Skip to main content

Cartilage Glycoproteins

  • Chapter
  • First Online:
Cartilage

Abstract

The cartilage extracellular matrix consists of two major suprastructures, namely, the fibrillar collagenous network and gel-like aggrecan complexes. These suprastructures are interconnected by glycoproteins and small proteoglycans forming a kind of alloy. In addition to this role as so-called adaptor proteins, matrix proteins can directly bind to chondrocytes via cell surface receptors. The biological relevance of these numerous protein-protein interactions in the matrix is underlined by the fact that mutations in matrix components often lead to skeletal disorders. In addition, lacking integrity and stability of these interactions affects biomechanical properties, and softening of the tissue may predispose for degenerative diseases, e.g., osteoarthritis.

The structure of cartilage does change during development and aging, and, thus, the cartilage is more heterogeneous and dynamic as expected. Over the last years, it could be shown that matrix proteins can also play nonstructural roles, like modulation of growth factor activities and immune responses. This adds another layer of complexity to the tissue. This chapter summarizes general aspects of a standard cartilage extracellular matrix even though it has been demonstrated recently that different cartilage types vary substantially in composition and assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya C, Yik JHN, Kishore A, Van Dinh V, Di Cesare PE, Haudenschild DR (2014) Cartilage oligomeric matrix protein and its binding partners in the cartilage extracellular matrix: interaction, regulation and role in chondrogenesis. Matrix Biol J Int Soc Matrix Biol 37:102–111. doi:10.1016/j.matbio.2014.06.001

    Article  CAS  Google Scholar 

  • Agarwal P, Zwolanek D, Keene DR, Schulz J-N, Blumbach K, HeinegÃ¥rd D, Zaucke F, Paulsson M, Krieg T, Koch M, Eckes B (2012) Collagen XII and XIV, new partners of cartilage oligomeric matrix protein in the skin extracellular matrix suprastructure. J Biol Chem 287:22549–22559. doi:10.1074/jbc.M111.335935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ã…hrman E, Lorenzo P, Holmgren K, Grodzinsk AJ, Dahlber LE, Saxne T, HeinegÃ¥rd D, Önnerfjord P (2014) Novel cartilage oligomeric matrix protein (COMP) neoepitopes identified in synovial fluids from patients with joint diseases using affinity chromatography and mass spectrometry. J Biol Chem 289:20908–20916. doi:10.1074/jbc.M114.554683

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Akhatib B, Onnerfjord P, Gawri R, Ouellet J, Jarzem P, HeinegÃ¥rd D, Mort J, Roughley P, Haglund L (2013) Chondroadherin fragmentation mediated by the protease HTRA1 distinguishes human intervertebral disc degeneration from normal aging. J Biol Chem 288:19280–19287. doi:10.1074/jbc.M112.443010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen JM, Bateman JF, Hansen U, Wilson R, Bruckner P, Owens RT, Sasaki T, Timpl R, Fitzgerald J (2006) WARP is a novel multimeric component of the chondrocyte pericellular matrix that interacts with perlecan. J Biol Chem 281:7341–7349. doi:10.1074/jbc.M513746200

    Article  CAS  PubMed  Google Scholar 

  • Allen JM, Zamurs L, Brachvogel B, Schlötzer-Schrehardt U, Hansen U, Lamandé SR, Rowley L, Fitzgerald J, Bateman JF (2009) Mice lacking the extracellular matrix protein WARP develop normally but have compromised peripheral nerve structure and function. J Biol Chem 284:12020–12030. doi:10.1074/jbc.M806968200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andréasson K, Hesselstrand R, Saxne T, Holmberg A, Norrgren H, Jönsson G (2015) Cartilage oligomeric matrix protein: a new promising biomarker of liver fibrosis in chronic hepatitis C. Infect Dis Lond Engl 47:915–918

    Article  CAS  Google Scholar 

  • Arikawa-Hirasawa E, Le AH, Nishino I, Nonaka I, Ho NC, Francomano CA, Govindraj P, Hassell JR, Devaney JM, Spranger J, Stevenson RE, Iannaccone S, Dalakas MC, Yamada Y (2002) Structural and functional mutations of the perlecan gene cause Schwartz-Jampel syndrome, with myotonic myopathy and chondrodysplasia. Am J Hum Genet 70:1368–1375. doi:10.1086/340390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arikawa-Hirasawa E, Watanabe H, Takami H, Hassell JR, Yamada Y (1999) Perlecan is essential for cartilage and cephalic development. Nat Genet 23:354–358. doi:10.1038/15537

    Article  CAS  PubMed  Google Scholar 

  • Arikawa-Hirasawa E, Wilcox WR, Le AH, Silverman N, Govindraj P, Hassell JR, Yamada Y (2001) Dyssegmental dysplasia, Silverman-Handmaker type, is caused by functional null mutations of the perlecan gene. Nat Genet 27:431–434. doi:10.1038/86941

    Article  CAS  PubMed  Google Scholar 

  • Ariza de Schellenberger A, Horland R, Rosowski M, Paus R, Lauster R, Lindner G (2011) Cartilage oligomeric matrix protein (COMP) forms part of the connective tissue of normal human hair follicles. Exp Dermatol 20:361–366. doi:10.1111/j.1600-0625.2010.01217.x

    Article  CAS  PubMed  Google Scholar 

  • Aszódi A, Bateman JF, Hirsch E, Baranyi M, Hunziker EB, Hauser N, Bösze Z, Fässler R (1999) Normal skeletal development of mice lacking matrilin 1: redundant function of matrilins in cartilage? Mol Cell Biol 19:7841–7845

    Article  PubMed  PubMed Central  Google Scholar 

  • Aszódi A, Legate KR, Nakchbandi I, Fässler R (2006) What mouse mutants teach us about extracellular matrix function. Annu Rev Cell Dev Biol 22:591–621. doi:10.1146/annurev.cellbio.22.010305.104258

    Article  PubMed  CAS  Google Scholar 

  • Awata T, Yamada S, Tsushima K, Sakashita H, Yamaba S, Kajikawa T, Yamashita M, Takedachi M, Yanagita M, Kitamura M, Murakami S (2015) PLAP-1/asporin positively regulates FGF-2 activity. J Dent Res 94:1417–1424. doi:10.1177/0022034515598507

    Article  CAS  PubMed  Google Scholar 

  • Bae JW, Cho C-H, Min W-K, Kim U-K (2012) Associations between matrilin-1 gene polymorphisms and adolescent idiopathic scoliosis curve patterns in a Korean population. Mol Biol Rep 39:5561–5567. doi:10.1007/s11033-011-1360-7

    Article  CAS  PubMed  Google Scholar 

  • Bengtsson E, Aspberg A, Heinegard D, Sommarin Y, Spillmann D (2000) The amino-terminal part of PRELP binds to heparin and heparan sulfate. J Biol Chem 275:40695–40702. doi:10.1074/jbc.M007917200

    Article  CAS  PubMed  Google Scholar 

  • Bengtsson E, Mörgelin M, Sasaki T, Timpl R, HeinegÃ¥rd D, Aspberg A (2002) The leucine-rich repeat protein PRELP binds perlecan and collagens and may function as a basement membrane anchor. J Biol Chem 277:15061–15068. doi:10.1074/jbc.M108285200

    Article  CAS  PubMed  Google Scholar 

  • Bengtsson E, Neame PJ, HeinegÃ¥rd D, Sommarin Y (1995) The primary structure of a basic leucine-rich repeat protein, PRELP, found in connective tissues. J Biol Chem 270:25639–25644

    Article  CAS  PubMed  Google Scholar 

  • Blumbach K, Bastiaansen-Jenniskens YM, DeGroot J, Paulsson M, van Osch GJVM, Zaucke F (2009) Combined role of type IX collagen and cartilage oligomeric matrix protein in cartilage matrix assembly: cartilage oligomeric matrix protein counteracts type IX collagen-induced limitation of cartilage collagen fibril growth in mouse chondrocyte cultures. Arthritis Rheum 60:3676–3685. doi:10.1002/art.24979

    Article  CAS  PubMed  Google Scholar 

  • Borochowitz ZU, Scheffer D, Adir V, Dagoneau N, Munnich A, Cormier-Daire V (2004) Spondylo-epi-metaphyseal dysplasia (SEMD) matrilin 3 type: homozygote matrilin 3 mutation in a novel form of SEMD. J Med Genet 41:366–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Briggs MD, Bell PA, Pirog KA (2015) The utility of mouse models to provide information regarding the pathomolecular mechanisms in human genetic skeletal diseases: the emerging role of endoplasmic reticulum stress (review). Int J Mol Med 35:1483–1492. doi:10.3892/ijmm.2015.2158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Briggs MD, Wright MJ (1993) Pseudoachondroplasia. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJ, Bird TD, Fong C-T, Smith RJ, Stephens K (eds) GeneReviews(®). University of Washington, Seattle

    Google Scholar 

  • Bruckner P (2010) Suprastructures of extracellular matrices: paradigms of functions controlled by aggregates rather than molecules. Cell Tissue Res 339:7–18. doi:10.1007/s00441-009-0864-0

    Article  CAS  PubMed  Google Scholar 

  • Buckner JH, Wu JJ, Reife RA, Terato K, Eyre DR (2000) Autoreactivity against matrilin-1 in a patient with relapsing polychondritis. Arthritis Rheum 43:939–943. doi:10.1002/1529-0131(200004)43:4<939::AID-ANR28>3.0.CO;2-Z

    Article  CAS  PubMed  Google Scholar 

  • Budde B, Blumbach K, Ylöstalo J, Zaucke F, Ehlen HWA, Wagener R, Ala-Kokko L, Paulsson M, Bruckner P, Grässel S (2005) Altered integration of matrilin-3 into cartilage extracellular matrix in the absence of collagen IX. Mol Cell Biol 25:10465–10478. doi:10.1128/MCB.25.23.10465-10478.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camper L, Heinegârd D, Lundgren-Akerlund E (1997) Integrin alpha2beta1 is a receptor for the cartilage matrix protein chondroadherin. J Cell Biol 138:1159–1167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capulli M, Olstad OK, Onnerfjord P, Tillgren V, Muraca M, Gautvik KM, HeinegÃ¥rd D, Rucci N, Teti A (2014) The C-terminal domain of chondroadherin: a new regulator of osteoclast motility counteracting bone loss. J Bone Miner Res Off J Am Soc Bone Miner Res 29:1833–1846. doi:10.1002/jbmr.2206

    Article  CAS  Google Scholar 

  • Carlsén S, Hansson AS, Olsson H, HeinegÃ¥rd D, Holmdahl R (1998) Cartilage oligomeric matrix protein (COMP)-induced arthritis in rats. Clin Exp Immunol 114:477–484

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Johnson DM, Haudenschild DR, Tondravi MM, Goetinck PF (1995) Cartilage matrix protein forms a type II collagen-independent filamentous network: analysis in primary cell cultures with a retrovirus expression system. Mol Biol Cell 6:1743–1753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Zhang Y, Johnson DM, Goetinck PF (1999) Assembly of a novel cartilage matrix protein filamentous network: molecular basis of differential requirement of von Willebrand factor A domains. Mol Biol Cell 10:2149–2162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Tang NLS, Cao X, Qiao D, Yi L, Cheng JCY, Qiu Y (2009) Promoter polymorphism of matrilin-1 gene predisposes to adolescent idiopathic scoliosis in a Chinese population. Eur J Hum Genet EJHG 17:525–532. doi:10.1038/ejhg.2008.203

    Article  PubMed  CAS  Google Scholar 

  • Costell M, Gustafsson E, Aszódi A, Mörgelin M, Bloch W, Hunziker E, Addicks K, Timpl R, Fässler R (1999) Perlecan maintains the integrity of cartilage and some basement membranes. J Cell Biol 147:1109–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das BR, Roy A, Khan FR (2015) Cartilage oligomeric matrix protein in monitoring and prognostication of osteoarthritis and its utility in drug development. Perspect Clin Res 6:4–9. doi:10.4103/2229-3485.148792

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Cesare PE, Chen FS, Moergelin M, Carlson CS, Leslie MP, Perris R, Fang C (2002) Matrix-matrix interaction of cartilage oligomeric matrix protein and fibronectin. Matrix Biol J Int Soc Matrix Biol 21:461–470

    Article  Google Scholar 

  • DiCesare P, Hauser N, Lehman D, Pasumarti S, Paulsson M (1994) Cartilage oligomeric matrix protein (COMP) is an abundant component of tendon. FEBS Lett 354:237–240

    Article  CAS  PubMed  Google Scholar 

  • Dinser R, Zaucke F, Kreppel F, Hultenby K, Kochanek S, Paulsson M, Maurer P (2002) Pseudoachondroplasia is caused through both intra- and extracellular pathogenic pathways. J Clin Invest 110:505–513. doi:10.1172/JCI14386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du Y, Wang Y, Wang L, Liu B, Tian Q, Liu C, Zhang T, Xu Q, Zhu Y, Ake O, Qi Y, Tang C, Kong W, Wang X (2011) Cartilage oligomeric matrix protein inhibits vascular smooth muscle calcification by interacting with bone morphogenetic protein-2. Circ Res 108:917–928. doi:10.1161/CIRCRESAHA.110.234328

    Article  CAS  PubMed  Google Scholar 

  • Ehlen HWA, Sengle G, Klatt AR, Talke A, Müller S, Paulsson M, Wagener R (2009) Proteolytic processing causes extensive heterogeneity of tissue matrilin forms. J Biol Chem 284:21545–21556. doi:10.1074/jbc.M109.016568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eitzinger N, Surmann-Schmitt C, Bösl M, Schett G, Engelke K, Hess A, von der Mark K, Stock M (2012) Ucma is not necessary for normal development of the mouse skeleton. Bone 50:670–680. doi:10.1016/j.bone.2011.11.017

    Article  CAS  PubMed  Google Scholar 

  • Eliasson GJ, Verbruggen G, Stefansson SE, Ingvarsson T, Jonsson H (2006) Hand radiology characteristics of patients carrying the T(303)M mutation in the gene for matrilin-3. Scand J Rheumatol 35:138–142. doi:10.1080/03009740500303215

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald J, Tay Ting S, Bateman JF (2002) WARP is a new member of the von Willebrand factor A-domain superfamily of extracellular matrix proteins. FEBS Lett 517:61–66

    Article  CAS  PubMed  Google Scholar 

  • Foradori MJ, Chen Q, Fernandez CA, Harper J, Li X, Tsang PCW, Langer R, Moses MA (2014) Matrilin-1 is an inhibitor of neovascularization. J Biol Chem 289:14301–14309. doi:10.1074/jbc.M113.529982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frank S, Schulthess T, Landwehr R, Lustig A, Mini T, Jenö P, Engel J, Kammerer RA (2002) Characterization of the matrilin coiled-coil domains reveals seven novel isoforms. J Biol Chem 277:19071–19079. doi:10.1074/jbc.M202146200

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Liu S, Huang J, Guo W, Chen J, Zhang L, Zhao B, Peng J, Wang A, Wang Y, Xu W, Lu S, Yuan M, Guo Q (2014) The ECM-cell interaction of cartilage extracellular matrix on chondrocytes. BioMed Res Int 2014:648459. doi:10.1155/2014/648459

    PubMed  PubMed Central  Google Scholar 

  • Gelse K, Klinger P, Koch M, Surmann-Schmitt C, von der Mark K, Swoboda B, Hennig FF, Gusinde J (2011) Thrombospondin-1 prevents excessive ossification in cartilage repair tissue induced by osteogenic protein-1. Tissue Eng Part A 17:2101–2112. doi:10.1089/ten.TEA.2010.0691

    Article  CAS  PubMed  Google Scholar 

  • Gendelman R, Burton-Wurster NI, MacLeod JN, Lust G (2003) The cartilage-specific fibronectin isoform has a high affinity binding site for the small proteoglycan decorin. J Biol Chem 278:11175–11181. doi:10.1074/jbc.M211799200

    Article  CAS  PubMed  Google Scholar 

  • Giannoni P, Siegrist M, Hunziker EB, Wong M (2003) The mechanosensitivity of cartilage oligomeric matrix protein (COMP). Biorheology 40:101–109

    CAS  PubMed  Google Scholar 

  • Grover J, Chen XN, Korenberg JR, Recklies AD, Roughley PJ (1996) The gene organization, chromosome location, and expression of a 55-kDa matrix protein (PRELP) of human articular cartilage. Genomics 38:109–117. doi:10.1006/geno.1996.0605

    Article  CAS  PubMed  Google Scholar 

  • Grover J, Roughley PJ (2001) Characterization and expression of murine PRELP. Matrix Biol J Int Soc Matrix Biol 20:555–564

    Article  CAS  Google Scholar 

  • Haglund L, Ouellet J, Roughley P (2009) Variation in chondroadherin abundance and fragmentation in the human scoliotic disc. Spine 34:1513–1518. doi:10.1097/BRS.0b013e3181a8d001

    Article  PubMed  Google Scholar 

  • Haglund L, Tillgren V, Addis L, Wenglén C, Recklies A, HeinegÃ¥rd D (2011) Identification and characterization of the integrin alpha2beta1 binding motif in chondroadherin mediating cell attachment. J Biol Chem 286:3925–3934. doi:10.1074/jbc.M110.161141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haglund L, Tillgren V, Önnerfjord P, HeinegÃ¥rd D (2013) The C-terminal peptide of chondroadherin modulates cellular activity by selectively binding to heparan sulfate chains. J Biol Chem 288:995–1008. doi:10.1074/jbc.M112.430512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halász K, Kassner A, Mörgelin M, HeinegÃ¥rd D (2007) COMP acts as a catalyst in collagen fibrillogenesis. J Biol Chem 282:31166–31173. doi:10.1074/jbc.M705735200

    Article  PubMed  CAS  Google Scholar 

  • Hankenson KD, Bain SD, Kyriakides TR, Smith EA, Goldstein SA, Bornstein P (2000) Increased marrow-derived osteoprogenitor cells and endosteal bone formation in mice lacking thrombospondin 2. J Bone Miner Res Off J Am Soc Bone Miner Res 15:851–862. doi:10.1359/jbmr.2000.15.5.851

    Article  CAS  Google Scholar 

  • Hankenson KD, Hormuzdi SG, Meganck JA, Bornstein P (2005) Mice with a disruption of the thrombospondin 3 gene differ in geometric and biomechanical properties of bone and have accelerated development of the femoral head. Mol Cell Biol 25:5599–5606. doi:10.1128/MCB.25.13.5599-5606.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen U, Allen JM, White R, Moscibrocki C, Bruckner P, Bateman JF, Fitzgerald J (2012) WARP interacts with collagen VI-containing microfibrils in the pericellular matrix of human chondrocytes. PLoS One 7:e52793. doi:10.1371/journal.pone.0052793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen U, Platz N, Becker A, Bruckner P, Paulsson M, Zaucke F (2011) A secreted variant of cartilage oligomeric matrix protein (COMP) carrying a chondrodysplasia-causing mutation (p.H587R) disrupts collagen fibrillogenesis. Arthritis Rheum 63:159–167

    Google Scholar 

  • Hansson AS, HeinegÃ¥rd D, Holmdahl R (1999) A new animal model for relapsing polychondritis, induced by cartilage matrix protein (matrilin-1). J Clin Invest 104:589–598. doi:10.1172/JCI5740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansson AS, HeinegÃ¥rd D, Piette JC, Burkhardt H, Holmdahl R (2001) The occurrence of autoantibodies to matrilin 1 reflects a tissue-specific response to cartilage of the respiratory tract in patients with relapsing polychondritis. Arthritis Rheum 44:2402–2412

    Article  CAS  PubMed  Google Scholar 

  • Happonen KE, HeinegÃ¥rd D, Saxne T, Blom AM (2012) Interactions of the complement system with molecules of extracellular matrix: relevance for joint diseases. Immunobiology 217:1088–1096. doi:10.1016/j.imbio.2012.07.013

    Article  CAS  PubMed  Google Scholar 

  • Happonen KE, Saxne T, Aspberg A, Mörgelin M, HeinegÃ¥rd D, Blom AM (2010) Regulation of complement by cartilage oligomeric matrix protein allows for a novel molecular diagnostic principle in rheumatoid arthritis. Arthritis Rheum 62:3574–3583. doi:10.1002/art.27720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto Y, Tomiyama T, Yamano Y, Mori H (2003) Mutation (D472Y) in the type 3 repeat domain of cartilage oligomeric matrix protein affects its early vesicle trafficking in endoplasmic reticulum and induces apoptosis. Am J Pathol 163:101–110. doi:10.1016/S0002-9440(10)63634-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haudenschild DR, Hong E, Yik JHN, Chromy B, Mörgelin M, Snow KD, Acharya C, Takada Y, Di Cesare PE (2011) Enhanced activity of transforming growth factor β1 (TGF-β1) bound to cartilage oligomeric matrix protein. J Biol Chem 286:43250–43258. doi:10.1074/jbc.M111.234716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hecht JT, Hayes E, Haynes R, Cole WG (2005) COMP mutations, chondrocyte function and cartilage matrix. Matrix Biol J Int Soc Matrix Biol 23:525–533. doi:10.1016/j.matbio.2004.09.006

    Article  CAS  Google Scholar 

  • Hecht JT, Makitie O, Hayes E, Haynes R, Susic M, Montufar-Solis D, Duke PJ, Cole WG (2004) Chondrocyte cell death and intracellular distribution of COMP and type IX collagen in the pseudoachondroplasia growth plate. J Orthop Res Off Publ Orthop Res Soc 22:759–767. doi:10.1016/j.orthres.2003.11.010

    Article  CAS  Google Scholar 

  • Hedbom E, Antonsson P, Hjerpe A, Aeschlimann D, Paulsson M, Rosa-Pimentel E, Sommarin Y, Wendel M, Oldberg A, HeinegÃ¥rd D (1992) Cartilage matrix proteins. An acidic oligomeric protein (COMP) detected only in cartilage. J Biol Chem 267:6132–6136

    CAS  PubMed  Google Scholar 

  • HeinegÃ¥rd D, Saxne T (2011) The role of the cartilage matrix in osteoarthritis. Nat Rev Rheumatol 7:50–56. doi:10.1038/nrrheum.2010.198

    Article  PubMed  CAS  Google Scholar 

  • Henry SP, Takanosu M, Boyd TC, Mayne PM, Eberspaecher H, Zhou W, de Crombrugghe B, Hook M, Mayne R (2001) Expression pattern and gene characterization of asporin. A newly discovered member of the leucine-rich repeat protein family. J Biol Chem 276:12212–12221. doi:10.1074/jbc.M011290200

    Article  CAS  PubMed  Google Scholar 

  • Hessle L, Stordalen GA, Wenglén C, Petzold C, Tanner EK, Brorson S-H, Baekkevold ES, Önnerfjord P, Reinholt FP, HeinegÃ¥rd D (2014) The skeletal phenotype of chondroadherin deficient mice. PLoS One 8:e63080. doi:10.1371/journal.pone.0063080

    Article  PubMed  CAS  Google Scholar 

  • Hsieh J-L, Shen P-C, Shiau A-L, Jou I-M, Lee C-H, Wang C-R, Teo M-L, Wu C-L (2010) Intraarticular gene transfer of thrombospondin-1 suppresses the disease progression of experimental osteoarthritis. J Orthop Res Off Publ Orthop Res Soc 28:1300–1306. doi:10.1002/jor.21134

    Article  CAS  Google Scholar 

  • Huang X, Birk DE, Goetinck PF (1999) Mice lacking matrilin-1 (cartilage matrix protein) have alterations in type II collagen fibrillogenesis and fibril organization. Dev Dyn Off Publ Am Assoc Anat 216:434–441. doi:10.1002/(SICI)1097-0177(199912)216:4/5<434::AID-DVDY11>3.0.CO;2-X

    CAS  Google Scholar 

  • Ishida K, Acharya C, Christiansen BA, Yik JHN, DiCesare PE, Haudenschild DR (2013) Cartilage oligomeric matrix protein enhances osteogenesis by directly binding and activating bone morphogenetic protein-2. Bone 55:23–35. doi:10.1016/j.bone.2013.03.007

    Article  CAS  PubMed  Google Scholar 

  • Jang JY, Park EK, Ryoo HM, Shin HI, Kim TH, Jang JS, Park HS, Choi JY, Kwon TG (2010) Polymorphisms in the Matrilin-1 gene and risk of mandibular prognathism in Koreans. J Dent Res 89:1203–1207. doi:10.1177/0022034510375962

    Article  CAS  PubMed  Google Scholar 

  • Jayasuriya CT, Zhou FH, Pei M, Wang Z, Lemme NJ, Haines P, Chen Q (2014) Matrilin-3 chondrodysplasia mutations cause attenuated chondrogenesis, premature hypertrophy and aberrant response to TGF-β in chondroprogenitor cells. Int J Mol Sci 15:14555–14573. doi:10.3390/ijms150814555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong SY, Ha J, Lee M, Jin HJ, Kim DH, Choi SJ, Oh W, Yang YS, Kim J-S, Kim B-G, Chang JH, Cho D-H, Jeon HB (2015) Autocrine action of thrombospondin-2 determines the chondrogenic differentiation potential and suppresses hypertrophic maturation of human umbilical cord blood-derived mesenchymal stem cells. Stem Cells Dayt Ohio 33:3291–3303. doi:10.1002/stem.2120

    Article  CAS  Google Scholar 

  • Kalamajski S, Aspberg A, Lindblom K, HeinegÃ¥rd D, Oldberg A (2009) Asporin competes with decorin for collagen binding, binds calcium and promotes osteoblast collagen mineralization. Biochem J 423:53–59. doi:10.1042/BJ20090542

    Article  CAS  PubMed  Google Scholar 

  • Kanbe K, Yang X, Wei L, Sun C, Chen Q (2007) Pericellular matrilins regulate activation of chondrocytes by cyclic load-induced matrix deformation. J Bone Miner Res Off J Am Soc Bone Miner Res 22:318–328. doi:10.1359/jbmr.061104

    Article  CAS  Google Scholar 

  • Kipnes J, Carlberg AL, Loredo GA, Lawler J, Tuan RS, Hall DJ (2003) Effect of cartilage oligomeric matrix protein on mesenchymal chondrogenesis in vitro. Osteoarthr Cartil OARS Osteoarthr Res Soc 11:442–454

    Article  CAS  Google Scholar 

  • Kizawa H, Kou I, Iida A, Sudo A, Miyamoto Y, Fukuda A, Mabuchi A, Kotani A, Kawakami A, Yamamoto S, Uchida A, Nakamura K, Notoya K, Nakamura Y, Ikegawa S (2005) An aspartic acid repeat polymorphism in asporin inhibits chondrogenesis and increases susceptibility to osteoarthritis. Nat Genet 37:138–144. doi:10.1038/ng1496

    Article  CAS  PubMed  Google Scholar 

  • Klatt AR, Becker A-KA, Neacsu CD, Paulsson M, Wagener R (2011) The matrilins: modulators of extracellular matrix assembly. Int J Biochem Cell Biol 43:320–330. doi:10.1016/j.biocel.2010.12.010

    Article  CAS  PubMed  Google Scholar 

  • Klatt AR, Klinger G, Paul-Klausch B, Kühn G, Renno JH, Wagener R, Paulsson M, Schmidt J, Malchau G, Wielckens K (2009) Matrilin-3 activates the expression of osteoarthritis-associated genes in primary human chondrocytes. FEBS Lett 583:3611–3617. doi:10.1016/j.febslet.2009.10.035

    Article  CAS  PubMed  Google Scholar 

  • Klatt AR, Nitsche DP, Kobbe B, Mörgelin M, Paulsson M, Wagener R (2000) Molecular structure and tissue distribution of matrilin-3, a filament-forming extracellular matrix protein expressed during skeletal development. J Biol Chem 275:3999–4006

    Article  CAS  PubMed  Google Scholar 

  • Klatt AR, Paul-Klausch B, Klinger G, Hillebrand U, Kühn G, Kobbe B, Renno JH, Johannis W, Paulsson M, Wagener R (2013) The matrilin-3 VWA1 domain modulates interleukin-6 release from primary human chondrocytes. Osteoarthr Cartil OARS Osteoarthr Res Soc 21:869–873. doi:10.1016/j.joca.2013.03.005

    Article  CAS  Google Scholar 

  • Kou I, Nakajima M, Ikegawa S (2007) Expression and regulation of the osteoarthritis-associated protein asporin. J Biol Chem 282:32193–32199. doi:10.1074/jbc.M706262200

    Article  CAS  PubMed  Google Scholar 

  • Ko Y, Kobbe B, Nicolae C, Miosge N, Paulsson M, Wagener R, Aszódi A (2004) Matrilin-3 is dispensable for mouse skeletal growth and development. Mol Cell Biol 24:1691–1699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kruegel J, Sadowski B, Miosge N (2008) Nidogen-1 and nidogen-2 in healthy human cartilage and in late-stage osteoarthritis cartilage. Arthritis Rheum 58:1422–1432. doi:10.1002/art.23480

    Article  PubMed  Google Scholar 

  • Kvist AJ, Nyström A, Hultenby K, Sasaki T, Talts JF, Aspberg A (2008) The major basement membrane components localize to the chondrocyte pericellular matrix – a cartilage basement membrane equivalent? Matrix Biol J Int Soc Matrix Biol 27:22–33. doi:10.1016/j.matbio.2007.07.007

    Article  CAS  Google Scholar 

  • Lee Y-J, Park S-Y, Lee S-J, Boo YC, Choi J-Y, Kim J-E (2015) Ucma, a direct transcriptional target of Runx2 and Osterix, promotes osteoblast differentiation and nodule formation. Osteoarthr Cartil OARS Osteoarthr Res Soc 23:1421–1431. doi:10.1016/j.joca.2015.03.035

    Article  Google Scholar 

  • Leighton MP, Nundlall S, Starborg T, Meadows RS, Suleman F, Knowles L, Wagener R, Thornton DJ, Kadler KE, Boot-Handford RP, Briggs MD (2007) Decreased chondrocyte proliferation and dysregulated apoptosis in the cartilage growth plate are key features of a murine model of epiphyseal dysplasia caused by a matn3 mutation. Hum Mol Genet 16:1728–1741. doi:10.1093/hmg/ddm121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Jeune M, Tomavo N, Tian TV, Flourens A, Marchand N, Camuzeaux B, Mallein-Gerin F, Duterque-Coquillaud M (2010) Identification of four alternatively spliced transcripts of the Ucma/GRP gene, encoding a new Gla-containing protein. Exp Cell Res 316:203–215. doi:10.1016/j.yexcr.2009.10.002

    Article  PubMed  CAS  Google Scholar 

  • Li H, Haudenschild DR, Posey KL, Hecht JT, Di Cesare PE, Yik JHN (2011) Comparative analysis with collagen type II distinguishes cartilage oligomeric matrix protein as a primary TGFβ-responsive gene. Osteoarthr Cartil OARS Osteoarthr Res Soc 19:1246–1253. doi:10.1016/j.joca.2011.07.011

    Article  CAS  Google Scholar 

  • Liu C, Kong W, Xu K, Luan Y, Ilalov K, Sehgal B, Yu S, Howell RD, Di Cesare PE (2006a) ADAMTS-12 associates with and degrades cartilage oligomeric matrix protein. J Biol Chem 281:15800–15808. doi:10.1074/jbc.M513433200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu CJ, Kong W, Ilalov K, Yu S, Xu K, Prazak L, Fajardo M, Sehgal B, Di Cesare PE (2006b) ADAMTS-7: a metalloproteinase that directly binds to and degrades cartilage oligomeric matrix protein. FASEB J 20(7):988–990, PMID: 16585064, Epub 2006 Apr 3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenzo P, Aspberg A, Onnerfjord P, Bayliss MT, Neame PJ, Heinegard D (2001) Identification and characterization of asporin. a novel member of the leucine-rich repeat protein family closely related to decorin and biglycan. J Biol Chem 276:12201–12211. doi:10.1074/jbc.M010932200

    Article  CAS  PubMed  Google Scholar 

  • Lorenzo P, Bayliss MT, HeinegÃ¥rd D (2004) Altered patterns and synthesis of extracellular matrix macromolecules in early osteoarthritis. Matrix Biol 23:381–391

    Google Scholar 

  • Lorenzo P, Neame P, Sommarin Y, HeinegÃ¥rd D (1998) Cloning and deduced amino acid sequence of a novel cartilage protein (CILP) identifies a proform including a nucleotide pyrophosphohydrolase. J Biol Chem 273:23469–23475

    Article  CAS  PubMed  Google Scholar 

  • Loughlin J, Dowling B, Mustafa Z, Smith A, Sykes B, Chapman K (2000) Analysis of the association of the matrillin-1 gene (CRTM) with osteoarthritis: comment on the article by Meulenbelt et al. Arthritis Rheum 43:1423–1425. doi:10.1002/1529-0131(200006)43:6<1423::AID-ANR31>3.0.CO;2-4

    Article  CAS  PubMed  Google Scholar 

  • Lui JCK, Andrade AC, Forcinito P, Hegde A, Chen W, Baron J, Nilsson O (2010) Spatial and temporal regulation of gene expression in the mammalian growth plate. Bone 46:1380–1390. doi:10.1016/j.bone.2010.01.373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maddox BK, Keene DR, Sakai LY, Charbonneau NL, Morris NP, Ridgway CC, Boswell BA, Sussman MD, Horton WA, Bächinger HP, Hecht JT (1997) The fate of cartilage oligomeric matrix protein is determined by the cell type in the case of a novel mutation in pseudoachondroplasia. J Biol Chem 272:30993–30997

    Article  CAS  PubMed  Google Scholar 

  • Maeda K, Nakashima E, Horikoshi T, Mabuchi A, Ikegawa S (2005) Mutation in the von Willebrand factor-A domain is not a prerequisite for the MATN3 mutation in multiple epiphyseal dysplasia. Am J Med Genet A 136:285–286. doi:10.1002/ajmg.a.30832

    Article  PubMed  Google Scholar 

  • Manley E, Perosky JE, Khoury BM, Reddy AB, Kozloff KM, Alford AI (2015) Thrombospondin-2 deficiency in growing mice alters bone collagen ultrastructure and leads to a brittle bone phenotype. J Appl Physiol. Bethesda Md 1985 jap.00340.2015. doi:10.1152/japplphysiol.00340.2015

    Google Scholar 

  • Mann HH, Ozbek S, Engel J, Paulsson M, Wagener R (2004) Interactions between the cartilage oligomeric matrix protein and matrilins. Implications for matrix assembly and the pathogenesis of chondrodysplasias. J Biol Chem 279:25294–25298. doi:10.1074/jbc.M403778200

    Article  CAS  PubMed  Google Scholar 

  • Mann HH, Sengle G, Gebauer JM, Eble JA, Paulsson M, Wagener R (2007) Matrilins mediate weak cell attachment without promoting focal adhesion formation. Matrix Biol J Int Soc Matrix Biol 26:167–174. doi:10.1016/j.matbio.2006.10.010

    Article  CAS  Google Scholar 

  • Mansson B, Wenglén C, Mörgelin M, Saxne T, HeinegÃ¥rd D (2001) Association of chondroadherin with collagen type II. J Biol Chem 276:32883–32888. doi:10.1074/jbc.M101680200

    Article  CAS  PubMed  Google Scholar 

  • Meulenbelt I, Bijkerk C, de Wildt SC, Miedema HS, Valkenburg HA, Breedveld FC, Pols HA, Te Koppele JM, Sloos VF, Hofman A, Slagboom PE, van Duijn CM (1997) Investigation of the association of the CRTM and CRTL1 genes with radiographically evident osteoarthritis in subjects from the Rotterdam study. Arthritis Rheum 40:1760–1765. doi:10.1002/1529-0131(199710)40:10<1760::AID-ART6>3.0.CO;2-W

    Article  CAS  PubMed  Google Scholar 

  • Michou L, Conceição N, Morissette J, Gagnon E, Miltenberger-Miltenyi G, Siris ES, Brown JP, Cancela ML (2012) Genetic association study of UCMA/GRP and OPTN genes (PDB6 locus) with Paget’s disease of bone. Bone 51:720–728. doi:10.1016/j.bone.2012.06.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Min JL, Meulenbelt I, Riyazi N, Kloppenburg M, Houwing-Duistermaat JJ, Seymour AB, van Duijn CM, Slagboom PE (2006) Association of matrilin-3 polymorphisms with spinal disc degeneration and osteoarthritis of the first carpometacarpal joint of the hand. Ann Rheum Dis 65:1060–1066. doi:10.1136/ard.2005.045153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizuno M, Fujisawa R, Kuboki Y (1996) Bone chondroadherin promotes attachment of osteoblastic cells to solid-state substrates and shows affinity to collagen. Calcif Tissue Int 59:163–167

    Article  CAS  PubMed  Google Scholar 

  • Mobasheri A (2012) Osteoarthritis year 2012 in review: biomarkers. Osteoarthr Cartil OARS Osteoarthr Res Soc 20:1451–1464. doi:10.1016/j.joca.2012.07.009

    Article  CAS  Google Scholar 

  • Mörgelin M, HeinegÃ¥rd D, Engel J, Paulsson M (1992) Electron microscopy of native cartilage oligomeric matrix protein purified from the Swarm rat chondrosarcoma reveals a five-armed structure. J Biol Chem 267:6137–6141

    PubMed  Google Scholar 

  • Müller C, Khabut A, Dudhia J, Reinholt FP, Aspberg A, HeinegÃ¥rd D, Önnerfjord P (2014) Quantitative proteomics at different depths in human articular cartilage reveals unique patterns of protein distribution. Matrix Biol J Int Soc Matrix Biol 40:34–45. doi:10.1016/j.matbio.2014.08.013

    Article  CAS  Google Scholar 

  • Murphy-Ullrich JE, Sage EH (2014) Revisiting the matricellular concept. Matrix Biol J Int Soc Matrix Biol 37:1–14. doi:10.1016/j.matbio.2014.07.005

    Article  CAS  Google Scholar 

  • Mustafa Z, Dowling B, Chapman K, Sinsheimer JS, Carr A, Loughlin J (2005) Investigating the aspartic acid (D) repeat of asporin as a risk factor for osteoarthritis in a UK Caucasian population. Arthritis Rheum 52:3502–3506. doi:10.1002/art.21399

    Article  CAS  PubMed  Google Scholar 

  • Neacsu CD, Grosch M, Tejada M, Winterpacht A, Paulsson M, Wagener R, Tagariello A (2011) Ucmaa (Grp-2) is required for zebrafish skeletal development. Matrix Biol J Int Soc Matrix Biol 30:369–378. doi:10.1016/j.matbio.2011.07.002

    Article  CAS  Google Scholar 

  • Neacsu CD, Ko Y-P, Tagariello A, Røkenes Karlsen K, Neiss WF, Paulsson M, Wagener R (2014) Matrilin-1 is essential for zebrafish development by facilitating collagen II secretion. J Biol Chem 289:1505–1518. doi:10.1074/jbc.M113.529933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neame PJ, Sommarin Y, Boynton RE, HeinegÃ¥rd D (1994) The structure of a 38-kDa leucine-rich protein (chondroadherin) isolated from bovine cartilage. J Biol Chem 269:21547–21554

    CAS  PubMed  Google Scholar 

  • Neidhart M, Hauser N, Paulsson M, DiCesare PE, Michel BA, Häuselmann HJ (1997) Small fragments of cartilage oligomeric matrix protein in synovial fluid and serum as markers for cartilage degradation. Br J Rheumatol 36:1151–1160

    Article  CAS  PubMed  Google Scholar 

  • Neidhart M, Müller-Ladner U, Frey W, Bosserhoff AK, Colombani PC, Frey-Rindova P, Hummel KM, Gay RE, Häuselmann H, Gay S (2000) Increased serum levels of non-collagenous matrix proteins (cartilage oligomeric matrix protein and melanoma inhibitory activity) in marathon runners. Osteoarthr Cartil OARS Osteoarthr Res Soc 8:222–229. doi:10.1053/joca.1999.0293

    Article  CAS  Google Scholar 

  • Nicolae C, Ko Y-P, Miosge N, Niehoff A, Studer D, Enggist L, Hunziker EB, Paulsson M, Wagener R, Aszodi A (2007) Abnormal collagen fibrils in cartilage of matrilin-1/matrilin-3-deficient mice. J Biol Chem 282:22163–22175. doi:10.1074/jbc.M610994200

    Article  CAS  PubMed  Google Scholar 

  • Nishimoto SK, Nishimoto M (2014) Matrix gla protein binds to fibronectin and enhances cell attachment and spreading on fibronectin. Int J Cell Biol 2014:807013. doi:10.1155/2014/807013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nundlall S, Rajpar MH, Bell PA, Clowes C, Zeeff LAH, Gardner B, Thornton DJ, Boot-Handford RP, Briggs MD (2010) An unfolded protein response is the initial cellular response to the expression of mutant matrilin-3 in a mouse model of multiple epiphyseal dysplasia. Cell Stress Chaperones 15:835–849. doi:10.1007/s12192-010-0193-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Önnerfjord P, Khabut A, Reinholt FP, Svensson O, HeinegÃ¥rd D (2012) Quantitative proteomic analysis of eight cartilaginous tissues reveals characteristic differences as well as similarities between subgroups. J Biol Chem 287:18913–18924. doi:10.1074/jbc.M111.298968

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Otten C, Hansen U, Talke A, Wagener R, Paulsson M, Zaucke F (2010) A matrilin-3 mutation associated with osteoarthritis does not affect collagen affinity but promotes the formation of wider cartilage collagen fibrils. Hum Mutat 31:254–263. doi:10.1002/humu.21182

    Article  CAS  PubMed  Google Scholar 

  • Otten C, Wagener R, Paulsson M, Zaucke F (2005) Matrilin-3 mutations that cause chondrodysplasias interfere with protein trafficking while a mutation associated with hand osteoarthritis does not. J Med Genet 42:774–779. doi:10.1136/jmg.2004.029462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parsons P, Gilbert SJ, Vaughan-Thomas A, Sorrell DA, Notman R, Bishop M, Hayes AJ, Mason DJ, Duance VC (2011) Type IX collagen interacts with fibronectin providing an important molecular bridge in articular cartilage. J Biol Chem 286:34986–34997. doi:10.1074/jbc.M111.238188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paulsson M, HeinegÃ¥rd D (1981) Purification and structural characterization of a cartilage matrix protein. Biochem J 197:367–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paulsson M, HeinegÃ¥rd D (1979) Matrix proteins bound to associatively prepared proteoglycans from bovine cartilage. Biochem J 183:539–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peffers MJ, Cillero-Pastor B, Eijkel GB, Clegg PD, Heeren RMA (2014a) Matrix assisted laser desorption ionization mass spectrometry imaging identifies markers of ageing and osteoarthritic cartilage. Arthritis Res Ther 16:R110. doi:10.1186/ar4560

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peffers MJ, Thorpe CT, Collins JA, Eong R, Wei TKJ, Screen HRC, Clegg PD (2014b) Proteomic analysis reveals age-related changes in tendon matrix composition, with age- and injury-specific matrix fragmentation. J Biol Chem 289:25867–25878. doi:10.1074/jbc.M114.566554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pei M, Luo J, Chen Q (2008) Enhancing and maintaining chondrogenesis of synovial fibroblasts by cartilage extracellular matrix protein matrilins. Osteoarthr Cartil OARS Osteoarthr Res Soc 16:1110–1117. doi:10.1016/j.joca.2007.12.011

    Article  CAS  Google Scholar 

  • Pfander D, Cramer T, Deuerling D, Weseloh G, Swoboda B (2000) Expression of thrombospondin-1 and its receptor CD36 in human osteoarthritic cartilage. Ann Rheum Dis 59:448–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Posey KL, Coustry F, Veerisetty AC, Hossain M, Alcorn JL, Hecht JT (2015) Antioxidant and anti-inflammatory agents mitigate pathology in a mouse model of pseudoachondroplasia. Hum Mol Genet 24:3918–3928. doi:10.1093/hmg/ddv122

    Article  CAS  PubMed  Google Scholar 

  • Posey KL, Coustry F, Veerisetty AC, Liu P, Alcorn JL, Hecht JT (2014) Chondrocyte-specific pathology during skeletal growth and therapeutics in a murine model of pseudoachondroplasia. J Bone Miner Res Off J Am Soc Bone Miner Res 29:1258–1268. doi:10.1002/jbmr.2139

    Article  CAS  Google Scholar 

  • Posey KL, Hankenson K, Veerisetty AC, Bornstein P, Lawler J, Hecht JT (2008) Skeletal abnormalities in mice lacking extracellular matrix proteins, thrombospondin-1, thrombospondin-3, thrombospondin-5, and type IX collagen. Am J Pathol 172:1664–1674. doi:10.2353/ajpath.2008.071094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pullig O, Tagariello A, Schweizer A, Swoboda B, Schaller P, Winterpacht A (2007) MATN3 (matrilin-3) sequence variation (pT303M) is a risk factor for osteoarthritis of the CMC1 joint of the hand, but not for knee osteoarthritis. Ann Rheum Dis 66:279–280. doi:10.1136/ard.2006.058263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pullig O, Weseloh G, Klatt AR, Wagener R, Swoboda B (2002) Matrilin-3 in human articular cartilage: increased expression in osteoarthritis. Osteoarthr Cartil OARS Osteoarthr Res Soc 10:253–263. doi:10.1053/joca.2001.0508

    Article  CAS  Google Scholar 

  • Rafael MS, Cavaco S, Viegas CSB, Santos S, Ramos A, Willems BAG, Herfs M, Theuwissen E, Vermeer C, Simes DC (2014) Insights into the association of Gla-rich protein and osteoarthritis, novel splice variants and γ-carboxylation status. Mol Nutr Food Res 58:1636–1646. doi:10.1002/mnfr.201300941

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg K, Olsson H, Mörgelin M, HeinegÃ¥rd D (1998) Cartilage oligomeric matrix protein shows high affinity zinc-dependent interaction with triple helical collagen. J Biol Chem 273:20397–20403

    Article  CAS  PubMed  Google Scholar 

  • Rucci N, Capulli M, Ventura L, Angelucci A, Peruzzi B, Tillgren V, Muraca M, HeinegÃ¥rd D, Teti A (2013) Proline/arginine-rich end leucine-rich repeat protein N-terminus is a novel osteoclast antagonist that counteracts bone loss. J Bone Miner Res Off J Am Soc Bone Miner Res 28:1912–1924. doi:10.1002/jbmr.1951

    Article  CAS  Google Scholar 

  • Rucci N, Rufo A, Alamanou M, Capulli M, Del Fattore A, Ahrman E, Capece D, Iansante V, Zazzeroni F, Alesse E, HeinegÃ¥rd D, Teti A (2009) The glycosaminoglycan-binding domain of PRELP acts as a cell type-specific NF-kappaB inhibitor that impairs osteoclastogenesis. J Cell Biol 187:669–683. doi:10.1083/jcb.200906014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruthard J, Kamper M, Renno JH, Kühn G, Hillebrand U, Höllriegl S, Johannis W, Zaucke F, Klatt AR (2014) COMP does not directly modify the expression of genes involved in cartilage homeostasis in contrast to several other cartilage matrix proteins. Connect Tissue Res 55:348–356. doi:10.3109/03008207.2014.951440

    Article  CAS  PubMed  Google Scholar 

  • Sage EH, Bornstein P (1991) Extracellular proteins that modulate cell-matrix interactions. SPARC, tenascin, and thrombospondin. J Biol Chem 266:14831–14834

    CAS  PubMed  Google Scholar 

  • Scanzello CR, Markova DZ, Chee A, Xiu Y, Adams SL, Anderson G, Zgonis M, Qin L, An HS, Zhang Y (2015) Fibronectin splice variation in human knee cartilage, meniscus and synovial membrane: observations in osteoarthritic knee. J Orthop Res Off Publ Orthop Res Soc 33:556–562. doi:10.1002/jor.22787

    Article  CAS  Google Scholar 

  • Schmitz M, Niehoff A, Miosge N, Smyth N, Paulsson M and Zaucke F (2008) Transgenic mice expressing D469Δ mutated cartilage oligomeric matrix protein (COMP) show mild skeletal abnormalities, sternal malformations and premature ossification. Matrix Biol 27:67–85

    Google Scholar 

  • Schwarzbauer JE, DeSimone DW (2011) Fibronectins, their fibrillogenesis, and in vivo functions. Cold Spring Harb Perspect Biol 3. doi:10.1101/cshperspect.a005041

    Google Scholar 

  • Seki S, Kawaguchi Y, Chiba K, Mikami Y, Kizawa H, Oya T, Mio F, Mori M, Miyamoto Y, Masuda I, Tsunoda T, Kamata M, Kubo T, Toyama Y, Kimura T, Nakamura Y, Ikegawa S (2005) A functional SNP in CILP, encoding cartilage intermediate layer protein, is associated with susceptibility to lumbar disc disease. Nat Genet 37:607–612. doi:10.1038/ng1557

    Article  CAS  PubMed  Google Scholar 

  • Seki S, Tsumaki N, Motomura H, Nogami M, Kawaguchi Y, Hori T, Suzuki K, Yahara Y, Higashimoto M, Oya T, Ikegawa S, Kimura T (2014) Cartilage intermediate layer protein promotes lumbar disc degeneration. Biochem Biophys Res Commun 446:876–881. doi:10.1016/j.bbrc.2014.03.025

    Article  CAS  PubMed  Google Scholar 

  • Shen Z, Gantcheva S, Sommarin Y, HeinegÃ¥rd D (1999) Tissue distribution of a novel cell binding protein, osteoadherin, in the rat. Matrix Biol J Int Soc Matrix Biol 18:533–542

    Article  CAS  Google Scholar 

  • Singh P, Schwarzbauer JE (2014) Fibronectin matrix assembly is essential for cell condensation during chondrogenesis. J Cell Sci 127:4420–4428. doi:10.1242/jcs.150276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song Y-Q, Cheung KMC, Ho DWH, Poon SCS, Chiba K, Kawaguchi Y, Hirose Y, Alini M, Grad S, Yee AFY, Leong JCY, Luk KDK, Yip S-P, Karppinen J, Cheah KSE, Sham P, Ikegawa S, Chan D (2008) Association of the asporin D14 allele with lumbar-disc degeneration in Asians. Am J Hum Genet 82:744–747. doi:10.1016/j.ajhg.2007.12.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanescu R, Stanescu V, Muriel MP, Maroteaux P (1993) Multiple epiphyseal dysplasia, Fairbank type: morphologic and biochemical study of cartilage. Am J Med Genet 45:501–507. doi:10.1002/ajmg.1320450420

    Article  CAS  PubMed  Google Scholar 

  • Stefánsson SE, Jónsson H, Ingvarsson T, Manolescu I, Jónsson HH, Olafsdóttir G, Pálsdóttir E, Stefánsdóttir G, Sveinbjörnsdóttir G, Frigge ML, Kong A, Gulcher JR, Stefánsson K (2003) Genomewide scan for hand osteoarthritis: a novel mutation in matrilin-3. Am J Hum Genet 72:1448–1459. doi:10.1086/375556

    Article  PubMed  PubMed Central  Google Scholar 

  • Surmann-Schmitt C, Dietz U, Kireva T, Adam N, Park J, Tagariello A, Onnerfjord P, HeinegÃ¥rd D, Schlötzer-Schrehardt U, Deutzmann R, von der Mark K, Stock M (2008) Ucma, a novel secreted cartilage-specific protein with implications in osteogenesis. J Biol Chem 283:7082–7093. doi:10.1074/jbc.M702792200

    Article  CAS  PubMed  Google Scholar 

  • Svensson L, Aszódi A, HeinegÃ¥rd D, Hunziker EB, Reinholt FP, Fässler R, Oldberg A (2002) Cartilage oligomeric matrix protein-deficient mice have normal skeletal development. Mol Cell Biol 22:4366–4371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tagariello A, Luther J, Streiter M, Didt-Koziel L, Wuelling M, Surmann-Schmitt C, Stock M, Adam N, Vortkamp A, Winterpacht A (2008) Ucma – A novel secreted factor represents a highly specific marker for distal chondrocytes. Matrix Biol J Int Soc Matrix Biol 27:3–11. doi:10.1016/j.matbio.2007.07.004

    Article  CAS  Google Scholar 

  • Tan K, Duquette M, Joachimiak A, Lawler J (2009) The crystal structure of the signature domain of cartilage oligomeric matrix protein: implications for collagen, glycosaminoglycan and integrin binding. FASEB J Off Publ Fed Am Soc Exp Biol 23:2490–2501. doi:10.1096/fj.08-128090

    CAS  Google Scholar 

  • Tan K, Lawler J (2009) The interaction of Thrombospondins with extracellular matrix proteins. J Cell Commun Signal 3:177–187. doi:10.1007/s12079-009-0074-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Tesche F, Miosge N (2004) Perlecan in late stages of osteoarthritis of the human knee joint. Osteoarthr Cartil OARS Osteoarthr Res Soc 12:852–862. doi:10.1016/j.joca.2004.07.004

    Article  CAS  Google Scholar 

  • Tillgren V, Ho JCS, Önnerfjord P, Kalamajski S (2015) The novel small leucine-rich protein chondroadherin-like (CHADL) is expressed in cartilage and modulates chondrocyte differentiation. J Biol Chem 290:918–925. doi:10.1074/jbc.M114.593541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuruha J, Masuko-Hongo K, Kato T, Sakata M, Nakamura H, Nishioka K (2001) Implication of cartilage intermediate layer protein in cartilage destruction in subsets of patients with osteoarthritis and rheumatoid arthritis. Arthritis Rheum 44:838–845. doi:10.1002/1529-0131(200104)44:4<838::AID-ANR140>3.0.CO;2-C

    Article  CAS  PubMed  Google Scholar 

  • Tsuru M, Soejima T, Shiba N, Kimura K, Sato K, Toyama Y, Nagata K (2013) Proline/arginine-rich end leucine-rich repeat protein converts stem cells to ligament tissue and Zn(II) influences its nuclear expression. Stem Cells Dev 22:2057–2070. doi:10.1089/scd.2012.0695

    Article  CAS  PubMed  Google Scholar 

  • van der Weyden L, Wei L, Luo J, Yang X, Birk DE, Adams DJ, Bradley A, Chen Q (2006) Functional knockout of the matrilin-3 gene causes premature chondrocyte maturation to hypertrophy and increases bone mineral density and osteoarthritis. Am J Pathol 169:515–527. doi:10.2353/ajpath.2006.050981

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Viegas CSB, Rafael MS, Enriquez JL, Teixeira A, Vitorino R, Luís IM, Costa RM, Santos S, Cavaco S, Neves J, Macedo AL, Willems BAG, Vermeer C, Simes DC (2015) Gla-rich protein acts as a calcification inhibitor in the human cardiovascular system. Arterioscler Thromb Vasc Biol 35:399–408. doi:10.1161/ATVBAHA.114.304823

    Article  CAS  PubMed  Google Scholar 

  • Vincourt J-B, Gillet P, Rat A-C, Guillemin F, Netter P, Mainard D, Magdalou J (2012) Measurement of matrilin-3 levels in human serum and synovial fluid using a competitive enzyme-linked immunosorbent assay. Osteoarthr Cartil OARS Osteoarthr Res Soc 20:783–786. doi:10.1016/j.joca.2012.03.017

    Article  Google Scholar 

  • Vincourt J-B, Vignaud J-M, Lionneton F, Sirveaux F, Kawaki H, Marchal S, Lomazzi S, Plénat F, Guillemin F, Netter P, Takigawa M, Mainard D, Magdalou J (2008) Increased expression of matrilin-3 not only in osteoarthritic articular cartilage but also in cartilage-forming tumors, and down-regulation of SOX9 via epidermal growth factor domain 1-dependent signaling. Arthritis Rheum 58:2798–2808. doi:10.1002/art.23761

    Article  PubMed  Google Scholar 

  • Wagener R, Ehlen HWA, Ko Y-P, Kobbe B, Mann HH, Sengle G, Paulsson M (2005) The matrilins – adaptor proteins in the extracellular matrix. FEBS Lett 579:3323–3329. doi:10.1016/j.febslet.2005.03.018

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Kim JH, Higashino K, Kim SS, Wang S, Seki S, Hutton WC, Yoon ST (2012) Cartilage intermediate layer protein (CILP) regulation in intervertebral discs. The effect of age, degeneration, and bone morphogenetic protein-2. Spine 37:E203–E208. doi:10.1097/BRS.0b013e31822dcf47

    Article  PubMed  Google Scholar 

  • Wiberg C, Klatt AR, Wagener R, Paulsson M, Bateman JF, HeinegÃ¥rd D, Mörgelin M (2003) Complexes of matrilin-1 and biglycan or decorin connect collagen VI microfibrils to both collagen II and aggrecan. J Biol Chem 278:37698–37704. doi:10.1074/jbc.M304638200

    Article  CAS  PubMed  Google Scholar 

  • Wu JJ, Eyre DR (1998) Matrilin-3 forms disulfide-linked oligomers with matrilin-1 in bovine epiphyseal cartilage. J Biol Chem 273:17433–17438

    Article  CAS  PubMed  Google Scholar 

  • Xie D, Homandberg GA (1993) Fibronectin fragments bind to and penetrate cartilage tissue resulting in proteinase expression and cartilage damage. Biochim Biophys Acta 1182:189–196

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Li Z, Liu S-Y, Xu S-Y, Ni G-X (2015) Asporin and osteoarthritis. Osteoarthr Cartil OARS Osteoarthr Res Soc 23:933–939. doi:10.1016/j.joca.2015.02.011

    Article  CAS  Google Scholar 

  • Yang X, Trehan SK, Guan Y, Sun C, Moore DC, Jayasuriya CT, Chen Q (2014) Matrilin-3 inhibits chondrocyte hypertrophy as a bone morphogenetic protein-2 antagonist. J Biol Chem 289:34768–34779. doi:10.1074/jbc.M114.583104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang S, Peng J, Guo Y, Javidiparsijani S, Wang G, Wang Y, Liu H, Liu J, Luo J (2014) Matrilin-2 is a widely distributed extracellular matrix protein and a potential biomarker in the early stage of osteoarthritis in articular cartilage. BioMed Res Int 2014:986127. doi:10.1155/2014/986127

    PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Chen Q (2000) Changes of matrilin forms during endochondral ossification. Molecular basis of oligomeric assembly. J Biol Chem 275:32628–32634. doi:10.1074/jbc.M002594200

    Article  CAS  PubMed  Google Scholar 

  • Zhen EY, Brittain IJ, Laska DA, Mitchell PG, Sumer EU, Karsdal MA, Duffin KL (2008) Characterization of metalloprotease cleavage products of human articular cartilage. Arthritis Rheum 58:2420–2431. doi:10.1002/art.23654

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Zaucke Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zaucke, F. (2016). Cartilage Glycoproteins. In: Grässel, S., Aszódi, A. (eds) Cartilage. Springer, Cham. https://doi.org/10.1007/978-3-319-29568-8_3

Download citation

Publish with us

Policies and ethics