Skip to main content

A Novel Highly Hyperchaotic System and Its Adaptive Control

  • Chapter
  • First Online:
Advances and Applications in Chaotic Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 636))

Abstract

In this work, we describe a twelve-term novel highly hyperchaotic system with four quadratic nonlinearities and an exponential nonlinearity. The phase portraits of the twelve-term novel hyperchaotic system are depicted and the qualitative properties of the novel hyperchaotic system are discussed. The novel hyperchaotic system has two unstable equilibrium points. The Lyapunov exponents of the novel hyperchaotic system are obtained as \(L_1 = 14.5577, L_2 = 0.1225, L_3 = 0\) and \(L_4 = -36.3884\). The maximal Lyapunov exponent of the novel hyperchaotic system has a high value, viz. \(L_1 = 14.5577\). Thus, the novel 4-D system shows highly hyperchaotic behavior. Also, the Kaplan–Yorke dimension of the novel hyperchaotic system is obtained as \(D_{KY} = 3.4045\), which is a high value for a 4-D hyperchaotic system. Since the sum of the Lyapunov exponents is negative, the novel hyperchaotic system is dissipative. Next, an adaptive controller is designed to globally stabilize the highly hyperchaotic system with unknown parameters. Finally, an adaptive controller is also designed to achieve global chaos synchronization of the identical highly hyperchaotic systems with unknown parameters. MATLAB simulations are presented to depict the phase portraits of the novel highly hyperchaotic system and illustrate all the main adaptive control results derived in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdurrahman A, Jiang H, Teng Z (2015) Finite-time synchronization for memristor-based neural networks with time-varying delays. Neural Netw 69:20–28

    Article  Google Scholar 

  2. Arneodo A, Coullet P, Tresser C (1981) Possible new strange attractors with spiral structure. Commun Math Phys 79(4):573–576

    Article  MathSciNet  MATH  Google Scholar 

  3. Azar AT, Vaidyanathan S (2015) Chaos modeling and control systems design, vol 581. Springer, Germany

    Google Scholar 

  4. Cai G, Tan Z (2007) Chaos synchronization of a new chaotic system via nonlinear control. J Uncertain Syst 1(3):235–240

    Google Scholar 

  5. Chen A, Lu J, Lü J, Yu S (2006) Generating hyperchaotic Lü attractor via state feedback control. Phys A 364:103–110

    Article  Google Scholar 

  6. Chen G, Ueta T (1999) Yet another chaotic attractor. Int J Bifurc Chaos 9(7):1465–1466

    Article  MathSciNet  MATH  Google Scholar 

  7. Filali RL, Benrejeb M, Borne P (2014) On observer-based secure communication design using discrete-time hyperchaotic systems. Commun Nonlinear Sci Numer Simul 19(5):1424–1432

    Article  MathSciNet  Google Scholar 

  8. Hammami S (2015) State feedback-based secure image cryptosystem using hyperchaotic synchronization. ISA Trans 54:52–59

    Article  Google Scholar 

  9. Jia Q (2007) Hyperchaos generated from the Lorenz chaotic system and its control. Phys Lett A 366:217–222

    Article  MATH  Google Scholar 

  10. Karthikeyan R, Sundarapandian V (2014) Hybrid chaos synchronization of four-scroll systems via active control. J Electr Eng 65(2):97–103

    Google Scholar 

  11. Khalil HK (2001) Nonlinear systems, 3rd edn. Prentice Hall, New Jersey

    Google Scholar 

  12. Li C, Liao X, Wong KW (2005) Lag synchronization of hyperchaos with application to secure communications. Chaos Solitons Fractals 23(1):183–193

    Article  MathSciNet  MATH  Google Scholar 

  13. Li D (2008) A three-scroll chaotic attractor. Phys Lett A 372(4):387–393

    Article  MathSciNet  MATH  Google Scholar 

  14. Li X (2009) Modified projective synchronization of a new hyperchaotic system via nonlinear control. Commun Theor Phys 52:274–278

    Article  MathSciNet  MATH  Google Scholar 

  15. Lorenz EN (1963) Deterministic periodic flow. J Atmos Sci 20(2):130–141

    Article  Google Scholar 

  16. Lü J, Chen G (2002) A new chaotic attractor coined. Int J Bifurc Chaos 12(3):659–661

    Article  MathSciNet  MATH  Google Scholar 

  17. Pehlivan I, Moroz IM, Vaidyanathan S (2014) Analysis, synchronization and circuit design of a novel butterfly attractor. J Sound Vib 333(20):5077–5096

    Article  Google Scholar 

  18. Pham VT, Volos C, Jafari S, Wang X, Vaidyanathan S (2014) Hidden hyperchaotic attractor in a novel simple memristive neural network. Optoelectron Adv Mater Rapid Commun 8(11–12):1157–1163

    Google Scholar 

  19. Pham VT, Volos CK, Vaidyanathan S, Le TP, Vu VY (2015) A memristor-based hyperchaotic system with hidden attractors: dynamics, synchronization and circuital emulating. J Eng Sci Technol Rev 8(2):205–214

    Google Scholar 

  20. Rasappan S, Vaidyanathan S (2013) Hybrid synchronization of \(n\)-scroll Chua circuits using adaptive backstepping control design with recursive feedback. Malays J Math Sci 73(1):73–95

    MathSciNet  Google Scholar 

  21. Rasappan S, Vaidyanathan S (2014) Global chaos synchronization of WINDMI and Coullet chaotic systems using adaptive backstepping control design. Kyungpook Math J 54(1):293–320

    Google Scholar 

  22. Rhouma R, Belghith S (2008) Cryptanalysis of a new image encryption algorithm based on hyper-chaos. Phys Lett A 372(38):5973–5978

    Article  MATH  Google Scholar 

  23. Rössler OE (1976) An equation for continuous chaos. Phys Lett A 57(5):397–398

    Article  Google Scholar 

  24. Rössler OE (1979) An equation for hyperchaos. Phys Lett A 71:155–157

    Article  MathSciNet  MATH  Google Scholar 

  25. Sampath S, Vaidyanathan S, Volos CK, Pham VT (2015) An eight-term novel four-scroll chaotic system with cubic nonlinearity and its circuit simulation. J Eng Sci Technol Rev 8(2):1–6

    Google Scholar 

  26. Sarasu P, Sundarapandian V (2011) Active controller design for generalized projective synchronization of four-scroll chaotic systems. Int J Syst Signal Control Eng Appl 4(2):26–33

    Google Scholar 

  27. Sarasu P, Sundarapandian V (2011) The generalized projective synchronization of hyperchaotic Lorenz and hyperchaotic Qi systems via active control. Int J Soft Comput 6(5):216–223

    Google Scholar 

  28. Sarasu P, Sundarapandian V (2012) Generalized projective synchronization of two-scroll systems via adaptive control. Int J Soft Comput 7(4):146–156

    Article  Google Scholar 

  29. Senouci A, Boukabou A (2014) Predictive control and synchronization of chaotic and hyperchaotic systems based on a \(T-S\) fuzzy model. Math Comput Simul 105:62–78

    Article  MathSciNet  Google Scholar 

  30. Sprott JC (1994) Some simple chaotic flows. Phys Rev E 50(2):647–650

    Article  MathSciNet  Google Scholar 

  31. Sundarapandian V (2010) Output regulation of the Lorenz attractor. Far East J Math Sci 42(2):289–299

    MathSciNet  MATH  Google Scholar 

  32. Sundarapandian V (2013) Adaptive control and synchronization design for the Lu-Xiao chaotic system. Lect Notes Electr Eng 131:319–327

    Google Scholar 

  33. Sundarapandian V (2013) Analysis and anti-synchronization of a novel chaotic system via active and adaptive controllers. J Eng Sci Technol Rev 6(4):45–52

    Google Scholar 

  34. Sundarapandian V, Karthikeyan R (2011) Anti-synchronization of hyperchaotic Lorenz and hyperchaotic Chen systems by adaptive control. Int J Syst Signal Control Eng Appl 4(2):18–25

    Google Scholar 

  35. Sundarapandian V, Karthikeyan R (2011) Anti-synchronization of Lü and Pan chaotic systems by adaptive nonlinear control. Eur J Sci Res 64(1):94–106

    Google Scholar 

  36. Sundarapandian V, Karthikeyan R (2012) Adaptive anti-synchronization of uncertain Tigan and Li systems. J Eng Appl Sci 7(1):45–52

    Article  MATH  Google Scholar 

  37. Sundarapandian V, Pehlivan I (2012) Analysis, control, synchronization, and circuit design of a novel chaotic system. Math Comput Model 55(7–8):1904–1915

    Article  MathSciNet  MATH  Google Scholar 

  38. Sundarapandian V, Sivaperumal S (2011) Sliding controller design of hybrid synchronization of four-wing chaotic systems. Int J Soft Comput 6(5):224–231

    Article  Google Scholar 

  39. Suresh R, Sundarapandian V (2013) Global chaos synchronization of a family of \(n\)-scroll hyperchaotic Chua circuits using backstepping control with recursive feedback. Far East J Math Sci 7(2):219–246

    MathSciNet  MATH  Google Scholar 

  40. Tigan G, Opris D (2008) Analysis of a 3D chaotic system. Chaos Solitons Fractals 36:1315–1319

    Google Scholar 

  41. Vaidyanathan S (2011) Output regulation of Arneodo-Coullet chaotic system. Commun Comput Inf Sci 133:98–107

    Google Scholar 

  42. Vaidyanathan S (2011) Output regulation of the unified chaotic system. Commun Comput Inf Sci 198:1–9

    Google Scholar 

  43. Vaidyanathan S (2012) Adaptive controller and syncrhonizer design for the Qi-Chen chaotic system. Lect Notes Inst Comput Sci Soc-Inf Telecommun Eng 84:73–82

    Google Scholar 

  44. Vaidyanathan S (2012) Anti-synchronization of Sprott-L and Sprott-M chaotic systems via adaptive control. Int J Control Theory Appl 5(1):41–59

    Google Scholar 

  45. Vaidyanathan S (2012) Global chaos control of hyperchaotic Liu system via sliding control method. Int J Control Theory Appl 5(2):117–123

    Google Scholar 

  46. Vaidyanathan S (2012) Sliding mode control based global chaos control of Liu-Liu-Liu-Su chaotic system. Int J Control Theory Appl 5(1):15–20

    Google Scholar 

  47. Vaidyanathan S (2013) A new six-term 3-D chaotic system with an exponential nonlinearity. Far East J Math Sci 79(1):135–143

    Google Scholar 

  48. Vaidyanathan S (2013) A ten-term novel 4-D hyperchaotic system with three quadratic nonlinearities and its control. Int J Control Theory Appl 6(2):97–109

    Google Scholar 

  49. Vaidyanathan S (2013) Analysis and adaptive synchronization of two novel chaotic systems with hyperbolic sinusoidal and cosinusoidal nonlinearity and unknown parameters. J Eng Sci Technol Rev 6(4):53–65

    Google Scholar 

  50. Vaidyanathan S (2013) Analysis, control and synchronization of hyperchaotic Zhou system via adaptive control. Adv Intell Syst Comput 177:1–10

    Google Scholar 

  51. Vaidyanathan S (2014) A new eight-term 3-D polynomial chaotic system with three quadratic nonlinearities. Far East J Math Sci 84(2):219–226

    Google Scholar 

  52. Vaidyanathan S (2014) Analysis and adaptive synchronization of eight-term 3-D polynomial chaotic systems with three quadratic nonlinearities. Eur Phys J: Spec Top 223(8):1519–1529

    Google Scholar 

  53. Vaidyanathan S (2014) Analysis, control and synchronisation of a six-term novel chaotic system with three quadratic nonlinearities. Int J Modell Identif Control 22(1):41–53

    Google Scholar 

  54. Vaidyanathan S (2014) Generalized projective synchronisation of novel 3-D chaotic systems with an exponential non-linearity via active and adaptive control. Int J Modell Identif Control 22(3):207–217

    Google Scholar 

  55. Vaidyanathan S (2014) Global chaos synchronisation of identical Li-Wu chaotic systems via sliding mode control. Int J Modell Identif Control 22(2):170–177

    Google Scholar 

  56. Vaidyanathan S (2014) Qualitative analysis and control of an eleven-term novel 4-D hyperchaotic system with two quadratic nonlinearities. Int J Control Theory Appl 7:35–47

    Google Scholar 

  57. Vaidyanathan S (2015) 3-cells cellular neural network (CNN) attractor and its adaptive biological control. Int J Pharm Tech Res 8(4):632–640

    Google Scholar 

  58. Vaidyanathan S (2015) A 3-D novel highly chaotic system with four quadratic nonlinearities, its adaptive control and anti-synchronization with unknown parameters. J Eng Sci Technol Rev 8(2):106–115

