Skip to main content

Exploring Carbon Nanotubes for 3D Power Delivery Networks

  • Chapter
  • First Online:
Carbon Nanotubes for Interconnects
  • 1526 Accesses

Abstract

Carbon nanotubes (CNTs) due their unique mechanical, thermal, and electrical properties are being investigated as promising candidate material for on-chip and off-chip interconnects. The attractive mechanical properties of CNTs, including high Young’s modulus, resiliency, and low thermal expansion coefficient offer great advantage for reliable and strong interconnects, and even more so for 3D integration. Through-Silicon-Vias (TSVs) enable 3D integration and implementation of denser, faster, and heterogeneous circuits, which also lead to excessive power densities and elevated temperatures. Due to their unique properties, CNTs present an opportunity to address these challenges and provide solutions for reliable power delivery networks in 2D and 3D integration. In this chapter, we perform detailed analyses of horizontally aligned CNTs and report on their efficiency to be exploited for both 2D and 3D power delivery networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aliev AE, Lima MH, Silverman EM, Baughman RH (2010) Thermal conductivity of multi-walled carbon nanotube sheets: radiation losses and quenching of phonon modes. Nanotechnology. 21(3)

    Google Scholar 

  2. Burke PJ (2002) Luttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes. IEEE Trans Nanotechnol 1(3):129–144

    Article  Google Scholar 

  3. Cassell AM, Kreupl F, Li H, Liu W, Banerjee K (2013) Low-resistivity long-length horizontal carbon nanotube bundles for interconnect applications - part ii characterization. IEEE Trans Electron Devices 60:2870–2876

    Article  Google Scholar 

  4. Jiang J, Saito R, GrĂĽneis A, Chou SG, Ge Samsonidze G, Jorio A, Dresselhaus G, Dresselhaus MS (2005) Photoexcited electron relaxation processes in single-wall carbon nanotubes. Phys Rev B 71:045417

    Article  Google Scholar 

  5. Jirahara K, Miyamoto Y, Ando Y, Qin L-C, Zhao X, Iijima S (2000) The smallest carbon nanotube. Nature 408(6808):50

    Google Scholar 

  6. Kane CL, Yao Z, Dekker C (2000) High-field electrical transport in single-wall carbon nanotubes. Phys Rev Lett 84(13):2941–2944

    Article  Google Scholar 

  7. Khan NH, Hassoun S (2012) The feasibility of carbon nanotubes for power delivery in 3-d integrated circuits. In: 17th Asia and South Pacific design automation conference (ASP-DAC), pp 53–58

    Google Scholar 

  8. Leonard F, Talin AA(2006) Electrical contacts to nanotubes and nanowires: why size matters. Condens Matter. ArXiv e-prints. http://arxiv.org/abs/cond-mat/0602003

  9. Li GD, Wang N, Tang ZK, Chen JS (2000) Single-walled carbon 4 a carbon nanotube arrays. Nature 408(6808):50–51

    Google Scholar 

  10. Li H, Srivastava N, Mao J-F, Yin W-Y, Banerjee K (2007) Carbon nanotube vias: a reality check. In: IEEE international electron devices meeting, 2007 (IEDM, 2007), pp 207–210

    Google Scholar 

  11. Li H, Xu C, Srivastava N, Banerjee K (2009) Carbon nanomaterials for next-generation interconnects and passives: physics, status, and prospects. IEEE Trans Electron Devices 56(9):1799–1821

    Article  Google Scholar 

  12. Li H, Liu W, Cassell AM, Kreupl F, Banerjee K (2013) Low-resistivity long-length horizontal carbon nanotube bundles for interconnect applications 2014 - part ii - characterization. IEEE Trans Electron Devices 60(9):2870–2876

    Article  Google Scholar 

  13. Naeemi A, Meindl JD (2007) Physical modeling of temperature coefficient of resistance for single- and multi-wall carbon nanotube interconnects. IEEE Electron Device Lett 28:135–138

    Article  Google Scholar 

  14. Naeemi A, Sarvari R, Meindl JD (2005) Performance comparison between carbon nanotube and copper interconnects for gigascale integration (GSI). IEEE Electron Device Lett 26(2):84–86

    Article  Google Scholar 

  15. Naeemi A, Huang G, Meindl JD (2007) Performance modeling for carbon nanotube interconnects in on-chip power distribution. In: Electronic components and technology conference, pp 420–428

    Google Scholar 

  16. Nieuwoudt A, Massoud Y (2006) Evaluating the impact of resistance in carbon nanotube bundles for VLSI interconnect using diameter-dependent modeling techniques. IEEE Trans Electron Devices 53(10):2460–2466

    Article  Google Scholar 

  17. Pop E, Mann D, Reifenberg J, Goodson K, Dai H (2005) Electro-thermal transport in metallic single-wall carbon nanotubes for interconnect applications. In: IEEE international electron devices meeting (IEDM), Technical Digest, pp 253–256

    Google Scholar 

  18. Rinzler AC, Smalley RE, Wildoeer JWG, Venema LC, Dekkler C (1998) Electronic structure of atomically resolved carbon nanotubes. Nature 391(6662):59–61

    Article  Google Scholar 

  19. Aliev AE, Lima MH, Silverman EM, Baughman RH (2010) Thermal conductivity of multi-walled carbon nanotube sheets: radiation losses and quenching of phonon modes. Nanotechnology, IOP Publishing, 21(3):035709

    Google Scholar 

  20. Srivastava N, Banerjee K (2005) Performance analysis of carbon nanotube interconnects for VLSI applications. In: Proceedings of the 2005 IEEE/ACM international conference on computer-aided design, pp 383–390

    Google Scholar 

  21. Tu R, Cao J, Wang Q, Kim W, Javey A (2005) Electrical contacts to carbon nanotubes down to 1 nm in diameter. Appl Phys Lett 87(17):173101

    Article  Google Scholar 

  22. Zhu L, Sun Y, Xu J, Zhang Z, Hess DW, Wong CP (2005) Aligned carbon nanotubes for electrical interconnect and thermal management, vol 1, pp 44–50

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aida Todri-Sanial .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Todri-Sanial, A. (2017). Exploring Carbon Nanotubes for 3D Power Delivery Networks. In: Todri-Sanial, A., Dijon, J., Maffucci, A. (eds) Carbon Nanotubes for Interconnects. Springer, Cham. https://doi.org/10.1007/978-3-319-29746-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29746-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29744-6

  • Online ISBN: 978-3-319-29746-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics