Advertisement

Carbon Nanotubes for Monolithic 3D ICs

  • Max Marcel Shulaker
  • Hai Wei
  • Subhasish Mitra
  • H.-S. Philip WongEmail author
Chapter

Abstract

The diversity of applications for carbon nanotubes (CNTs) is rather remarkable. This is in part due to their remarkable range of physical and electronic properties [1, 2]. In addition to metallic CNTs which may serve as interconnects that may complement conventional bulk metal wires [3, 4], semiconducting CNTs are the ideal transistor channel material for an ultimately scaled high-performance and energy-efficient digital logic technology [2, 5]. Analysis for very large-scale integrated (VLSI) systems (modeled using an entire IBM Power 7 processor) reveals CNT field effect transistors (CNFETs) would provide an order of magnitude benefit in the energy-delay product (EDP, a measure of energy efficiency) over silicon CMOS [6–9].

Keywords

Logic Gate Vertical Layer Layer Transfer Digital Logic Drain Contact 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported in part by STARnet SONIC, the National Science Foundation, the Stanford SystemX Alliance, and the Hertz Fellowship and Stanford Graduate Fellowship for Max Shulaker. We acknowledge Gage Hills, Tony Wu, Rebecca Park, Gregory Pitner, Luckshitha Suriyasena Liyanage, and Professor Eric Pop of Stanford University for fruitful discussions and collaborations. Works by previous generations of former students have laid the foundation for the work described in this chapter.

References

  1. 1.
    Javey A et al (2003) Ballistic carbon nanotube field-effect transistors. Nature 424(6949): 654–657CrossRefGoogle Scholar
  2. 2.
    Appenzeller J (2008) Carbon nanotubes for high-performance electronics—progress and prospect. Proc IEEE 96(2):201–211CrossRefGoogle Scholar
  3. 3.
    Naeemi A, Sarvari R, Meindl JD (2005) Performance comparison between carbon nanotube and copper interconnects for gigascale integration (GSI). Electron Device Lett IEEE 26(2): 84–86CrossRefGoogle Scholar
  4. 4.
    Kreupl F et al (2002) Carbon nanotubes in interconnect applications. Microelectron Eng 64(1):399–408CrossRefGoogle Scholar
  5. 5.
    Wong H-SP et al (2011) Carbon nanotube electronics—materials, devices, circuits, design, modeling, and performance projection. In: Electron devices meeting (IEDM), 2011 IEEE international, IEEE, Washington DC, USAGoogle Scholar
  6. 6.
    Deng J et al (2008) Carbon nanotube transistor compact model for circuit design and performance optimization. ACM J Emerg Technol Comput Syst 4(2):7CrossRefGoogle Scholar
  7. 7.
    Chang L (2012) Short course. In: Electron devices meeting (IEDM), 2011 IEEE international, IEEE, Washington DC, USAGoogle Scholar
  8. 8.
    Wei L et al (2009) A non-iterative compact model for carbon nanotube FETs incorporating source exhaustion effects. In: Electron devices meeting (IEDM), 2009 IEEE international, IEEE, Baltimore, Maryland, USAGoogle Scholar
  9. 9.
    Lee CS et al (2015) A compact virtual-source model for carbon nanotube FETs in the sub-10-nm regime—part II: extrinsic elements, performance assessment, and design optimization. IEEE Trans Electron Devices 62(9):3070–3078CrossRefGoogle Scholar
  10. 10.
    Stanley-Marbell P, Caparros Cabezas V, Luijten R (2011) Pinned to the walls: impact of packaging and application properties on the memory and power walls. In: Proceedings of the 17th IEEE/ACM international symposium on low-power electronics and design, IEEE, Fukuoka, JapanGoogle Scholar
  11. 11.
    Dally B (2011) Power, programmability, and granularity: the challenges of exascale computing. In: Test conference (ITC), 2011 IEEE international, IEEE, Anaheim, CA, USAGoogle Scholar
  12. 12.
    Shulaker MM et al (2015) Monolithic 3D integration: a path from concept to reality. In: Proceedings of the 2015 design, automation and test in Europe conference and exhibition, EDA Consortium, Grenoble, FranceGoogle Scholar
  13. 13.
    Ebrahimi M et al (2014) Monolithic 3D integration advances and challenges: from technology to system levels. In: SOI-3D-subthreshold microelectronics technology unified conference (S3S), 2014 IEEE, IEEE, San Francisco, CA, USAGoogle Scholar
  14. 14.
    Dennard RH et al (1974) Design of ion-implanted MOSFET’s with very small physical dimensions. Solid State Circuits IEEE J 9(5):256–268CrossRefGoogle Scholar
  15. 15.
    Haensch W et al (2006) Silicon CMOS devices beyond scaling. IBM J Res Dev 50(4.5): 339–361Google Scholar
  16. 16.
    Skotnicki T et al (2005) The end of CMOS scaling: toward the introduction of new materials and structural changes to improve MOSFET performance. Circuits Devices Mag IEEE 21(1):16–26CrossRefGoogle Scholar
  17. 17.
    Banerjee K et al (2001) 3-D ICs: a novel chip design for improving deep-submicrometer interconnect performance and systems-on-chip integration. Proc IEEE 89(5):602–633CrossRefGoogle Scholar
  18. 18.
    Garrou P, Koyanagi M, Ramm P (2014) Handbook of 3D integration: volume 3-3D process technology. Wiley, http://eu.wiley.com/WileyCDA/WileyTitle/productCd-3527332650,subjectCd-PH62.html Google Scholar
  19. 19.
    Lau JH (2011) TSV interposers: the most cost-effective integrator for 3D IC integration. Chip Scale Rev 15(5):23–27Google Scholar
  20. 20.
    Black B et al (2006) Die stacking (3D) microarchitecture. In: Microarchitecture, 2006 MICRO-39, 39th annual IEEE/ACM international symposium on, IEEE, Orlando, Florida, USAGoogle Scholar
  21. 21.
    Sakuma K et al (2008) 3D chip-stacking technology with through-silicon vias and low-volume lead-free interconnections. IBM J Res Dev 52(6):611–622CrossRefGoogle Scholar
  22. 22.
    Ko C-T, Chen K-N (2010) Wafer-level bonding/stacking technology for 3D integration. Microelectron Reliab 50(4):481–488MathSciNetCrossRefGoogle Scholar
  23. 23.
    Topol AW et al (2006) Three-dimensional integrated circuits. IBM J Res Dev 50(4.5):491–506Google Scholar
  24. 24.
    Xu Z, Lu J-Q (2013) Through-silicon-via fabrication technologies, passives extraction, and electrical modeling for 3-D integration/packaging. Semicond Manuf IEEE Trans 26(1):23–34CrossRefGoogle Scholar
  25. 25.
    Batude P et al (2011) Advances, challenges and opportunities in 3D CMOS sequential integration. In: Electron devices meeting (IEDM), 2011 IEEE international, IEEE, Washington DC, USAGoogle Scholar
  26. 26.
    Panth S et al (2013) High-density integration of functional modules using monolithic 3D-IC technology. In: Design automation conference (ASP-DAC), 2013 18th Asia and South Pacific, IEEE, Yokohama, JapanGoogle Scholar
  27. 27.
    Wong S et al (2007) Monolithic 3D integrated circuits. In: VLSI technology, systems and applications, VLSI-TSA 2007, international symposium on, IEEE, Hsinchu, TaiwanGoogle Scholar
  28. 28.
    Yang F-L et al (2002) 35 nm CMOS FinFETs. In: VLSI technology, digest of technical papers, 2002 symposium on, IEEE, Honolulu, HawaiiGoogle Scholar
  29. 29.
    Tsai JC (1966) Integrated complementary MOS circuits. In: Electron devices meeting, 1966 international, IEEE, Washington DC, USAGoogle Scholar
  30. 30.
    Hamaguchi T et al (1985) Novel LSI/SOI wafer fabrication using device layer transfer technique. In: Electron devices meeting, 1985 international, IEEE, Washington DC, USAGoogle Scholar
  31. 31.
    Shen C-H et al (2013) Monolithic 3D chip integrated with 500 ns NVM, 3 ps logic circuits and SRAM. In: Electron devices meeting (IEDM), 2013 IEEE international, IEEE, Washington DC, USAGoogle Scholar
  32. 32.
    Yang C-C et al (2013) Record-high 121/62 μA/μm on-currents 3D stacked epi-like Si FETs with and without metal back gate. In: Electron devices meeting (IEDM), 2013 IEEE international, IEEE, Washington DC, USAGoogle Scholar
  33. 33.
    Shulaker MM et al (2013) Carbon nanotube computer. Nature 501(7468):526–530CrossRefGoogle Scholar
  34. 34.
    Hubert A et al (2009) A stacked SONOS technology, up to 4 levels and 6 nm crystalline nanowires, with gate-all-around or independent gates (Φ-Flash), suitable for full 3D integration. In: Electron devices meeting (IEDM), 2009 IEEE international, IEEE, Washington DC, USAGoogle Scholar
  35. 35.
    Divakauni R et al (2003) SOI stacked DRAM logic. Google PatentsGoogle Scholar
  36. 36.
    Huai Y (2008) Spin-transfer torque MRAM (STT-MRAM): challenges and prospects. AAPPS Bull 18(6):33–40Google Scholar
  37. 37.
    Wong H-SP et al (2012) Metal–oxide RRAM. Proc IEEE 100(6):1951–1970CrossRefGoogle Scholar
  38. 38.
    Kund M et al (2005) Conductive bridging RAM (CBRAM): an emerging non-volatile memory technology scalable to sub 20 nm. In: IEEE international electron devices meeting, IEDM Technical Digest, Washington DC, USAGoogle Scholar
  39. 39.
    Fuensanta M et al (2013) Thermal properties of a novel nanoencapsulated phase change material for thermal energy storage. Thermochim Acta 565:95–101CrossRefGoogle Scholar
  40. 40.
    Pop E, Varshney V, Roy AK (2012) Thermal properties of graphene: fundamentals and applications. MRS Bull 37(12):1273–1281CrossRefGoogle Scholar
  41. 41.
    Hai W et al (2013) Monolithic three-dimensional integration of carbon nanotube FET complementary logic circuits. In: Electron devices meeting (IEDM), 2013 IEEE international, IEEE, Washington DC, USAGoogle Scholar
  42. 42.
    Smullen CW et al (2011) Relaxing non-volatility for fast and energy-efficient STT-RAM caches. In: High performance computer architecture (HPCA), 2011 IEEE 17th international symposium on, IEEE, San Antonio, Texas, USAGoogle Scholar
  43. 43.
    Martel RA et al (1998) Single-and multi-wall carbon nanotube field-effect transistors. Appl Phys Lett 73:2447Google Scholar
  44. 44.
    Tans SJ, Verschueren AR, Dekker C (1998) Room-temperature transistor based on a single carbon nanotube. Nature 393(6680):49–52CrossRefGoogle Scholar
  45. 45.
    Zhang J et al (2012) Robust digital VLSI using carbon nanotubes. IEEE Trans Comput Aided Des Integr Circuits Syst 31(4):453–471CrossRefGoogle Scholar
  46. 46.
    Patil N et al (2008) Design methods for misaligned and mispositioned carbon-nanotube immune circuits. Comput Aided Des Integr Circuits Syst IEEE Trans 27(10):1725–1736CrossRefGoogle Scholar
  47. 47.
    Patil N et al (2009) VMR: VLSI-compatible metallic carbon nanotube removal for imperfection-immune cascaded multi-stage digital logic circuits using carbon nanotube FETs. In: Electron devices meeting (IEDM), 2009 IEEE international, IEEE, Washington DC, USAGoogle Scholar
  48. 48.
    Hills G et al (2013) Rapid exploration of processing and design guidelines to overcome carbon nanotube variations. In: Proceedings of the 50th annual design automation conference, ACM, Austin, Tx, USAGoogle Scholar
  49. 49.
    Zhang J et al (2011) Characterization and design of logic circuits in the presence of carbon nanotube density variations. Comput Aided Des Integr Circuits Syst IEEE Trans 30(8): 1103–1113CrossRefGoogle Scholar
  50. 50.
    Patil N et al (2008) Integrated wafer-scale growth and transfer of directional carbon nanotubes and misaligned-carbon-nanotube-immune logic structures. In: VLSI Technology, 2008 symposium on, IEEE, Honolulu, HawaiiGoogle Scholar
  51. 51.
    Xiao J et al (2009) Alignment controlled growth of single-walled carbon nanotubes on quartz substrates. Nano Lett 9(12):4311–4319CrossRefGoogle Scholar
  52. 52.
    Shulaker MM et al (2011) Linear increases in carbon nanotube density through multiple transfer technique. Nano Lett 11(5):1881–1886CrossRefGoogle Scholar
  53. 53.
    Patil N et al (2011) Scalable carbon nanotube computational and storage circuits immune to metallic and mispositioned carbon nanotubes. Nanotechnol IEEE Trans 10(4):744–750CrossRefGoogle Scholar
  54. 54.
    Ding L et al (2009) Selective growth of well-aligned semiconducting single-walled carbon nanotubes. Nano Lett 9(2):800–805CrossRefGoogle Scholar
  55. 55.
    Liu J, Hersam MC (2010) Recent developments in carbon nanotube sorting and selective growth. MRS Bull 35:315–321CrossRefGoogle Scholar
  56. 56.
    Arnold MS et al (2006) Sorting carbon nanotubes by electronic structure using density differentiation. Nat Nanotechnol 1(1):60–65CrossRefGoogle Scholar
  57. 57.
    Collins PG, Arnold MS, Avouris P (2001) Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292(5517):706–709CrossRefGoogle Scholar
  58. 58.
    Shulaker MM et al (2014) Sensor-to-digital interface built entirely with carbon nanotube FETs. IEEE J Solid State Circuits 49(1):190–201 Google Scholar
  59. 59.
    Jin SH et al (2013) Using nanoscale thermocapillary flows to create arrays of purely semiconducting single-walled carbon nanotubes. Nat Nanotechnol 8(5):347–355CrossRefGoogle Scholar
  60. 60.
    Shulaker MM, Hills G, Wu TF, Bao Z, Wong HSP, Mitra S (2015) Efficient metallic carbon nanotube removal for highly-scaled technologies. IEEE International Electron Devices Meeting (IEDM) 32–4Google Scholar
  61. 61.
    Hills G et al Rapid co-optimization of processing and circuit design to overcome carbon nanotube variationsGoogle Scholar
  62. 62.
    Shulaker MM et al (2014) Carbon nanotube circuit integration up to sub-20 nm. ACS Nano 8(4):3434--3443 Google Scholar
  63. 63.
    Shulaker M et al (2013) Experimental demonstration of a fully digital capacitive sensor interface built entirely using carbon-nanotube FETs. In: Solid-state circuits conference digest of technical papers (ISSCC), 2013 IEEE international, IEEE, San Francisco, CA, USAGoogle Scholar
  64. 64.
    Shulaker MM et al (2014) High-performance carbon nanotube field-effect transistors. In: Electron devices meeting (IEDM), 2014 IEEE international, IEEE, Washington DC, USAGoogle Scholar
  65. 65.
    Franklin AD et al (2012) Sub-10 nm carbon nanotube transistor. Nano Lett 12(2):758–762CrossRefGoogle Scholar
  66. 66.
    Chai Y et al (2012) Low-resistance electrical contact to carbon nanotubes with graphitic interfacial layer. Electron Devices IEEE Trans 59(1):12–19CrossRefGoogle Scholar
  67. 67.
    Suriyasena Liyanage L et al (2014) VLSI-compatible carbon nanotube doping technique with low work-function metal oxides. Nano Lett 14(4):1884–1890CrossRefGoogle Scholar
  68. 68.
    Franklin AD, Chen Z (2010) Length scaling of carbon nanotube transistors. Nat Nanotechnol 5(12):858–862CrossRefGoogle Scholar
  69. 69.
    Cao Q et al (2015) End-bonded contacts for carbon nanotube transistors with low, size-independent resistance. Science 350(6256):68–72CrossRefGoogle Scholar
  70. 70.
    Park RS, Shulaker MM, Hills G, Suriyasena Liyanage L, Lee S, Tang A, Mitra S, Wong HSP (2016) Hysteresis in carbon nanotube transistors: measurement and analysis of trap density, energy level, and spatial distribution. ACS Nano 10(4):4599–4608. doi: 10.1021/acsnano.6b00792, Publication Date (Web): March 22, 2016 (Article)CrossRefGoogle Scholar
  71. 71.
    Wei H, et al (2009) Monolithic three-dimensional integrated circuits using carbon nanotube FETs and interconnects. In: Electron devices meeting (IEDM), 2009 IEEE international, IEEE, Springer-Verlag Berlin Heidelberg, ISBN 978-3-540-43181-7, Washington DC, USAGoogle Scholar
  72. 72.
    Oliver MR (2004) Chemical-mechanical planarization of semiconductor materials, vol. 69. Springer, Springer-Verlag Berlin Heidelberg, ISBN 978-3-540-43181-7 Google Scholar
  73. 73.
    Shulaker MM et al (2014) Monolithic 3D integration of logic and memory: carbon nanotube FETs, resistive RAM, and silicon FETs. In: Electron devices meeting (IEDM), 2014 IEEE International, IEEE, Washington DC, USAGoogle Scholar
  74. 74.
    Shulaker MM et al (2014) Monolithic three-dimensional integration of carbon nanotube FETs with silicon CMOS. In: VLSI technology (VLSI-technology): Digest of technical papers, 2014 symposium on, IEEE, Honolulu, HawaiiGoogle Scholar
  75. 75.
    Bobba S et al (2011) CELONCEL: Effective design technique for 3-D monolithic integration targeting high performance integrated circuits. In: Proceedings of the 16th Asia and South Pacific design automation conference, IEEE, Yokohama, JapanGoogle Scholar
  76. 76.
    Lee Y-J, Lim SK (2013) Ultrahigh density logic designs using monolithic 3-D integration. Comput Aided Des Integr Circuits Syst IEEE Trans 32(12):1892–1905CrossRefGoogle Scholar
  77. 77.
    Collins PG et al (2000) Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287(5459):1801–1804Google Scholar
  78. 78.
    Heinze S et al (2002) Carbon nanotubes as Schottky barrier transistors. Phys Rev Lett 89(10):106801CrossRefGoogle Scholar
  79. 79.
    Shahrjerdi D et al (2013) High-performance air-stable n-type carbon nanotube transistors with erbium contacts. ACS Nano 7(9):8303–8308CrossRefGoogle Scholar
  80. 80.
    Ding L et al (2009) Y-contacted high-performance n-type single-walled carbon nanotube field-effect transistors: scaling and comparison with Sc-contacted devices. Nano Lett 9(12): 4209–4214CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Max Marcel Shulaker
    • 1
  • Hai Wei
    • 1
  • Subhasish Mitra
    • 1
  • H.-S. Philip Wong
    • 1
    Email author
  1. 1.Stanford UniversityStanfordUSA

Personalised recommendations