, Jia S, Hessner MJ, Moulder JE. Evaluation of genomic evidence for oxidative stress in experimental radiation nephropathy. J Genet Disord Genet Rep. 2013;2: pii: 1000101.

    Google Scholar 

  74. Cohen SR, Cohen EP. Chronic oxidative stress after irradiation: an unproven hypothesis. Med Hypotheses. 2013;80:172–5.

    Article  CAS  PubMed  Google Scholar 

  75. Williams JP, Hill RP, Haston C, Johnston C, Miller J, Zimmerman C, Hernady E, Reed C, Finkelstein JN. A combined therapeutic approach to pulmonary mitigation following a radiological event. Abstract, 56th Annual Meeting of the Radiation Res. Society, 2010; PS1.61.

    Google Scholar 

  76. Jiang F, Zhang Y, Dusting GJ. NADPH oxidase-mediated redox signaling: roles in cellular stress response, stress tolerance, and tissue repair. Pharmacol Rev. 2011;63:218–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Development of the salen Mn complexes, including EUK-207, was funded in part by GM57770 (SRD). Renal, cutaneous, and pulmonary studies and further compound development were supported by AI067734 (JEM). Some pulmonary studies were also supported by AI81294 (MM) and AI091036 (JPW). Funding for previously reviewed studies were acknowledged in [16] and the other cited primary journal articles. SRD is an inventor on patents describing salen Mn complexes. We thank Drs Eric Cohen and Richard Hill for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan R. Doctrow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Doctrow, S.R. et al. (2016). Salen Manganese Complexes Mitigate Radiation Injury in Normal Tissues Through Modulation of Tissue Environment, Including Through Redox Mechanisms. In: Batinić-Haberle, I., Rebouças, J., Spasojević, I. (eds) Redox-Active Therapeutics. Oxidative Stress in Applied Basic Research and Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-319-30705-3_11

Download citation

Publish with us

Policies and ethics