    Google Scholar 

  59. Vaidyanathan S (2015) A novel chemical chaotic reactor system and its adaptive control. Int J Chem Tech Res 8(7):146–158

    Google Scholar 

  60. Vaidyanathan S (2015) Adaptive backstepping control of enzymes-substrates system with ferroelectric behaviour in brain waves. Int J Pharm Tech Res 8(2):256–261

    Google Scholar 

  61. Vaidyanathan S (2015) Adaptive biological control of generalized Lotka-Volterra three-species biological system. Int J Pharm Tech Res 8(4):622–631

    Google Scholar 

  62. Vaidyanathan S (2015) Adaptive chaotic synchronization of enzymes-substrates system with ferroelectric behaviour in brain waves. Int J Pharm Tech Res 8(5):964–973

    Google Scholar 

  63. Vaidyanathan S (2015) Adaptive control of a chemical chaotic reactor. Int J Pharm Tech Res 8(3):377–382

    Google Scholar 

  64. Vaidyanathan S (2015) Adaptive control of the FitzHugh-Nagumo chaotic neuron model. Int J Pharm Tech Res 8(6):117–127

    Google Scholar 

  65. Vaidyanathan S (2015) Adaptive synchronization of chemical chaotic reactors. Int J Chem Tech Res 8(2):612–621

    Google Scholar 

  66. Vaidyanathan S (2015) Adaptive synchronization of generalized Lotka-Volterra three-species biological systems. Int J Pharm Tech Res 8(5):928–937

    Google Scholar 

  67. Vaidyanathan S (2015) Adaptive synchronization of novel 3-D chemical chaotic reactor systems. Int J Chem Tech Res 8(7):159–171

    Google Scholar 

  68. Vaidyanathan S (2015) Adaptive synchronization of the identical FitzHugh-Nagumo chaotic neuron models. Int J Pharm Tech Res 8(6):167–177

    Google Scholar 

  69. Vaidyanathan S (2015) Analysis, control and synchronization of a 3-D novel jerk chaotic system with two quadratic nonlinearities. Kyungpook Math J 55:563–586

    Google Scholar 

  70. Vaidyanathan S (2015) Analysis, properties and control of an eight-term 3-D chaotic system with an exponential nonlinearity. Int J Modell Identif Control 23(2):164–172

    Google Scholar 

  71. Vaidyanathan S (2015) Anti-synchronization of Brusselator chemical reaction systems via adaptive control. Int J Chem Tech Res 8(6):759–768

    Google Scholar 

  72. Vaidyanathan S (2015) Chaos in neurons and adaptive control of Birkhoff-Shaw strange chaotic attractor. Int J Pharm Tech Res 8(5):956–963

    Google Scholar 

  73. Vaidyanathan S (2015) Chaos in neurons and synchronization of Birkhoff-Shaw strange chaotic attractors via adaptive control. Int J Pharm Tech Res 8(6):1–11

    Google Scholar 

  74. Vaidyanathan S (2015) Coleman-Gomatam logarithmic competitive biology models and their ecological monitoring. Int J Pharm Tech Res 8(6):94–105

    Google Scholar 

  75. Vaidyanathan S (2015) Dynamics and control of Brusselator chemical reaction. Int J Chem Tech Res 8(6):740–749

    Google Scholar 

  76. Vaidyanathan S (2015) Dynamics and control of Tokamak system with symmetric and magnetically confined plasma. Int J Chem Tech Res 8(6):795–803

    Google Scholar 

  77. Vaidyanathan S (2015) Global chaos synchronization of chemical chaotic reactors via novel sliding mode control method. Int J Chem Tech Res 8(7):209–221

    Google Scholar 

  78. Vaidyanathan S (2015) Global chaos synchronization of the forced Van der Pol chaotic oscillators via adaptive control method. Int J Pharm Tech Res 8(6):156–166

    Google Scholar 

  79. Vaidyanathan S (2015) Global chaos synchronization of the Lotka-Volterra biological systems with four competitive species via active control. Int J Pharm Tech Res 8(6):206–217

    Google Scholar 

  80. Vaidyanathan S (2015) Lotka-Volterra population biology models with negative feedback and their ecological monitoring. Int J Pharm Tech Res 8(5):974–981

    Google Scholar 

  81. Vaidyanathan S (2015) Lotka-Volterra two species competitive biology models and their ecological monitoring. Int J Pharm Tech Res 8(6):32–44

    Google Scholar 

  82. Vaidyanathan S (2015) Output regulation of the forced Van der Pol chaotic oscillator via adaptive control method. Int J Pharm Tech Res 8(6):106–116

    Google Scholar 

  83. Vaidyanathan S, Azar AT (2015) Analysis and control of a 4-D novel hyperchaotic system. Stud Comput Intell 581:3–17

    Google Scholar 

  84. Vaidyanathan S, Azar AT (2015) Analysis, control and synchronization of a nine-term 3-D novel chaotic system. In: Azar AT, Vaidyanathan S (eds) Chaos modelling and control systems design, vol 581. Studies in computational intelligence. Springer, Germany, pp 19–38

    Google Scholar 

  85. Vaidyanathan S, Madhavan K (2013) Analysis, adaptive control and synchronization of a seven-term novel 3-D chaotic system. Int J Control Theory Appl 6(2):121–137

    Google Scholar 

  86. Vaidyanathan S, Pakiriswamy S (2013) Generalized projective synchronization of six-term Sundarapandian chaotic systems by adaptive control. Int J Control Theory Appl 6(2):153–163

    Google Scholar 

  87. Vaidyanathan S, Pakiriswamy S (2015) A 3-D novel conservative chaotic system and its generalized projective synchronization via adaptive control. J Eng Sci Technol Rev 8(2):52–60

    Google Scholar 

  88. Vaidyanathan S, Rajagopal K (2011) Hybrid synchronization of hyperchaotic Wang-Chen and hyperchaotic Lorenz systems by active non-linear control. Int J Syst Signal Control Eng Appl 4(3):55–61

    Google Scholar 

  89. Vaidyanathan S, Rajagopal K (2012) Global chaos synchronization of hyperchaotic Pang and hyperchaotic Wang systems via adaptive control. Int J Soft Comput 7(1):28–37

    Article  MATH  Google Scholar 

  90. Vaidyanathan S, Rasappan S (2011) Global chaos synchronization of hyperchaotic Bao and Xu systems by active nonlinear control. Commun Comput Inf Sci 198:10–17

    Article  Google Scholar 

  91. Vaidyanathan S, Rasappan S (2014) Global chaos synchronization of \(n\)-scroll Chua circuit and Lur’e system using backstepping control design with recursive feedback. Arab J Sci Eng 39(4):3351–3364

    Article  Google Scholar 

  92. Vaidyanathan S, Sampath S (2012) Anti-synchronization of four-wing chaotic systems via sliding mode control. Int J Autom Comput 9(3):274–279

    Article  Google Scholar 

  93. Vaidyanathan S, Volos C (2015) Analysis and adaptive control of a novel 3-D conservative no-equilibrium chaotic system. Arch Control Sci 25(3):333–353

    Google Scholar 

  94. Vaidyanathan S, Volos C, Pham VT (2014) Hyperchaos, adaptive control and synchronization of a novel 5-D hyperchaotic system with three positive Lyapunov exponents and its SPICE implementation. Arch Control Sci 24(4):409–446

    Google Scholar 

  95. Vaidyanathan S, Volos C, Pham VT, Madhavan K, Idowu BA (2014) Adaptive backstepping control, synchronization and circuit simulation of a 3-D novel jerk chaotic system with two hyperbolic sinusoidal nonlinearities. Arch Control Sci 24(3):375–403

    Google Scholar 

  96. Vaidyanathan S, Azar AT, Rajagopal K, Alexander P (2015) Design and SPICE implementation of a 12-term novel hyperchaotic system and its synchronisation via active control. Int J Modell Identif Control 23(3):267–277

    Google Scholar 

  97. Vaidyanathan S, Idowu BA, Azar AT (2015) Backstepping controller design for the global chaos synchronization of Sprott’s jerk systems. Stud Comput Intell 581:39–58

    Google Scholar 

  98. Vaidyanathan S, Rajagopal K, Volos CK, Kyprianidis IM, Stouboulos IN (2015) Analysis, adaptive control and synchronization of a seven-term novel 3-D chaotic system with three quadratic nonlinearities and its digital implementation in LabVIEW. J Eng Sci Technol Rev 8(2):130–141

    Google Scholar 

  99. Vaidyanathan S, Sampath S, Azar AT (2015) Global chaos synchronisation of identical chaotic systems via novel sliding mode control method and its application to Zhu system. Int J Modell Identif Control 23(1):92–100

    Google Scholar 

  100. Vaidyanathan S, Volos C, Pham VT, Madhavan K (2015) Analysis, adaptive control and synchronization of a novel 4-D hyperchaotic hyperjerk system and its SPICE implementation. Nonlinear Dyn 25(1):135–158

    Google Scholar 

  101. Vaidyanathan S, Volos CK, Kyprianidis IM, Stouboulos IN, Pham VT (2015) Analysis, adaptive control and anti-synchronization of a six-term novel jerk chaotic system with two exponential nonlinearities and its circuit simulation. J Eng Sci Technol Rev 8(2):24–36

    Google Scholar 

  102. Vaidyanathan S, Volos CK, Pham VT (2015) Analysis, adaptive control and adaptive synchronization of a nine-term novel 3-D chaotic system with four quadratic nonlinearities and its circuit simulation. J Eng Sci Technol Rev 8(2):181–191

    Google Scholar 

  103. Vaidyanathan S, Volos CK, Pham VT (2015) Analysis, control, synchronization and SPICE implementation of a novel 4-D hyperchaotic Rikitake dynamo system without equilibrium. J Eng Sci Technol Rev 8(2):232–244

    Google Scholar 

  104. Vaidyanathan S, Volos CK, Pham VT (2015) Global chaos control of a novel nine-term chaotic system via sliding mode control. In: Azar AT, Zhu Q (eds) Advances and applications in sliding mode control systems, vol 576. Studies in computational intelligence. Springer, Germany, pp 571–590

    Google Scholar 

  105. Volos CK, Kyprianidis IM, Stouboulos IN, Tlelo-Cuautle E, Vaidyanathan S (2015) Memristor: a new concept in synchronization of coupled neuromorphic circuits. J Eng Sci Technol Rev 8(2):157–173

    Google Scholar 

  106. Wang J, Chen Z (2008) A novel hyperchaotic system and its complex dynamics. Int J Bifurc Chaos 18:3309–3324

    Article  MathSciNet  MATH  Google Scholar 

  107. Wei X, Yunfei F, Qiang L (2012) A novel four-wing hyper-chaotic system and its circuit implementation. Procedia Eng 29:1264–1269

    Article  Google Scholar 

  108. Wei Z, Yang Q (2010) Anti-control of Hopf bifurcation in the new chaotic system with two stable node-foci. Appl Math Comput 217(1):422–429

    MathSciNet  MATH  Google Scholar 

  109. Wu X, Zhu C, Kan H (2015) An improved secure communication scheme based passive synchronization of hyperchaotic complex nonlinear system. Appl Math Comput 252:201–214

    Google Scholar 

  110. Yujun N, Xingyuan W, Mingjun W, Huaguang Z (2010) A new hyperchaotic system and its circuit implementation. Commun Nonlinear Sci Numer Simul 15(11):3518–3524

    Article  Google Scholar 

  111. Zhang H, Liao X, Yu J (2005) Fuzzy modeling and synchronization of hyperchaotic systems. Chaos Solitons Fractals 26(3):835–843

    Article  MATH  Google Scholar 

  112. Zhou W, Xu Y, Lu H, Pan L (2008) On dynamics analysis of a new chaotic attractor. Phys Lett A 372(36):5773–5777

    Article  MathSciNet  MATH  Google Scholar 

  113. Zhu C (2012) A novel image encryption scheme based on improved hyperchaotic sequences. Opt Commun 285(1):29–37

    Article  Google Scholar 

  114. Zhu C, Liu Y, Guo Y (2010) Theoretic and numerical study of a new chaotic system. Intell Inf Manag 2:104–109

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sundarapandian Vaidyanathan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vaidyanathan, S. (2016). A Novel Highly Hyperchaotic System and Its Adaptive Control. In: Vaidyanathan, S., Volos, C. (eds) Advances and Applications in Chaotic Systems . Studies in Computational Intelligence, vol 636. Springer, Cham. https://doi.org/10.1007/978-3-319-30279-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30279-9_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30278-2

  • Online ISBN: 978-3-319-30279-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics