Skip to main content

Computational Studies of Thermal Transport Properties of Carbon Nanotube Materials

  • Chapter
  • First Online:
Carbon Nanotubes for Interconnects

Abstract

Computer modeling is playing an increasingly important role in investigations of the thermal transfer properties of carbon nanotube (CNT) materials. The complex and inherently multiscale nature of the structural organization of the CNT network materials necessitates combination of atomistic and mesoscopic simulation techniques which provide complementary information on different aspects of the heat transfer in CNT materials and facilitate the development of theoretical models describing the general structure—thermal transport relationships. In this chapter, we provide a brief overview of the results of atomistic simulation studies of the intrinsic thermal conductivity of individual CNTs and inter-tube contact conductance, discuss the emerging mesoscopic computational approaches to the calculation of the effective thermal conductivity of CNT materials, and highlight the importance of combining the results obtained with different computational methods and dealing with processes occurring at different time and length scales. A number of research questions that have been subjects of contradictory claims and controversial discussion in literature are critically reviewed and promising future research directions are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The values of interface conductance given in [75] in units of Wm−1 K−1 (Figs. 6 and 7 of [75]) are about an order of magnitude larger than the actual values found in the simulations, as established through private communication with Dr. Vikas Varshney.

    Fig. 5.6
    figure 6

    Thermal conductance of CNT–CNT cross-junctions predicted in MD simulations by Evans et~al. [77] (a) and Hu and McGaughey [80] (b). The computational setups of Fig. 5.4d,f with periodic boundary conditions applied in the direction parallel to the axes of nanotubes is used by Evans et~al., while the ends of the nanotubes are kept rigid during the simulations by Hu and McGaughey. The contact area is defined through the inter-tube interaction energy in (a) and calculated as D 2/sinθ, where D is the nanotube diameter in (b)

    Fig. 5.7
    figure 7

    The values of inter-tube thermal conductance obtained in MD simulations (red circles) and predicted by the general empirical equation (black crosses) for various CNT–CNT contact configurations [81]

References

  1. Zou J, Liu J, Karakoti AS, Kumar A, Joung D, Li Q, Khondaker SI, Seal S, Zhai L (2010) Ultralight multiwalled carbon nanotube aerogel. ACS Nano 4:7293–7302

    Article  Google Scholar 

  2. Gui X, Cao A, Wei J, Li H, Jia Y, Li Z, Fan L, Wang K, Zhu H, Dehai C (2010) Soft, highly conductive nanotube sponges and composites with controlled compressibility. ACS Nano 4:2320–2326

    Google Scholar 

  3. Sreekumar TV, Liu T, Kumar S, Ericson LM, Hauge RH, Smalley RE (2003) Single-wall carbon nanotube films. Chem Mater 15:175–178

    Article  Google Scholar 

  4. Hennrich F, Lebedkin S, Malik S, Tracy J, Barczewski M, Rösner H, Kappes M (2002) Preparation, characterization and applications of free-standing single walled carbon nanotube thin films. Phys Chem Chem Phys 4:2273–2277

    Google Scholar 

  5. Muramatsu H, Hayashi T, Kim YA, Shimamoto D, Kim YJ, Tantrakarn K, Endo M, Terrones M, Dresselhaus MS (2005) Pore structure and oxidation stability of double-walled carbon nanotube-derived buckypaper. Chem Phys Lett 414:444–448

    Article  Google Scholar 

  6. Ma W, Song L, Yang R, Zhang T, Zhao Y, Sun L, Ren Y, Liu D, Liu L, Shen J, Zhang Z, Xiang Y, Zhou W, Xie S (2007) Directly synthesized strong, highly conducting, transparent single-walled carbon nanotube films. Nano Lett 7:2307–2311

    Article  Google Scholar 

  7. Xu M, Futaba DN, Yumura M, Hata K (2012) Alignment control of carbon nanotube forest from random to nearly perfectly aligned by utilizing the crowding effect. ASC Nano 6: 5837–5844

    Article  Google Scholar 

  8. Futaba DN, Hata K, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y, Tanaike O, Hatori H, Yumura M, Iijima S (2006) Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat Mater 5:987–994

    Article  Google Scholar 

  9. Wang Z, Liang Z, Wang B, Zhang C, Kramer L (2004) Processing and property investigation of single-walled carbon nanotube (SWNT) buckypaper/epoxy resin matrix nanocomposites. Compos Part A Appl Sci Manuf 35:1225–1232

    Google Scholar 

  10. Whitten PG, Spinks GM, Wallace GG (2007) Mechanical properties of carbon nanotube paper in ionic liquid and aqueous electrolytes. Carbon 43:1891–1896

    Article  Google Scholar 

  11. Whitby RLD, Fukuda T, Maekawa T, James SL, Mikhalovsky SV (2008) Geometric control and tuneable pore size distribution of buckypaper and buckydisks. Carbon 46:949–956

    Article  Google Scholar 

  12. Poulin P, Vigolo B, Launois P (2002) Films and fibers of oriented single wall nanotubes. Carbon 40:1741–1749

    Article  Google Scholar 

  13. Zhang X, Jiang K, Feng C, Liu P, Zhang L, Kong J, Zhang T, Li Q, Fan S (2006) Spinning and processing continuous yarn from 4-inch wafer scale super-aligned carbon nanotube arrays. Adv Mater 18:1505–1510

    Article  Google Scholar 

  14. Behabtu N, Young CC, Tsentalovich DE, Kleinerman O, Wang X, Ma AWK, Bengio A, ter Waarbek RF, de Jong JJ, Hoogerwerf RE, Fairchild SB, Ferguson JB, Maruyama B, Kono J, Talmon Y, Cohen Y, Otto MJ, Pasquali M (2013) Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 339:182–186

    Article  Google Scholar 

  15. Zhang L, Zhang G, Liu C, Fan S (2012) High-density carbon nanotube buckypapers with superior transport and mechanical properties. Nano Lett 12:4848–4852

    Article  Google Scholar 

  16. Girifalco LA, Hodak M, Lee RS (2000) Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Phys Rev B 62:13104–13110

    Article  Google Scholar 

  17. Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria GE, Tománek D, Fischer JE, Smalley RE (1996) Crystalline ropes of metallic carbon nanotubes. Science 273:483–487

    Article  Google Scholar 

  18. Rinzler AG, Liu J, Dai H, Nikolaev P, Huffman CB, Rodríguez-Macías FJ, Boul PJ, Lu AH, Heymann D, Colbert DT, Lee RS, Fischer JE, Rao AM, Eklund PC, Smalley RE (1998) Large-scale purification of single-wall carbon nanotubes: process, product, and characterization. Appl Phys A Mater Sci Process 67:29–37

    Google Scholar 

  19. Dettlaff-Weglikowska U, Skákalová V, Graupner R, Jhang SH, Kim BH, Lee HJ, Ley L, Park YW, Berber S, Tománek D, Roth S (2005) Effect of SOCI2 treatment on electrical and mechanical properties of single-wall carbon nanotube networks. J Am Chem Soc 127: 5125–5131

    Article  Google Scholar 

  20. Eom K, Nam K, Jung H, Kim P, Strano MS, Han J-H, Kwon T (2013) Controllable viscoelastic behavior of vertically aligned carbon nanotube arrays. Carbon 65:305–314

    Article  Google Scholar 

  21. Prasher RS, Hu XJ, Chalopin Y, Mingo N, Lofgreen K, Volz S, Cleri F, Keblinski P (2009) Turning carbon nanotubes from exceptional heat conductors into insulators. Phys Rev Lett 102:105901

    Article  Google Scholar 

  22. Hone J, Whitney M, Piskoti C, Zettl A (1999) Thermal conductivity of single-walled carbon nanotubes. Phys Rev B 59:R2514–R2516

    Article  Google Scholar 

  23. Hone J, Whitney M, Zettl A (1999) Thermal conductivity of single-walled carbon nanotubes. Synth Met 103:2498–2499

    Article  Google Scholar 

  24. Hone J, Llaguno MC, Nemes NM, Johnson AT, Fischer JE, Walters DA, Casavant MJ, Schmidt J, Smalley RE (2000) Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films. Appl Phys Lett 77:666–668

    Article  Google Scholar 

  25. Hone J, Llaguno MC, Biercuk MJ, Johnson AT, Batlogg B, Benes Z, Fischer JE (2002) Thermal properties of carbon nanotubes and nanotube-based materials. Appl Phys A 74: 339–343

    Article  Google Scholar 

  26. Gonnet P, Liang SY, Choi ES, Kadambala RS, Zhang C, Brooks JS, Wang B, Kramer L (2006) Thermal conductivity of magnetically aligned carbon nanotube buckypapers and nanocomposites. Curr Appl Phys 6:119–122

    Article  Google Scholar 

  27. Yang DJ, Zhang Q, Chen G, Yoon SF, Ahn J, Wang SG, Zhou Q, Wang Q, Li JQ (2002) Thermal conductivity of multiwalled carbon nanotubes. Phys Rev B 66:165440

    Article  Google Scholar 

  28. Yang DJ, Wang SG, Zhang Q, Sellin PJ, Chen G (2004) Thermal and electrical transport in multi-walled carbon nanotubes. Phys Lett A 329:207–213

    Article  Google Scholar 

  29. Duong HM, Nguyen ST (2011) Limiting mechanisms of thermal transport in carbon nanotube-based heterogeneous media. Recent Pat Eng 5:209–232

    Article  Google Scholar 

  30. Ivanov I, Puretzky A, Eres G, Wang H, Pan Z, Cui H, Jin R, Howe J, Geohegan DB (2006) Fast and highly anisotropic thermal transport through vertically aligned carbon nanotube arrays. Appl Phys Lett 89:223110

    Article  Google Scholar 

  31. Aliev AE, Lima MH, Silverman EM, Baughman RH (2010) Thermal conductivity of multi-walled carbon nanotube sheets: radiation losses and quenching of phonon modes. Nanotechnology 21:035709

    Article  Google Scholar 

  32. Zhang G, Liu C, Fan S (2013) Directly measuring of thermal pulse transfer in one-dimensional highly aligned carbon nanotubes. Sci Rep 3:2549

    Google Scholar 

  33. Marconnet AM, Panzer MA, Goodson KE (2013) Thermal conduction phenomena in carbon nanotubes and related nanostructured materials. Rev Mod Phys 85:1295–1326

    Article  Google Scholar 

  34. Zhang KJ, Yadav A, Kim KH, Oh Y, Islam MF, Uher C, Pipe KP (2013) Thermal and electrical transport in ultralow density single-walled carbon nanotube networks. Adv Mater 25: 2926–2931

    Article  Google Scholar 

  35. Berber S, Kwon Y-K, Tomanek D (2000) Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett 84:4613–4616

    Article  Google Scholar 

  36. Che J, Çağın T, Goddard WA III (2000) Thermal conductivity of carbon nanotubes. Nanotechnology 11:65–69

    Article  Google Scholar 

  37. Osman MA, Srivastava D (2001) Temperature dependence of the thermal conductivity of single-wall carbon nanotubes. Nanotechnology 12:21–24

    Article  Google Scholar 

  38. Maruyama S (2002) A molecular dynamics simulation of heat conduction in finite length SWNTs. Phys B 323:193–195

    Article  Google Scholar 

  39. Maruyama S (2003) A molecular dynamics simulation of heat conduction of a finite length single-walled carbon nanotube. Microscale Thermophys Eng 7:41–50

    Article  MathSciNet  Google Scholar 

  40. Padgett CW, Brenner DW (2004) Influence of chemisorption on the thermal conductivity of single-wall carbon nanotubes. Nano Lett 4:1051–1053

    Article  Google Scholar 

  41. Moreland JF, Freund JB, Chen G (2004) The disparate thermal conductivity of carbon nanotubes and diamond nanowires studied by atomistic simulation. Microscale Thermophys Eng 8:61–69

    Article  Google Scholar 

  42. Grujicic M, Cao G, Gersten B (2004) Atomic-scale computations of the lattice contribution to thermal conductivity of single-walled carbon nanotubes. Mater Sci Eng B 107:204–216

    Article  Google Scholar 

  43. Grujicic M, Cao G, Roy WN (2005) Computational analysis of the lattice contribution to thermal conductivity of single-walled carbon nanotubes. J Mater Sci 40:1943–1952

    Article  Google Scholar 

  44. Zhang G, Li B (2005) Thermal conductivity of nanotubes revisited: effects of chirality, isotope impurity, tube length, and temperature. J Chem Phys 123:114714

    Article  Google Scholar 

  45. Bi K, Chen Y, Yang J, Wang Y, Chen M (2006) Molecular dynamics simulation of thermal conductivity of single-wall carbon nanotubes. Phys Lett A 350:150–153

    Article  Google Scholar 

  46. Lukes JR, Zhong H (2007) Thermal conductivity of individual single-wall carbon nanotubes. J Heat Transf 129:705–716

    Article  Google Scholar 

  47. Pan R-Q, Xu Z-J, Zhu Z-Y (2007) Length dependence of thermal conductivity of single-walled carbon nanotubes. Chin Phys Lett 24:1321–1323

    Article  Google Scholar 

  48. Shiomi J, Maruyama S (2008) Molecular dynamics of diffusive-ballistic heat conduction in single-walled carbon nanotubes. Jpn J Appl Phys 47:2005–2009

    Article  Google Scholar 

  49. Alaghemandi M, Algaer E, Bohm MC, Muller-Plathe F (2009) The thermal conductivity and thermal rectification of carbon nanotubes studied using reverse non-equilibrium molecular dynamics simulations. Nanotechnology 20:115704

    Article  Google Scholar 

  50. Wu MCH, Hsu J-Y (2009) Thermal conductivity of carbon nanotubes with quantum correction via heat capacity. Nanotechnology 20:145401

    Article  Google Scholar 

  51. Xu Z, Buehler MJ (2009) Strain controlled thermomutability of single-walled carbon nanotubes. Nanotechnology 20:185701

    Article  Google Scholar 

  52. Nishimura F, Takahashi T, Watanabe K, Yamamoto T (2009) Bending robustness of thermal conductance of carbon nanotubes: nonequilibrium molecular dynamics simulation. Appl Phys Express 2:035003

    Article  Google Scholar 

  53. Ren C, Zhang W, Xu Z, Zhu Z, Huai P (2010) Thermal conductivity of single-walled carbon nanotubes under axial stress. J Phys Chem C 114:5786–5791

    Article  Google Scholar 

  54. Thomas JA, Iutzi RM, McGaughey AJH (2010) Thermal conductivity and phonon transport in empty and water-filled carbon nanotubes. Phys Rev B 81:045413

    Article  Google Scholar 

  55. Shelly RA, Toprak K, Bayazitoglu Y (2010) Nose–Hoover thermostat length effect on thermal conductivity of single wall carbon nanotubes. Int J Heat Mass Transf 53:5884–5887

    Article  MATH  Google Scholar 

  56. Lin C, Wang H, Yang W (2010) The thermomutability of single-walled carbon nanotubes by constrained mechanical folding. Nanotechnology 21:365708

    Article  Google Scholar 

  57. Pan R-Q (2011) Diameter and temperature dependence of thermal conductivity of single-walled carbon nanotubes. Chin Phys Lett 28:066104

    Article  Google Scholar 

  58. Wei N, Xu L, Wang H-Q, Zheng J-C (2011) Strain engineering of thermal conductivity in graphene sheets and nanoribbons: a demonstration of magic flexibility. Nanotechnology 22:105705

    Article  Google Scholar 

  59. Qiu B, Wang Y, Zhao Q, Ruan X (2012) The effects of diameter and chirality on the thermal transport in free-standing and supported carbon-nanotubes. Appl Phys Lett 100:233105

    Article  Google Scholar 

  60. Volkov AN, Shiga T, Nicholson D, Shiomi J, Zhigilei LV (2012) Effect of bending buckling of carbon nanotubes on thermal conductivity of carbon nanotube materials. J Appl Phys 111:053501

    Article  Google Scholar 

  61. Nishimura F, Shiga T, Maruyama S, Watanabe K, Shiomi J (2012) Thermal conductance of buckled carbon nanotubes. Jpn J Appl Phys 51:015102

    Article  Google Scholar 

  62. Cao A, Qu J (2012) Size dependent thermal conductivity of single-walled carbon nanotubes. J Appl Phys 112:013503

    Article  Google Scholar 

  63. Imtani AN (2013) Thermal conductivity for single-walled carbon nanotubes from Einstein relation in molecular dynamics. J Phys Chem Solids 74:1599–1603

    Article  Google Scholar 

  64. Feng D-L, Feng Y-H, Chen Y, Li W, Zhang X-X (2013) Effects of doping, Stone-Wales and vacancy defects on thermal conductivity of single-wall carbon nanotubes. Chin Phys B 22:016501

    Article  Google Scholar 

  65. Zhu L, Li B (2014) Low thermal conductivity in ultrathin carbon nanotube (2,1). Sci Rep 4:4917

    Google Scholar 

  66. Salaway RN, Zhigilei LV (2014) Molecular dynamics simulations of thermal conductivity of carbon nanotube: resolving the effects of computational parameters. Int J Heat Mass Transf 70:954–964

    Article  Google Scholar 

  67. Ma J, Ni Y, Volz S, Dumitrică T (2015) Thermal transport in single-walled carbon nanotubes under pure bending. Phys Rev Appl 3:024014

    Article  Google Scholar 

  68. Sääskilahti K, Oksanen J, Volz S, Tulkki J (2015) Frequency-dependent phonon mean free path in carbon nanotubes from nonequilibrium molecular dynamics. Phys Rev B 91:115426

    Article  Google Scholar 

  69. Mehri A, Jamaati M, Moradi M (2015) The effect of imposed temperature difference on thermal conductivity in armchair single-walled carbon nanotube. Int J Mod Phys C 26:1550105

    Article  Google Scholar 

  70. Zhong H, Lukes J (2006) Interfacial thermal resistance between carbon nanotubes: molecular dynamics simulations and analytical thermal modeling. Phys Rev B 74:125403

    Article  Google Scholar 

  71. Maruyama S, Igarashi Y, Taniguchi Y, Shiomi J (2006) Anisotropic heat transfer of single-walled carbon nanotubes. J Therm Sci Technol 1:138–148

    Article  Google Scholar 

  72. Chalopin Y, Volz S, Mingo N (2009) Upper bound to the thermal conductivity of carbon nanotube pellets. J Appl Phys 105:084301

    Article  Google Scholar 

  73. Kumar S, Murthy JY (2009) Interfacial thermal transport between nanotubes. J Appl Phys 106:084302

    Article  Google Scholar 

  74. Xu Z, Buehler MJ (2009) Nanoengineering heat transfer performance at carbon nanotube interfaces. ACS Nano 3:2767–2775

    Article  Google Scholar 

  75. Varshney V, Patnaik SS, Roy AK, Farmer BL (2010) Modeling of thermal conductance at transverse CNT-CNT interfaces. J Phys Chem C 114:16223–16228

    Article  Google Scholar 

  76. Evans WJ, Keblinski P (2010) Thermal conductivity of carbon nanotube cross-bar structures. Nanotechnology 21:475704

    Article  Google Scholar 

  77. Evans WJ, Shen M, Keblinski P (2012) Inter-tube thermal conductance in carbon nanotubes arrays and bundles: effects of contact area and pressure. Appl Phys Lett 100:261908

    Article  Google Scholar 

  78. Hu G-J, Cao B-Y (2013) Thermal resistance between crossed carbon nanotubes: molecular dynamics simulations and analytical modeling. J Appl Phys 114:224308

    Article  Google Scholar 

  79. Volkov AN, Salaway RN, Zhigilei LV (2013) Atomistic simulations, mesoscopic modeling, and theoretical analysis of thermal conductivity of bundles composed of carbon nanotubes. J Appl Phys 114:104301

    Article  Google Scholar 

  80. Hu L, McGaughey AJH (2014) Thermal conductance of the junction between single-walled carbon nanotubes. Appl Phys Lett 105:193104

    Article  Google Scholar 

  81. Salaway RN, Zhigilei LV (2016) Thermal conductance of carbon nanotube contacts: molecular dynamics simulations and general description of the contact conductance. Submitted

    Google Scholar 

  82. Zhigilei LV, Wei C, Srivastava D (2005) Mesoscopic model for dynamic simulations of carbon nanotubes. Phys Rev B 71:165417

    Article  Google Scholar 

  83. Buehler M (2006) Mesoscale modeling of mechanics of carbon nanotubes: self-assembly, self-folding, and fracture. J Mater Res 21:2855–2869

    Article  Google Scholar 

  84. Volkov AN, Zhigilei LV (2010) Mesoscopic interaction potential for carbon nanotubes of arbitrary length and orientation. J Phys Chem C 114:5513–5531

    Article  Google Scholar 

  85. Cranford SW, Buehler MJ (2010) In silico assembly and nanomechanical characterization of carbon nanotube buckypaper. Nanotechnology 21:265706

    Article  Google Scholar 

  86. Anderson T, Akatyeva E, Nikiforov I, Potyondy D, Ballarini R, Dumitrică T (2010) Towards distinct element method simulations of carbon nanotube systems. J Nanotechnol Eng Med 1:041009

    Article  Google Scholar 

  87. Volkov AN, Zhigilei LV (2010) Structural stability of carbon nanotube films: the role of bending buckling. ACS Nano 4:6187–6195

    Article  Google Scholar 

  88. Zhigilei LV, Volkov AN, Leveugle E, Tabetah M (2011) The effect of the target structure and composition on the ejection and transport of polymer molecules and carbon nanotubes in matrix-assisted pulsed laser evaporation. Appl Phys A 105:529–546

    Article  Google Scholar 

  89. Xie B, Liu Y, Ding Y, Zheng Q, Xu Z (2011) Mechanics of carbon nanotube networks: microstructural evolution and optimal design. Soft Matter 7:10039–10047

    Article  Google Scholar 

  90. Jacobs WM, Nicholson DA, Zemer H, Volkov AN, Zhigilei LV (2012) Acoustic energy dissipation and thermalization in carbon nanotubes: atomistic modeling and mesoscopic description. Phys Rev B 86:165414

    Article  Google Scholar 

  91. Wang C, Xie B, Liu Y, Xu Z (2012) Mechanotunable microstructures of carbon nanotube networks. ACS Macro Lett 1:1176–1179

    Article  Google Scholar 

  92. Li Y, Kröger M (2012) Viscoelasticity of carbon nanotube buckypaper: zipping-unzipping mechanism and entanglement effects. Soft Matter 8:7822–7830

    Article  Google Scholar 

  93. Li Y, Kröger M (2012) A theoretical evaluation of the effects of carbon nanotube entanglement and bundling on the structural and mechanical properties of buckypaper. Carbon 50:1793–1806

    Article  Google Scholar 

  94. Wang Y, Gaidău C, Ostanin I, Dumitrică T (2013) Ring windings from single-wall carbon nanotubes: a distinct element method study. Appl Phys Lett 103:183902

    Article  Google Scholar 

  95. Ostanin I, Ballarini R, Potyondy D, Dumitrică T (2013) A distinct element method for large scale simulations of carbon nanotube assemblies. J Mech Phys Solids 61:762–782

    Article  MathSciNet  Google Scholar 

  96. Won Y, Gao Y, Panzer MA, Xiang R, Maruyama S, Kenny TW, Cai W, Goodson KE (2013) Zipping, entanglement, and the elastic modulus of aligned single-walled carbon nanotube films. Proc Natl Acad Sci USA 110:20426–20430

    Article  Google Scholar 

  97. Ostanin I, Ballarini R, Dumitrică T (2014) Distinct element method modeling of carbon nanotube bundles with intertube sliding and dissipation. J Appl Mech 81:061004

    Article  Google Scholar 

  98. Zhao J, Jiang J-W, Wang L, Guo W, Rabczuk T (2014) Coarse-grained potentials of single-walled carbon nanotubes. J Mech Phys Solids 71:197–218

    Article  Google Scholar 

  99. Maschmann MR (2015) Integrated simulation of active CNT forest growth and mechanical compression. Carbon 86:26–37

    Article  Google Scholar 

  100. Volkov AN, Zhigilei LV (2010) Scaling laws and mesoscopic modeling of thermal conductivity in carbon nanotube materials. Phys Rev Lett 104:215902

    Article  Google Scholar 

  101. Volkov AN, Zhigilei LV (2012) Heat conduction in carbon nanotube materials: strong effect of intrinsic thermal conductivity of carbon nanotubes. Appl Phys Lett 101:043113

    Article  Google Scholar 

  102. Keblinski P, Cleri F (2004) Contact resistance in percolating networks. Phys Rev B 69:184201

    Article  Google Scholar 

  103. Foygel M, Morris RD, Anez D, French S, Sobolev VL (2005) Theoretical and computational studies of carbon nanotube composites and suspensions: electrical and thermal conductivity. Phys Rev B 71:104201

    Article  Google Scholar 

  104. Duong HM, Papavassiliou DV, Lee LL, Mullen KJ (2005) Random walks in nanotube composites: improved algorithms and the role of thermal boundary resistance. Appl Phys Lett 87:013101

    Article  Google Scholar 

  105. Kumar S, Alam MA, Murthy JY (2007) Effect of percolation on thermal transport in nanotube composites. Appl Phys Lett 90:104105

    Article  Google Scholar 

  106. Li J, Ma PC, Chow WS, To CK, Tang BZ, Kim J-K (2007) Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes. Adv Funct Mater 17:3207–3215

    Article  Google Scholar 

  107. Vassal J-P, Orgéas L, Favier D, Auriault J-L, Le Corre S (2008) Upscaling the diffusion equations in particulate media made of highly conductive particles. I. Theoretical aspects. Phys Rev E 77:011302

    Google Scholar 

  108. Vassal J-P, Orgéas L, Favier D, Auriault J-L, Le Corre S (2008) Upscaling the diffusion equations in particulate media made of highly conductive particles. II. Application to fibrous materials. Phys Rev E 77:011303

    Google Scholar 

  109. Duong HM, Papavassiliou DV, Mullen KJ, Maruyama S (2008) Computational modeling of the thermal conductivity of single-walled carbon nanotube–polymer composites. Nanotechnology 19:065702

    Article  Google Scholar 

  110. Ashtekar NA, Jack DA (2009) Stochastic modeling of the bulk thermal conductivity for dense 1027 carbon nanotube networks. In: Proceedings of ASME IMECE2009, Paper IMECE2009-11282, Orlando, FL

    Google Scholar 

  111. Chalopin Y, Volz S, Mingo N (2010) Erratum: “Upper bound to the thermal conductivity of carbon nanotube pellets” [J Appl Phys 105:084301 (2009)]. J Appl Phys 108:039902

    Article  Google Scholar 

  112. Bui KND, Grady BP, Papavassiliou DV (2011) Heat transfer in high volume fraction CNT nanocomposites: effects of inter-nanotube thermal resistance. Chem Phys Let 508:248–251

    Article  Google Scholar 

  113. Yamada Y, Nishiyama T, Yasuhara T, Takahashi K (2012) Thermal boundary conductance between multi-walled carbon nanotubes. J Therm Sci Technol 7:190–198

    Article  Google Scholar 

  114. Žeželj M, Stanković I (2012) From percolating to dense random stick networks: conductivity model investigation. Phys Rev E 86:134202

    Article  Google Scholar 

  115. Frenkel D, Smit B (1996) Understanding molecular simulation: from algorithms to applications. Academic, San Diego

    MATH  Google Scholar 

  116. Matsui M (1989) Molecular dynamics study of the structural and thermodynamic properties of MgO crystal with quantum correction. J Chem Phys 91:489–494

    Article  Google Scholar 

  117. Levashov VA, Billinge SJL, Thorpe MF (2007) Quantum correction to the pair distribution function. J Comput Chem 28:1865–1882

    Article  Google Scholar 

  118. Turney JE, McGaughey AJH, Amon CH (2009) Assessing the applicability of quantum corrections to classical thermal conductivity predictions. Phys Rev B 79:224305

    Article  Google Scholar 

  119. Yonetani Y, Kinugawa K (2003) Transport properties of liquid para-hydrogen: the path integral centroid molecular dynamics approach. J Chem Phys 119:9651–9660

    Article  Google Scholar 

  120. Wang J-S (2007) Quantum thermal transport from classical molecular dynamics. Phys Rev Lett 99:160601

    Article  Google Scholar 

  121. Wang J-S, Ni X, Jiang J-W (2009) Molecular dynamics with quantum heat baths: application to nanoribbons and nanotubes. Phys Rev B 80:224302

    Article  Google Scholar 

  122. Dammak H, Chalopin Y, Laroche M, Hayoun M, Greffet J-J (2009) Quantum thermal bath for molecular dynamics simulation. Phys Rev Lett 103:190601

    Article  Google Scholar 

  123. Savin AV, Kosevich YA, Cantarero A (2012) Semiquantum molecular dynamics simulation of thermal properties and heat transport in low-dimensional nanostructures. Phys Rev B 86:064305

    Article  Google Scholar 

  124. Bedoya-Martínez ON, Barrat J-L, Rodney D (2014) Computation of the thermal conductivity using methods based on classical and quantum molecular dynamics. Phys Rev B 89:014303

    Article  Google Scholar 

  125. Hernández-Rojas J, Calvo F, Gonzalez Noya E (2015) Applicability of quantum thermal baths to complex many-body systems with various degrees of anharmonicity. J Chem Theory Comput 11:861–870

    Article  Google Scholar 

  126. Evans DJ (1982) Homogeneous NEMD algorithm for thermal conductivity—application of non-canonical linear response theory. Phys Lett A 91:457–460

    Article  Google Scholar 

  127. Tersoff J (1988) New empirical approach for the structure and energy of covalent systems. Phys Rev B 37:6991–7000

    Article  Google Scholar 

  128. Tersoff J (1988) Empirical interatomic potential for carbon, with applications to amorphous carbon. Phys Rev Lett 61:2879–2882

    Article  Google Scholar 

  129. Lindsay L, Broido DA (2010) Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Phys Rev B 81:205441

    Article  Google Scholar 

  130. Brenner DW (1990) Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys Rev B 42:9458–9471

    Article  Google Scholar 

  131. Brenner DW, Shenderova OA, Harrison JA, Stuart SJ, Ni B, Sinnott SB (2002) A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J Phys Condens Matter 14:783–802

    Google Scholar 

  132. Stuart SJ, Tutein AB, Harrison JA (2000) A reactive potential for hydrocarbons with intermolecular interactions. J Chem Phys 112:6472–6486

    Article  Google Scholar 

  133. Yu C, Shi L, Yao Z, Li D, Majumdar A (2005) Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano Lett 5:1842–1846

    Article  Google Scholar 

  134. Pop E, Mann D, Wang Q, Goodson K, Dai H (2006) Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett 6:96–100

    Article  Google Scholar 

  135. Wang J, Wang J-S (2006) Carbon nanotube thermal transport: ballistic to diffusive. Appl Phys Lett 88:111909

    Article  Google Scholar 

  136. Donadio D, Galli G (2007) Thermal conductivity of isolated and interacting carbon nanotubes: comparing results from molecular dynamics and the Boltzmann transport equation. Phys Rev Lett 99:255502

    Article  Google Scholar 

  137. Mingo N, Broido DA (2005) Length dependence of carbon nanotube thermal conductivity and the “problem of long waves,”. Nano Lett 5:1221–1225

    Article  Google Scholar 

  138. Mingo N, Broido DA (2005) Carbon nanotube ballistic thermal conductance and its limits. Phys Rev Lett 95:096105

    Article  Google Scholar 

  139. Huxtable ST, Cahill DG, Shenogin S, Xue L, Ozisik R, Barone P, Usrey M, Strano MS, Siddons G, Shim M, Keblinski P (2003) Interfacial heat flow in carbon nanotube suspensions. Nat Mater 2:731–734

    Article  Google Scholar 

  140. Yang J, Waltermire S, Chen Y, Zinn AA, Xu TT, Li D (2010) Contact thermal resistance between individual multiwall carbon nanotubes. Appl Phys Lett 96:023109

    Article  Google Scholar 

  141. Yang J, Shen M, Yang Y, Evans WJ, Wei Z, Chen W, Zinn AA, Chen Y, Prasher R, Xu TT, Keblinski P, Li D (2014) Phonon transport through point contacts between graphitic nanomaterials. Phys Rev Lett 112:205901

    Article  Google Scholar 

  142. Hsu I-K, Pettes MT, Aykol M, Chang C-C, Hung W-H, Theiss J, Shi L, Cronin SB (2011) Direct observation of heat dissipation in individual suspended carbon nanotubes using a two-laser technique. J Appl Phys 110:044328

    Article  Google Scholar 

  143. Lin W, Shang J, Gu W, Wong CP (2012) Parametric study of intrinsic thermal transport in vertically aligned multi-walled carbon nanotubes using a laser flash technique. Carbon 50:1591–1603

    Article  Google Scholar 

  144. Yue Y, Huang X, Wang X (2010) Thermal transport in multiwall carbon nanotube buckypapers. Phys Lett A 374:4144–4151

    Article  Google Scholar 

  145. Shi L, Li DY, Yu CH, Jang WY, Kim D, Yao Z, Kim P, Majumdar A (2003) Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device. J Heat Transfer 125:881–888

    Article  Google Scholar 

  146. Yang J, Yang Y, Waltermire SW, Wu X, Zhang H, Gutu T, Jiang Y, Chen Y, Zinn AA, Prasher R, Xu TT, Li D (2012) Enhanced and switchable nanoscale thermal conduction due to van der Waals interfaces. Nat Nanotechnol 7:91–95

    Article  Google Scholar 

  147. Colbourn EA (ed) (1994) Computer simulation of polymers. Longman, Harlow

    Google Scholar 

  148. Lee SW, Kim B-S, Chen S, Shao-Horn Y, Hammond PT (2009) Layer-by-layer assembly of all carbon nanotube ultrathin films for electrochemical applications. J Am Chem Soc 131:671–679

    Article  Google Scholar 

  149. Yan XH, Xiao Y, Li ZM (2006) Effects of intertube coupling and tube chirality on thermal transport of carbon nanotubes. J Appl Phys 99:124305

    Article  Google Scholar 

  150. Dresselhaus MS, Eklund PC (2000) Phonons in carbon nanotubes. Adv Phys 49:705–814

    Article  Google Scholar 

  151. Zbib AA, Mesarovic SD, Lilleodden ET, McClain D, Jiao J, Bahr DF (2008) The coordinate buckling of carbon nanotube turfs under uniform compression. Nanotechnology 19:175704

    Article  Google Scholar 

  152. Kim P, Shi L, Majumdar A, McEuen PL (2001) Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett 87:215502

    Article  Google Scholar 

  153. Wang S, Liang Z, Pham G, Park Y-B, Wang B, Zhang C, Kramer L, Funchess P (2007) Controlled nanostructure and high loading of single-walled carbon nanotubes reinforced polycarbonate composite. Nanotechnology 18:095708

    Article  Google Scholar 

  154. Cao A, Dickrell PL, Sawyer WG, Ghasemi-Nejhad MN, Ajayan PM (2005) Super-compressible foamlike carbon nanotube films. Science 310:1307–1310

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support provided by the National Aeronautics and Space Administration (NASA) through an Early Stage Innovations grant from NASA’s Space Technology Research Grants Program (NNX16AD99G) and by the Air Force Office of Scientific Research (AFOSR) through the AFOSR’s Thermal Sciences program (FA9550-10-10545). Computational support is provided by the National Science Foundation (NSF) through the Extreme Science and Engineering Discovery Environment (Projects TG-DMR110090 and TG-DMR130010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid V. Zhigilei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhigilei, L.V., Salaway, R.N., Wittmaack, B.K., Volkov, A.N. (2017). Computational Studies of Thermal Transport Properties of Carbon Nanotube Materials. In: Todri-Sanial, A., Dijon, J., Maffucci, A. (eds) Carbon Nanotubes for Interconnects. Springer, Cham. https://doi.org/10.1007/978-3-319-29746-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29746-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29744-6

  • Online ISBN: 978-3-319-29746-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics