Skip to main content

Cell Biological Effects of Tumor Treating Fields

  • Chapter
  • First Online:
Alternating Electric Fields Therapy in Oncology

Abstract

Like many approaches to cancer therapy, Tumor Treating Fields (TTFields) target rapidly dividing cells. During mitosis, TTField-exposed cells progress normally through metaphase but exhibit uncontrolled membrane blebbing at the onset of anaphase, resulting in aberrant mitotic exit. The ability of TTFields to affect mitosis is likely dependent on their interactions with proteins possessing high dipole moments whose function is critical to mitosis. At least two proteins complexes have been proposed as molecular targets based on these criteria, α/β-tubulin and the Septin 2, 6, 7 heterotrimer. α/β-Tubulin heterodimer is the monomeric subunit of microtubules, which are essential for aligning and segregating mitotic chromosomes as well as the proper placement and regulation of the cytokinetic cleavage furrow. The Septin complex organizes and helps to coordinate the force generating actinomycin structures within the cytokinetic cleavage furrow and crosslinks actin bundles in the submembranous cytoskeleton which restrains the hydrostatic pressure produced by furrow ingression. TTFields perturb Septin localization to the anaphase spindle midline and cytokinetic furrow. TTField exposure leads to aberrant mitotic exit and cells exhibit abnormal nuclear architecture, signs of cellular stress, decreased proliferation, and apoptosis that might be influenced by the cell’s p53 mutational status. Thus, TTFields are able to disrupt cell proliferation by specifically perturbing key proteins involved in cell division, leading to mitotic catastrophe and subsequent cell death. Cells dying due to TTField exposure may also exhibit the hallmarks of immunogenic cell death, raising the likelihood that TTField treatment induces an anti-tumor immune response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steinberg H. Electrotherapeutic disputes: the ‘Frankfurt Council’ of 1891. Brain. 2011;134(Pt 4):1229–43. Epub 2011/03/25.

    Article  PubMed  Google Scholar 

  2. Antoons G, Mubagwa K, Nevelsteen I, Sipido KR. Mechanisms underlying the frequency dependence of contraction and [Ca(2+)](i) transients in mouse ventricular myocytes. J Physiol. 2002;543(Pt 3):889–98. Epub 2002/09/17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Posterino GS, Lamb GD, Stephenson DG. Twitch and tetanic force responses and longitudinal propagation of action potentials in skinned skeletal muscle fibres of the rat. J Physiol. 2000;527(Pt 1):131–7. Epub 2000/08/16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Durand DM, Bikson M. Suppression and control of epileptiform activity by electrical stimulation: a review. Proc IEEE. 2001;89:1065–82.

    Article  Google Scholar 

  5. Rosenberg B, Vancamp L, Krigas T. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature. 1965;205:698–9. Epub 1965/02/13.

    Article  CAS  PubMed  Google Scholar 

  6. Rosenberg B, Renshaw E, Vancamp L, Hartwick J, Drobnik J. Platinum-induced filamentous growth in Escherichia coli. J Bacteriol. 1967;93(2):716–21. Epub 1967/02/01.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Rosenberg B, VanCamp L, Trosko JE, Mansour VH. Platinum compounds: a new class of potent antitumour agents. Nature. 1969;222(5191):385–6. Epub 1969/04/26.

    Article  CAS  PubMed  Google Scholar 

  8. Kirson ED, Dbaly V, Tovarys F, Vymazal J, Soustiel JF, Itzhaki A, et al. Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumors. Proc Natl Acad Sci U S A. 2007;104(24):10152–7. Epub 2007/06/07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kirson ED, Gurvich Z, Schneiderman R, Dekel E, Itzhaki A, Wasserman Y, et al. Disruption of cancer cell replication by alternating electric fields. Cancer Res. 2004;64(9):3288–95. Epub 2004/05/06.

    Article  CAS  PubMed  Google Scholar 

  10. Giladi M, Schneiderman RS, Porat Y, Munster M, Itzhaki A, Mordechovich D, et al. Mitotic disruption and reduced clonogenicity of pancreatic cancer cells in vitro and in vivo by tumor treating fields. Pancreatology. 2014;14(1):54–63. Epub 2014/02/22.

    Article  PubMed  Google Scholar 

  11. Giladi M, Schneiderman RS, Voloshin T, Porat Y, Munster M, Blat R, et al. Mitotic spindle disruption by alternating electric fields leads to improper chromosome segregation and mitotic catastrophe in cancer cells. Sci Rep. 2015;5:18046.

    Google Scholar 

  12. Gera N, Yang A, Holtzman TS, Lee SX, Wong ET, Swanson KD. Tumor treating fields perturb the localization of septins and cause aberrant mitotic exit. PLoS One. 2015;10(5):e0125269. Epub 2015/05/27.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lee SX, Wong ET, Swanson KD. Disruption of cell division within anaphase by tumor treating electric fields (TTFields) leads to immunogenic cell death. Neuro-Oncol. 2013;15 Suppl 3:iii66–7.

    Google Scholar 

  14. Kirson ED, Giladi M, Gurvich Z, Itzhaki A, Mordechovich D, Schneiderman RS, et al. Alternating electric fields (TTFields) inhibit metastatic spread of solid tumors to the lungs. Clin Exp Metastasis. 2009;26(7):633–40. Epub 2009/04/24.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kirson ED, Schneiderman RS, Dbaly V, Tovarys F, Vymazal J, Itzhaki A, et al. Chemotherapeutic treatment efficacy and sensitivity are increased by adjuvant alternating electric fields (TTFields). BMC Med Phys. 2009;9:1. Epub 2009/01/10.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Stupp R, Wong ET, Kanner AA, Steinberg D, Engelhard H, Heidecke V, et al. NovoTTF-100A versus physician’s choice chemotherapy in recurrent glioblastoma: a randomised phase III trial of a novel treatment modality. Eur J Cancer. 2012;48(14):2192–202. Epub 2012/05/23.

    Article  PubMed  Google Scholar 

  17. Chen H, Liu R, Liu J, Tang J. Growth inhibition of malignant melanoma by intermediate frequency alternating electric fields, and the underlying mechanisms. J Int Med Res. 2012;40(1):85–94. Epub 2012/03/21.

    Article  CAS  PubMed  Google Scholar 

  18. Feng L, Sun X, Csizmadia E, Han L, Bian S, Murakami T, et al. Vascular CD39/ENTPD1 directly promotes tumor cell growth by scavenging extracellular adenosine triphosphate. Neoplasia. 2011;13(3):206–16. Epub 2011/03/11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lu J, Ye X, Fan F, Xia L, Bhattacharya R, Bellister S, et al. Endothelial cells promote the colorectal cancer stem cell phenotype through a soluble form of Jagged-1. Cancer Cell. 2013;23(2):171–85. Epub 2013/02/05.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhu C, Zhao J, Bibikova M, Leverson JD, Bossy-Wetzel E, Fan JB, et al. Functional analysis of human microtubule-based motor proteins, the kinesins and dyneins, in mitosis/cytokinesis using RNA interference. Mol Biol Cell. 2005;16(7):3187–99. Epub 2005/04/22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nezi L, Musacchio A. Sister chromatid tension and the spindle assembly checkpoint. Curr Opin Cell Biol. 2009;21(6):785–95. Epub 2009/10/23.

    Article  CAS  PubMed  Google Scholar 

  22. Oliveira RA, Hamilton RS, Pauli A, Davis I, Nasmyth K. Cohesin cleavage and Cdk inhibition trigger formation of daughter nuclei. Nat Cell Biol. 2010;12(2):185–92. Epub 2010/01/19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ge S, Skaar JR, Pagano M. APC/C- and Mad2-mediated degradation of Cdc20 during spindle checkpoint activation. Cell Cycle. 2009;8(1):167–71. Epub 2008/12/23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. D'Avino PP. How to scaffold the contractile ring for a safe cytokinesis—lessons from Anillin-related proteins. J Cell Sci. 2009;122(Pt 8):1071–9. Epub 2009/04/03.

    Google Scholar 

  25. Wolfe BA, Takaki T, Petronczki M, Glotzer M. Polo-like kinase 1 directs assembly of the HsCyk-4 RhoGAP/Ect2 RhoGEF complex to initiate cleavage furrow formation. PLoS Biol. 2009;7(5):e1000110. Epub 2009/05/27.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Field CM, Coughlin M, Doberstein S, Marty T, Sullivan W. Characterization of anillin mutants reveals essential roles in septin localization and plasma membrane integrity. Development. 2005;132(12):2849–60. Epub 2005/06/03.

    Article  CAS  PubMed  Google Scholar 

  27. Frenette P, Haines E, Loloyan M, Kinal M, Pakarian P, Piekny A. An anillin-Ect2 complex stabilizes central spindle microtubules at the cortex during cytokinesis. PLoS One. 2012;7(4):e34888. Epub 2012/04/20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gregory SL, Ebrahimi S, Milverton J, Jones WM, Bejsovec A, Saint R. Cell division requires a direct link between microtubule-bound RacGAP and Anillin in the contractile ring. Curr Biol. 2008;18(1):25–9. Epub 2007/12/26.

    Article  CAS  PubMed  Google Scholar 

  29. Straight AF, Field CM, Mitchison TJ. Anillin binds nonmuscle myosin II and regulates the contractile ring. Mol Biol Cell. 2005;16(1):193–201. Epub 2004/10/22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Piekny AJ, Glotzer M. Anillin is a scaffold protein that links RhoA, actin, and myosin during cytokinesis. Curr Biol. 2008;18(1):30–6. Epub 2007/12/26.

    Article  CAS  PubMed  Google Scholar 

  31. Giansanti MG, Bonaccorsi S, Gatti M. The role of anillin in meiotic cytokinesis of Drosophila males. J Cell Sci. 1999;112(Pt 14):2323–34. Epub 1999/06/25.

    CAS  PubMed  Google Scholar 

  32. Goldbach P, Wong R, Beise N, Sarpal R, Trimble WS, Brill JA. Stabilization of the actomyosin ring enables spermatocyte cytokinesis in Drosophila. Mol Biol Cell. 2010;21(9):1482–93. Epub 2010/03/20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gilden J, Krummel MF. Control of cortical rigidity by the cytoskeleton: emerging roles for septins. Cytoskeleton (Hoboken). 2010;67(8):477–86. Epub 2010/06/12.

    CAS  Google Scholar 

  34. Gilden JK, Peck S, Chen YC, Krummel MF. The septin cytoskeleton facilitates membrane retraction during motility and blebbing. J Cell Biol. 2012;196(1):103–14. Epub 2012/01/11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tooley AJ, Gilden J, Jacobelli J, Beemiller P, Trimble WS, Kinoshita M, et al. Amoeboid T lymphocytes require the septin cytoskeleton for cortical integrity and persistent motility. Nat Cell Biol. 2009;11(1):17–26. Epub 2008/12/02.

    Article  CAS  PubMed  Google Scholar 

  36. Hagiwara A, Tanaka Y, Hikawa R, Morone N, Kusumi A, Kimura H, et al. Submembranous septins as relatively stable components of actin-based membrane skeleton. Cytoskeleton (Hoboken). 2011;68(9):512–25. Epub 2011/07/30.

    Article  CAS  Google Scholar 

  37. Sudakin V, Yen TJ. Targeting mitosis for anti-cancer therapy. BioDrugs. 2007;21(4):225–33. Epub 2007/07/14.

    Article  CAS  PubMed  Google Scholar 

  38. Lowe J, Li H, Downing KH, Nogales E. Refined structure of alpha beta-tubulin at 3.5 A resolution. J Mol Biol. 2001;313(5):1045–57. Epub 2001/11/09.

    Article  CAS  PubMed  Google Scholar 

  39. Felder CE, Prilusky J, Silman I, Sussman JL. A server and database for dipole moments of proteins. Nucleic Acids Res. 2007;35(Web Server issue):W512–21. Epub 2007/05/29.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Albertson R, Cao J, Hsieh TS, Sullivan W. Vesicles and actin are targeted to the cleavage furrow via furrow microtubules and the central spindle. J Cell Biol. 2008;181(5):777–90. Epub 2008/05/28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. D'Avino PP, Savoian MS, Glover DM. Cleavage furrow formation and ingression during animal cytokinesis: a microtubule legacy. J Cell Sci. 2005;118(Pt 8):1549–58. Epub 2005/04/07.

    Google Scholar 

  42. Rankin KE, Wordeman L. Long astral microtubules uncouple mitotic spindles from the cytokinetic furrow. J Cell Biol. 2010;190(1):35–43. Epub 2010/07/07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sirajuddin M, Farkasovsky M, Hauer F, Kuhlmann D, Macara IG, Weyand M, et al. Structural insight into filament formation by mammalian septins. Nature. 2007;449(7160):311–5. Epub 2007/07/20.

    Article  CAS  PubMed  Google Scholar 

  44. Su KC, Takaki T, Petronczki M. Targeting of the RhoGEF Ect2 to the equatorial membrane controls cleavage furrow formation during cytokinesis. Dev Cell. 2011;21(6):1104–15. Epub 2011/12/17.

    Article  CAS  PubMed  Google Scholar 

  45. Bowen JR, Hwang D, Bai X, Roy D, Spiliotis ET. Septin GTPases spatially guide microtubule organization and plus end dynamics in polarizing epithelia. J Cell Biol. 2011;194(2):187–97. Epub 2011/07/27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Huang HC, Shi J, Orth JD, Mitchison TJ. Evidence that mitotic exit is a better cancer therapeutic target than spindle assembly. Cancer Cell. 2009;16(4):347–58. Epub 2009/10/06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Margolis RL, Lohez OD, Andreassen PR. G1 tetraploidy checkpoint and the suppression of tumorigenesis. J Cell Biochem. 2003;88(4):673–83. Epub 2003/02/11.

    Article  CAS  PubMed  Google Scholar 

  48. Ganem NJ, Pellman D. Limiting the proliferation of polyploid cells. Cell. 2007;131(3):437–40. Epub 2007/11/06.

    Article  CAS  PubMed  Google Scholar 

  49. Orth JD, Loewer A, Lahav G, Mitchison TJ. Prolonged mitotic arrest triggers partial activation of apoptosis, resulting in DNA damage and p53 induction. Mol Biol Cell. 2012;23(4):567–76. Epub 2011/12/16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Senovilla L, Vitale I, Martins I, Tailler M, Pailleret C, Michaud M, et al. An immunosurveillance mechanism controls cancer cell ploidy. Science. 2012;337(6102):1678–84. Epub 2012/09/29.

    Article  CAS  PubMed  Google Scholar 

  51. Kepp O, Senovilla L, Vitale I, Vacchelli E, Adjemian S, Agostinis P, et al. Consensus guidelines for the detection of immunogenic cell death. Oncoimmunology. 2014;3(9):e955691. Epub 2015/05/06.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kepp O, Tesniere A, Schlemmer F, Michaud M, Senovilla L, Zitvogel L, et al. Immunogenic cell death modalities and their impact on cancer treatment. Apoptosis. 2009;14(4):364–75. Epub 2009/01/16.

    Article  PubMed  Google Scholar 

  53. Acebes-Huerta A, Lorenzo-Herrero S, Folgueras AR, Huergo-Zapico L, Lopez-Larrea C, Lopez-Soto A, et al. Drug-induced hyperploidy stimulates an anti-tumor NK cell response mediated by NKG2D and DNAM-1 receptors. Oncoimmunology. 2015;5(2), e1074378.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wong ET, Lok E, Swanson KD, Gautam S, Engelhard HH, Lieberman F, et al. Response assessment of NovoTTF-100A versus best physician's choice chemotherapy in recurrent glioblastoma. Cancer Med. 2014;3(3):592–602. Epub 2014/02/28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wong ET, Lok E, Gautam S, Swanson KD. Dexamethasone exerts profound immunologic interference on treatment efficacy for recurrent glioblastoma. Br J Cancer. 2015;113(2):232–41. Epub 2015/07/01.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth D. Swanson Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gera, N., Swanson, K.D. (2016). Cell Biological Effects of Tumor Treating Fields. In: Wong, E. (eds) Alternating Electric Fields Therapy in Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-30576-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30576-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30574-5

  • Online ISBN: 978-3-319-30576-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics