Skip to main content

Carbon Nanotubes for Monolithic 3D ICs

  • Chapter
  • First Online:
Carbon Nanotubes for Interconnects

Abstract

The diversity of applications for carbon nanotubes (CNTs) is rather remarkable. This is in part due to their remarkable range of physical and electronic properties [1, 2]. In addition to metallic CNTs which may serve as interconnects that may complement conventional bulk metal wires [3, 4], semiconducting CNTs are the ideal transistor channel material for an ultimately scaled high-performance and energy-efficient digital logic technology [2, 5]. Analysis for very large-scale integrated (VLSI) systems (modeled using an entire IBM Power 7 processor) reveals CNT field effect transistors (CNFETs) would provide an order of magnitude benefit in the energy-delay product (EDP, a measure of energy efficiency) over silicon CMOS [6–9].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Abundant-data: massive amounts of highly unstructured data, with little or no locality, often streamed in terabytes.

  2. 2.

    2.5D integration refers to integration of several 2D chips or dies, which are mounted in a package in a single plane, for instance, over a silicon interposer.

  3. 3.

    Conventional 3D integration refers to integration of several 2D chips or dies, which are mounted vertically over one-another, in different vertical planes.

References

  1. Javey A et al (2003) Ballistic carbon nanotube field-effect transistors. Nature 424(6949): 654–657

    Article  Google Scholar 

  2. Appenzeller J (2008) Carbon nanotubes for high-performance electronics—progress and prospect. Proc IEEE 96(2):201–211

    Article  Google Scholar 

  3. Naeemi A, Sarvari R, Meindl JD (2005) Performance comparison between carbon nanotube and copper interconnects for gigascale integration (GSI). Electron Device Lett IEEE 26(2): 84–86

    Article  Google Scholar 

  4. Kreupl F et al (2002) Carbon nanotubes in interconnect applications. Microelectron Eng 64(1):399–408

    Article  Google Scholar 

  5. Wong H-SP et al (2011) Carbon nanotube electronics—materials, devices, circuits, design, modeling, and performance projection. In: Electron devices meeting (IEDM), 2011 IEEE international, IEEE, Washington DC, USA

    Google Scholar 

  6. Deng J et al (2008) Carbon nanotube transistor compact model for circuit design and performance optimization. ACM J Emerg Technol Comput Syst 4(2):7

    Article  Google Scholar 

  7. Chang L (2012) Short course. In: Electron devices meeting (IEDM), 2011 IEEE international, IEEE, Washington DC, USA

    Google Scholar 

  8. Wei L et al (2009) A non-iterative compact model for carbon nanotube FETs incorporating source exhaustion effects. In: Electron devices meeting (IEDM), 2009 IEEE international, IEEE, Baltimore, Maryland, USA

    Google Scholar 

  9. Lee CS et al (2015) A compact virtual-source model for carbon nanotube FETs in the sub-10-nm regime—part II: extrinsic elements, performance assessment, and design optimization. IEEE Trans Electron Devices 62(9):3070–3078

    Article  Google Scholar 

  10. Stanley-Marbell P, Caparros Cabezas V, Luijten R (2011) Pinned to the walls: impact of packaging and application properties on the memory and power walls. In: Proceedings of the 17th IEEE/ACM international symposium on low-power electronics and design, IEEE, Fukuoka, Japan

    Google Scholar 

  11. Dally B (2011) Power, programmability, and granularity: the challenges of exascale computing. In: Test conference (ITC), 2011 IEEE international, IEEE, Anaheim, CA, USA

    Google Scholar 

  12. Shulaker MM et al (2015) Monolithic 3D integration: a path from concept to reality. In: Proceedings of the 2015 design, automation and test in Europe conference and exhibition, EDA Consortium, Grenoble, France

    Google Scholar 

  13. Ebrahimi M et al (2014) Monolithic 3D integration advances and challenges: from technology to system levels. In: SOI-3D-subthreshold microelectronics technology unified conference (S3S), 2014 IEEE, IEEE, San Francisco, CA, USA

    Google Scholar 

  14. Dennard RH et al (1974) Design of ion-implanted MOSFET’s with very small physical dimensions. Solid State Circuits IEEE J 9(5):256–268

    Article  Google Scholar 

  15. Haensch W et al (2006) Silicon CMOS devices beyond scaling. IBM J Res Dev 50(4.5): 339–361

    Google Scholar 

  16. Skotnicki T et al (2005) The end of CMOS scaling: toward the introduction of new materials and structural changes to improve MOSFET performance. Circuits Devices Mag IEEE 21(1):16–26

    Article  Google Scholar 

  17. Banerjee K et al (2001) 3-D ICs: a novel chip design for improving deep-submicrometer interconnect performance and systems-on-chip integration. Proc IEEE 89(5):602–633

    Article  Google Scholar 

  18. Garrou P, Koyanagi M, Ramm P (2014) Handbook of 3D integration: volume 3-3D process technology. Wiley, http://eu.wiley.com/WileyCDA/WileyTitle/productCd-3527332650,subjectCd-PH62.html

    Google Scholar 

  19. Lau JH (2011) TSV interposers: the most cost-effective integrator for 3D IC integration. Chip Scale Rev 15(5):23–27

    Google Scholar 

  20. Black B et al (2006) Die stacking (3D) microarchitecture. In: Microarchitecture, 2006 MICRO-39, 39th annual IEEE/ACM international symposium on, IEEE, Orlando, Florida, USA

    Google Scholar 

  21. Sakuma K et al (2008) 3D chip-stacking technology with through-silicon vias and low-volume lead-free interconnections. IBM J Res Dev 52(6):611–622

    Article  Google Scholar 

  22. Ko C-T, Chen K-N (2010) Wafer-level bonding/stacking technology for 3D integration. Microelectron Reliab 50(4):481–488

    Article  MathSciNet  Google Scholar 

  23. Topol AW et al (2006) Three-dimensional integrated circuits. IBM J Res Dev 50(4.5):491–506

    Google Scholar 

  24. Xu Z, Lu J-Q (2013) Through-silicon-via fabrication technologies, passives extraction, and electrical modeling for 3-D integration/packaging. Semicond Manuf IEEE Trans 26(1):23–34

    Article  Google Scholar 

  25. Batude P et al (2011) Advances, challenges and opportunities in 3D CMOS sequential integration. In: Electron devices meeting (IEDM), 2011 IEEE international, IEEE, Washington DC, USA

    Google Scholar 

  26. Panth S et al (2013) High-density integration of functional modules using monolithic 3D-IC technology. In: Design automation conference (ASP-DAC), 2013 18th Asia and South Pacific, IEEE, Yokohama, Japan

    Google Scholar 

  27. Wong S et al (2007) Monolithic 3D integrated circuits. In: VLSI technology, systems and applications, VLSI-TSA 2007, international symposium on, IEEE, Hsinchu, Taiwan

    Google Scholar 

  28. Yang F-L et al (2002) 35 nm CMOS FinFETs. In: VLSI technology, digest of technical papers, 2002 symposium on, IEEE, Honolulu, Hawaii

    Google Scholar 

  29. Tsai JC (1966) Integrated complementary MOS circuits. In: Electron devices meeting, 1966 international, IEEE, Washington DC, USA

    Google Scholar 

  30. Hamaguchi T et al (1985) Novel LSI/SOI wafer fabrication using device layer transfer technique. In: Electron devices meeting, 1985 international, IEEE, Washington DC, USA

    Google Scholar 

  31. Shen C-H et al (2013) Monolithic 3D chip integrated with 500 ns NVM, 3 ps logic circuits and SRAM. In: Electron devices meeting (IEDM), 2013 IEEE international, IEEE, Washington DC, USA

    Google Scholar 

  32. Yang C-C et al (2013) Record-high 121/62 μA/μm on-currents 3D stacked epi-like Si FETs with and without metal back gate. In: Electron devices meeting (IEDM), 2013 IEEE international, IEEE, Washington DC, USA

    Google Scholar 

  33. Shulaker MM et al (2013) Carbon nanotube computer. Nature 501(7468):526–530

    Article  Google Scholar 

  34. Hubert A et al (2009) A stacked SONOS technology, up to 4 levels and 6 nm crystalline nanowires, with gate-all-around or independent gates (Φ-Flash), suitable for full 3D integration. In: Electron devices meeting (IEDM), 2009 IEEE international, IEEE, Washington DC, USA

    Google Scholar 

  35. Divakauni R et al (2003) SOI stacked DRAM logic. Google Patents

    Google Scholar 

  36. Huai Y (2008) Spin-transfer torque MRAM (STT-MRAM): challenges and prospects. AAPPS Bull 18(6):33–40

    Google Scholar 

  37. Wong H-SP et al (2012) Metal–oxide RRAM. Proc IEEE 100(6):1951–1970

    Article  Google Scholar 

  38. Kund M et al (2005) Conductive bridging RAM (CBRAM): an emerging non-volatile memory technology scalable to sub 20 nm. In: IEEE international electron devices meeting, IEDM Technical Digest, Washington DC, USA

    Google Scholar 

  39. Fuensanta M et al (2013) Thermal properties of a novel nanoencapsulated phase change material for thermal energy storage. Thermochim Acta 565:95–101

    Article  Google Scholar 

  40. Pop E, Varshney V, Roy AK (2012) Thermal properties of graphene: fundamentals and applications. MRS Bull 37(12):1273–1281

    Article  Google Scholar 

  41. Hai W et al (2013) Monolithic three-dimensional integration of carbon nanotube FET complementary logic circuits. In: Electron devices meeting (IEDM), 2013 IEEE international, IEEE, Washington DC, USA

    Google Scholar 

  42. Smullen CW et al (2011) Relaxing non-volatility for fast and energy-efficient STT-RAM caches. In: High performance computer architecture (HPCA), 2011 IEEE 17th international symposium on, IEEE, San Antonio, Texas, USA

    Google Scholar 

  43. Martel RA et al (1998) Single-and multi-wall carbon nanotube field-effect transistors. Appl Phys Lett 73:2447

    Google Scholar 

  44. Tans SJ, Verschueren AR, Dekker C (1998) Room-temperature transistor based on a single carbon nanotube. Nature 393(6680):49–52

    Article  Google Scholar 

  45. Zhang J et al (2012) Robust digital VLSI using carbon nanotubes. IEEE Trans Comput Aided Des Integr Circuits Syst 31(4):453–471

    Article  Google Scholar 

  46. Patil N et al (2008) Design methods for misaligned and mispositioned carbon-nanotube immune circuits. Comput Aided Des Integr Circuits Syst IEEE Trans 27(10):1725–1736

    Article  Google Scholar 

  47. Patil N et al (2009) VMR: VLSI-compatible metallic carbon nanotube removal for imperfection-immune cascaded multi-stage digital logic circuits using carbon nanotube FETs. In: Electron devices meeting (IEDM), 2009 IEEE international, IEEE, Washington DC, USA

    Google Scholar 

  48. Hills G et al (2013) Rapid exploration of processing and design guidelines to overcome carbon nanotube variations. In: Proceedings of the 50th annual design automation conference, ACM, Austin, Tx, USA

    Google Scholar 

  49. Zhang J et al (2011) Characterization and design of logic circuits in the presence of carbon nanotube density variations. Comput Aided Des Integr Circuits Syst IEEE Trans 30(8): 1103–1113

    Article  Google Scholar 

  50. Patil N et al (2008) Integrated wafer-scale growth and transfer of directional carbon nanotubes and misaligned-carbon-nanotube-immune logic structures. In: VLSI Technology, 2008 symposium on, IEEE, Honolulu, Hawaii

    Google Scholar 

  51. Xiao J et al (2009) Alignment controlled growth of single-walled carbon nanotubes on quartz substrates. Nano Lett 9(12):4311–4319

    Article  Google Scholar 

  52. Shulaker MM et al (2011) Linear increases in carbon nanotube density through multiple transfer technique. Nano Lett 11(5):1881–1886

    Article  Google Scholar 

  53. Patil N et al (2011) Scalable carbon nanotube computational and storage circuits immune to metallic and mispositioned carbon nanotubes. Nanotechnol IEEE Trans 10(4):744–750

    Article  Google Scholar 

  54. Ding L et al (2009) Selective growth of well-aligned semiconducting single-walled carbon nanotubes. Nano Lett 9(2):800–805

    Article  Google Scholar 

  55. Liu J, Hersam MC (2010) Recent developments in carbon nanotube sorting and selective growth. MRS Bull 35:315–321

    Article  Google Scholar 

  56. Arnold MS et al (2006) Sorting carbon nanotubes by electronic structure using density differentiation. Nat Nanotechnol 1(1):60–65

    Article  Google Scholar 

  57. Collins PG, Arnold MS, Avouris P (2001) Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292(5517):706–709

    Article  Google Scholar 

  58. Shulaker MM et al (2014) Sensor-to-digital interface built entirely with carbon nanotube FETs. IEEE J Solid State Circuits 49(1):190–201

    Google Scholar 

  59. Jin SH et al (2013) Using nanoscale thermocapillary flows to create arrays of purely semiconducting single-walled carbon nanotubes. Nat Nanotechnol 8(5):347–355

    Article  Google Scholar 

  60. Shulaker MM, Hills G, Wu TF, Bao Z, Wong HSP, Mitra S (2015) Efficient metallic carbon nanotube removal for highly-scaled technologies. IEEE International Electron Devices Meeting (IEDM) 32–4

    Google Scholar 

  61. Hills G et al Rapid co-optimization of processing and circuit design to overcome carbon nanotube variations

    Google Scholar 

  62. Shulaker MM et al (2014) Carbon nanotube circuit integration up to sub-20 nm. ACS Nano 8(4):3434--3443

    Google Scholar 

  63. Shulaker M et al (2013) Experimental demonstration of a fully digital capacitive sensor interface built entirely using carbon-nanotube FETs. In: Solid-state circuits conference digest of technical papers (ISSCC), 2013 IEEE international, IEEE, San Francisco, CA, USA

    Google Scholar 

  64. Shulaker MM et al (2014) High-performance carbon nanotube field-effect transistors. In: Electron devices meeting (IEDM), 2014 IEEE international, IEEE, Washington DC, USA

    Google Scholar 

  65. Franklin AD et al (2012) Sub-10 nm carbon nanotube transistor. Nano Lett 12(2):758–762

    Article  Google Scholar 

  66. Chai Y et al (2012) Low-resistance electrical contact to carbon nanotubes with graphitic interfacial layer. Electron Devices IEEE Trans 59(1):12–19

    Article  Google Scholar 

  67. Suriyasena Liyanage L et al (2014) VLSI-compatible carbon nanotube doping technique with low work-function metal oxides. Nano Lett 14(4):1884–1890

    Article  Google Scholar 

  68. Franklin AD, Chen Z (2010) Length scaling of carbon nanotube transistors. Nat Nanotechnol 5(12):858–862

    Article  Google Scholar 

  69. Cao Q et al (2015) End-bonded contacts for carbon nanotube transistors with low, size-independent resistance. Science 350(6256):68–72

    Article  Google Scholar 

  70. Park RS, Shulaker MM, Hills G, Suriyasena Liyanage L, Lee S, Tang A, Mitra S, Wong HSP (2016) Hysteresis in carbon nanotube transistors: measurement and analysis of trap density, energy level, and spatial distribution. ACS Nano 10(4):4599–4608. doi:10.1021/acsnano.6b00792, Publication Date (Web): March 22, 2016 (Article)

    Article  Google Scholar 

  71. Wei H, et al (2009) Monolithic three-dimensional integrated circuits using carbon nanotube FETs and interconnects. In: Electron devices meeting (IEDM), 2009 IEEE international, IEEE, Springer-Verlag Berlin Heidelberg, ISBN 978-3-540-43181-7, Washington DC, USA

    Google Scholar 

  72. Oliver MR (2004) Chemical-mechanical planarization of semiconductor materials, vol. 69. Springer, Springer-Verlag Berlin Heidelberg, ISBN 978-3-540-43181-7

    Google Scholar 

  73. Shulaker MM et al (2014) Monolithic 3D integration of logic and memory: carbon nanotube FETs, resistive RAM, and silicon FETs. In: Electron devices meeting (IEDM), 2014 IEEE International, IEEE, Washington DC, USA

    Google Scholar 

  74. Shulaker MM et al (2014) Monolithic three-dimensional integration of carbon nanotube FETs with silicon CMOS. In: VLSI technology (VLSI-technology): Digest of technical papers, 2014 symposium on, IEEE, Honolulu, Hawaii

    Google Scholar 

  75. Bobba S et al (2011) CELONCEL: Effective design technique for 3-D monolithic integration targeting high performance integrated circuits. In: Proceedings of the 16th Asia and South Pacific design automation conference, IEEE, Yokohama, Japan

    Google Scholar 

  76. Lee Y-J, Lim SK (2013) Ultrahigh density logic designs using monolithic 3-D integration. Comput Aided Des Integr Circuits Syst IEEE Trans 32(12):1892–1905

    Article  Google Scholar 

  77. Collins PG et al (2000) Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287(5459):1801–1804

    Google Scholar 

  78. Heinze S et al (2002) Carbon nanotubes as Schottky barrier transistors. Phys Rev Lett 89(10):106801

    Article  Google Scholar 

  79. Shahrjerdi D et al (2013) High-performance air-stable n-type carbon nanotube transistors with erbium contacts. ACS Nano 7(9):8303–8308

    Article  Google Scholar 

  80. Ding L et al (2009) Y-contacted high-performance n-type single-walled carbon nanotube field-effect transistors: scaling and comparison with Sc-contacted devices. Nano Lett 9(12): 4209–4214

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by STARnet SONIC, the National Science Foundation, the Stanford SystemX Alliance, and the Hertz Fellowship and Stanford Graduate Fellowship for Max Shulaker. We acknowledge Gage Hills, Tony Wu, Rebecca Park, Gregory Pitner, Luckshitha Suriyasena Liyanage, and Professor Eric Pop of Stanford University for fruitful discussions and collaborations. Works by previous generations of former students have laid the foundation for the work described in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.-S. Philip Wong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shulaker, M.M., Wei, H., Mitra, S., Wong, HS.P. (2017). Carbon Nanotubes for Monolithic 3D ICs. In: Todri-Sanial, A., Dijon, J., Maffucci, A. (eds) Carbon Nanotubes for Interconnects. Springer, Cham. https://doi.org/10.1007/978-3-319-29746-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29746-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29744-6

  • Online ISBN: 978-3-319-29746-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics