Skip to main content

Nanomaterials-Based Skin-Like Electronics for the Unconscious and Continuous Monitoring of Body Status

  • Chapter
  • First Online:
Stretchable Bioelectronics for Medical Devices and Systems

Part of the book series: Microsystems and Nanosystems ((MICRONANO))

Abstract

Long-term continuous monitoring of body condition from the skin has been one of the critical issues in the ubiquitous healthcare. For this purpose, skin-like stretchable and flexible electrodes have been highly required and diverse electrodes have been developed. However, these electrodes have limits such as lower electrical property, biocompatibility, and discomfort to patients. To address these challenges, nanomaterial-based electronic devices have been developed. In this chapter, current status of nanomaterial-based skin-like electronics with mechanical properties comparable to those of skin is reviewed, and their applications in biomedical fields are described. The types of clinically significant biosignals that can be measured from skin using soft electrodes are briefly summarized. The requirements of electrode for long-term, continuous, and unconscious measurement of these biosignals are also briefly described. Among several nanomaterials for soft electronics, carbon nanotube (CNT), graphene, and metallic nanowire are mainly commented and diverse flexible and stretchable electrodes using nanomaterials and their fabrication methods were described. For the biomedical applications, safety for the human use is a critical requirement, and their biocompatibility, future research directions, and possible additional applications in various fields are assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.W. Jeong, G. Shin, S.I. Park, K.J. Yu, L. Xu, J.A. Rogers, Soft materials in neuroengineering for hard problems in neuroscience. Neuron 86(1), 175–186 (2015)

    Article  Google Scholar 

  2. Y. Lee, W.-H. Yeo, Skin-like electronics for a persistent brain-computer interface. J. Nat. Sci. 1(7), e132 (2015)

    Google Scholar 

  3. D.H. Kim, N. Lu, R. Ma, Y.S. Kim, R.H. Kim, S. Wang et al., Epidermal electronics. Science 333(6044), 838–843 (2011)

    Article  Google Scholar 

  4. M.L. Hammock, A. Chortos, B.C.K. Tee, J.B.H. Tok, Z.A. Bao, 25th anniversary article: the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv. Mater. 25(42), 5997–6037 (2013)

    Article  Google Scholar 

  5. D.H. Kim, R. Ghaffari, N.S. Lu, J.A. Rogers, Flexible and stretchable electronics for biointegrated devices. Annu. Rev. Biomed. Eng. 14, 113–128 (2012)

    Article  Google Scholar 

  6. Y. Liu, O. Sourina, M.K. Nguyen (eds.), Real-time EEG-based human emotion recognition and visualization, in 2010 International Conference on Cyberworlds (CW), IEEE

    Google Scholar 

  7. R. Ohme, D. Reykowska, D. Wiener, A. Choromanska, Application of frontal EEG asymmetry to advertising research. J. Econ. Psychol. 31(5), 785–793 (2010)

    Article  Google Scholar 

  8. P. Shenoy, K.J. Miller, B. Crawford, R.P.N. Rao, Online electromyographic control of a robotic prosthesis. IEEE Trans. Bio-Med. Eng. 55(3), 1128–1135 (2008)

    Article  Google Scholar 

  9. H. Converse, T. Ferraro, D. Jean, L. Jones, V. Mendhiratta, E. Naviasky et al., (eds.), An EMG biofeedback device for video game use in forearm physiotherapy, in SENSORS, 2013 IEEE, 2013

    Google Scholar 

  10. A. Lopez, P. Arevalo, F. Ferrero, M. Valledor, J. Campo (eds.), EOG-based system for mouse control, in SENSORS, 2014 IEEE, 2014

    Google Scholar 

  11. C.S.L. Tsui, P. Jia, J.Q. Gan, H. Hu, K. Yuan (eds.), EMG-based hands-free wheelchair control with EOG attention shift detection, in 2007 ROBIO 2007 IEEE International Conference on Robotics and Biomimetics, 2007, IEEE

    Google Scholar 

  12. D. Chiumello, E. Carlesso, P. Cadringher, P. Caironi, F. Valenza, F. Polli et al., Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 178(4), 346–355 (2008)

    Article  Google Scholar 

  13. T. Yamamoto, Y. Yamamoto, Analysis for the change of skin impedance. Med. Biol. Eng. Compu. 15(3), 219–227 (1977)

    Article  Google Scholar 

  14. X. Huang, H. Cheng, K. Chen, Y. Zhang, Y. Zhang, Y. Liu et al., Epidermal impedance sensing sheets for precision hydration assessment and spatial mapping. IEEE Trans. Bio-Med. Eng. 60(10), 2848–2857 (2013)

    Article  Google Scholar 

  15. X. Huang, W.H. Yeo, Y.H. Liu, J.A. Rogers. epidermal differential impedance sensor for conformal skin hydration monitoring. Biointerphases 7(1–4) (2012)

    Google Scholar 

  16. S. Ramakrishna, J. Mayer, E. Wintermantel, K.W. Leong, Biomedical applications of polymer-composite materials: a review. Compos. Sci. Technol. 61(9), 1189–1224 (2001)

    Article  Google Scholar 

  17. J.Y. Baek, J.H. An, J.M. Choi, K.S. Park, S.H. Lee, Flexible polymeric dry electrodes for the long-term monitoring of ECG. Sensor Actuat. A-Phys. 143(2), 423–429 (2008)

    Article  Google Scholar 

  18. R.J. Zdrahala, I.J. Zdrahala, Biomedical applications of polyurethanes: a review of past promises, present realities, and a vibrant future. J. Biomater. Appl. 14(1), 67–90 (1999)

    Google Scholar 

  19. A. Burke, N. Hasirci, Polyurethanes in biomedical applications. Adv. Exp. Med. Biol. 553, 83–101 (2004)

    Article  Google Scholar 

  20. C. Hassler, T. Boretius, T. Stieglitz, Polymers for Neural Implants. J. Polym. Sci. Polym. Phys. 49(1), 18–33 (2011)

    Article  Google Scholar 

  21. Y. Sun, S.P. Lacour, R.A. Brooks, N. Rushton, J. Fawcett, R.E. Cameron, Assessment of the biocompatibility of photosensitive polyimide for implantable medical device use. J. Biomed. Mater. Res. A 90A(3), 648–655 (2009)

    Article  Google Scholar 

  22. J.-M. Hsu, S. Kammer, E. Jung, L. Rieth, R. Normann, F. Solzbacher (eds.), Characterization of Parylene-C film as an encapsulation material for neural interface devices, in Conference on Multi-Material Micro Manufacture, 2007

    Google Scholar 

  23. M. Amjadi, Y.J. Yoon, I. Park, Ultra-stretchable and skin-mountable strain sensors using carbon nanotubes-Ecoflex nanocomposites. Nanotechnology 26(37) (2015)

    Google Scholar 

  24. T.J. White, D.J. Broer, Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat. Mater. 14(11), 1087–1098 (2015)

    Article  Google Scholar 

  25. S. Wagner, S. Bauer, Materials for stretchable electronics. MRS Bull. 37(3), 207–217 (2012)

    Article  Google Scholar 

  26. H. Tao, D.L. Kaplan, F.G. Omenetto, Silk materials—a road to sustainable high technology. Adv. Mater. 24(21), 2824–2837 (2012)

    Article  Google Scholar 

  27. S.W. Hwang, G. Park, H. Cheng, J.K. Song, S.K. Kang, L. Yin et al., 25th anniversary article: materials for high-performance biodegradable semiconductor devices. Adv. Mater. 26(13), 1992–2000 (2014)

    Article  Google Scholar 

  28. D.H. Kim, J. Viventi, J.J. Amsden, J.L. Xiao, L. Vigeland, Y.S. Kim et al., Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 9(6), 511–517 (2010)

    Article  Google Scholar 

  29. N. Saba, P.M. Tahir, M. Jawaid, A review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polymers-Basel. 6(8), 2247–2273 (2014)

    Article  Google Scholar 

  30. X.M. Liu, Z.D. Huang, S.W. Oh, B. Zhang, P.C. Ma, M.M.F. Yuen et al., Carbon nanotube (CNT)-based composites as electrode material for rechargeable Li-ion batteries: A review. Compos. Sci. Technol. 72(2), 121–144 (2012)

    Article  Google Scholar 

  31. Z.S. Wu, G.M. Zhou, L.C. Yin, W. Ren, F. Li, H.M. Cheng, Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1(1), 107–131 (2012)

    Article  Google Scholar 

  32. F. Xu, Y. Zhu, Highly conductive and stretchable silver nanowire conductors. Adv. Mater. 24(37), 5117–5122 (2012)

    Article  MathSciNet  Google Scholar 

  33. C. Farcau, N.M. Sangeetha, H. Moreira, B. Viallet, J. Grisolia, D. Ciuculescu-Pradines et al., High-sensitivity strain gauge based on a single wire of gold nanoparticles fabricated by stop-and-go convective self-assembly. ACS Nano 5(9), 7137–7143 (2011)

    Article  Google Scholar 

  34. R.J. Chen, S. Bangsaruntip, K.A. Drouvalakis, N.W.S. Kam, M. Shim, Y.M. Li et al., Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl. Acad. Sci. USA 100(9), 4984–4989 (2003)

    Article  Google Scholar 

  35. K. Balani, R. Anderson, T. Laha, M. Andara, J. Tercero, E. Crumpler et al., Plasma-sprayed carbon nanotube reinforced hydroxyapatite coatings and their interaction with human osteoblasts in vitro. Biomaterials 28(4), 618–624 (2007)

    Article  Google Scholar 

  36. X.F. Shi, J.L. Hudson, P.P. Spicer, J.M. Tour, R. Krishnamoorti, A.G. Mikos, Injectable nanocomposites of single-walled carbon nanotubes and biodegradable polymers for bone tissue engineering. Biomacromolecules 7(7), 2237–2242 (2006)

    Article  Google Scholar 

  37. P.M. Ajayan, O. Stephan, C. Colliex, D. Trauth, Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science 265(5176), 1212–1214 (1994)

    Article  Google Scholar 

  38. H.C. Jung, J.H. Moon, D.H. Baek, J.H. Lee, Y.Y. Choi, J.S. Hong et al., CNT/PDMS composite flexible dry electrodes for long-term ECG monitoring. IEEE Trans. Bio-Med. Eng. 59(5), 1472–1479 (2012)

    Article  Google Scholar 

  39. J.H. Lee, S.M. Lee, H.J. Byeon, J.S. Hong, K.S. Park, S.H. Lee, CNT/PDMS-based canal-typed ear electrodes for inconspicuous EEG recording. J. Neural Eng. 11(4) (2014)

    Google Scholar 

  40. S.M. Lee, H.J. Byeon, J.H. Lee, D.H. Baek, K.H. Lee, J.S. Hong et al., Self-adhesive epidermal carbon nanotube electronics for tether-free long-term continuous recording of biosignals. Sci. Rep.-UK 4 (2014)

    Google Scholar 

  41. D. Ryu, K.J. Loh, R. Ireland, M. Karimzada, F. Yaghmaie, A.M. Gusman, In situ reduction of gold nanoparticles in PDMS matrices and applications for large strain sensing. Smart Struct. Syst. 8(5), 471–486 (2011)

    Article  Google Scholar 

  42. J.Y. Hwang, H.S. Kim, J.H. Kim, U.S. Shin, S.H. Lee, Carbon nanotube nanocomposites with highly enhanced strength and conductivity for flexible electric circuits. Langmuir 31(28), 7844–7851 (2015)

    Article  Google Scholar 

  43. V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, S. Seal, Graphene based materials: past, present and future. Prog. Mater. Sci. 56(8), 1178–1271 (2011)

    Article  Google Scholar 

  44. K. Hu, D.D. Kulkarni, I. Choi, V.V. Tsukruk, Graphene-polymer nanocomposites for structural and functional applications. Prog. Polym. Sci. 39(11), 1934–1972 (2014)

    Article  Google Scholar 

  45. D.S. Hecht, L.B. Hu, G. Irvin, Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 23(13), 1482–1513 (2011)

    Article  Google Scholar 

  46. M. Segev-Bar, H. Haick, Flexible sensors based on nanoparticles. ACS Nano 7(10), 8366–8378 (2013)

    Article  Google Scholar 

  47. N. Matsuhisa, M. Kaltenbrunner, T. Yokota, H. Jinno, K. Kuribara, T. Sekitani et al., Printable elastic conductors with a high conductivity for electronic textile applications. Nat. Commun. 6 (2015)

    Google Scholar 

  48. T.A. Kim, H.S. Kim, S.S. Lee, M. Park, Single-walled carbon nanotube/silicone rubber composites for compliant electrodes. Carbon 50(2), 444–449 (2012)

    Article  Google Scholar 

  49. Y.Y. Huang, E.M. Terentjev, Tailoring the electrical properties of carbon nanotube-polymer composites. Adv. Funct. Mater. 20(23), 4062–4068 (2010)

    Article  Google Scholar 

  50. K.Y. Chun, Y. Oh, J. Rho, J.H. Ahn, Y.J. Kim, H.R. Choi et al., Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. Nat. Nanotechnol. 5(12), 853–857 (2010)

    Article  Google Scholar 

  51. T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata et al., Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat. Mater. 8(6), 494–499 (2009)

    Article  Google Scholar 

  52. G.X. Chen, Y.J. Li, H. Shimizu, Ultrahigh-shear processing for the preparation of polymer/carbon nanotube composites. Carbon 45(12), 2334–2340 (2007)

    Article  Google Scholar 

  53. Y.Y. Huang, S.V. Ahir, E.M. Terentjev, Dispersion rheology of carbon nanotubes in a polymer matrix. Phys. Rev. B 73(12) (2006)

    Google Scholar 

  54. T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida, T. Someya, A rubberlike stretchable active matrix using elastic conductors. Science 321(5895), 1468–1472 (2008)

    Article  Google Scholar 

  55. B.K. Price, J.L. Hudson, J.M. Tour, Green chemical functionalization of single-walled carbon nanotubes in ionic liquids. J. Am. Chem. Soc. 127(42), 14867–14870 (2005)

    Article  Google Scholar 

  56. W.H. Yeo, Y.S. Kim, J. Lee, A. Ameen, L.K. Shi, M. Li et al., Multifunctional epidermal electronics printed directly onto the skin. Adv. Mater. 25(20), 2773–2778 (2013)

    Article  Google Scholar 

  57. J.A. Fan, W.H. Yeo, Y.W. Su, Y. Hattori, W. Lee, S.Y. Jung et al., Fractal design concepts for stretchable electronics. Nat. Commun. 5 (2014)

    Google Scholar 

  58. S. Xu, Y.H. Zhang, J. Cho, J. Lee, X. Huang, L. Jia et al., Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun. 4 (2013)

    Google Scholar 

  59. P. Lee, J. Lee, H. Lee, J. Yeo, S. Hong, K.H. Nam et al., Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv. Mater. 24(25), 3326–3332 (2012)

    Article  Google Scholar 

  60. S. Han, S. Hong, J. Ham, J. Yeo, J. Lee, B. Kang et al., Fast plasmonic laser nanowelding for a Cu-nanowire percolation network for flexible transparent conductors and stretchable electronics. Adv. Mater. 26(33), 5808–5814 (2014)

    Article  Google Scholar 

  61. Z.P. Chen, W.C. Ren, L.B. Gao, B.L. Liu, S.F. Pei, H.M. Cheng, Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 10(6), 424–428 (2011)

    Article  Google Scholar 

  62. Y. Shang, X. He, Y. Li, L. Zhang, Z. Li, C. Ji et al., Super-stretchable spring-like carbon nanotube ropes. Adv. Mater. 24(21), 2896–2900 (2012)

    Article  Google Scholar 

  63. K. Liu, Y.H. Sun, P. Liu, X.Y. Lin, S.S. Fan, K.L. Jiang, Cross-stacked superaligned carbon nanotube films for transparent and stretchable conductors. Adv. Funct. Mater. 21(14), 2721–2728 (2011)

    Article  Google Scholar 

  64. D.H. Kim, J.L. Xiao, J.Z. Song, Y.G. Huang, J.A. Rogers, Stretchable, curvilinear electronics based on inorganic materials. Adv. Mater. 22(19), 2108–2124 (2010)

    Article  Google Scholar 

  65. A.R. Madaria, A. Kumar, C.W. Zhou, Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens. Nanotechnology 22(24) (2011)

    Google Scholar 

  66. V. Scardaci, R. Coull, P.E. Lyons, D. Rickard, J.N. Coleman, Spray deposition of highly transparent, low-resistance networks of silver nanowires over large areas. Small 7(18), 2621–2628 (2011)

    Article  Google Scholar 

  67. J.Y. Lee, S.T. Connor, Y. Cui, P. Peumans, Solution-processed metal nanowire mesh transparent electrodes. Nano Lett. 8(2), 689–692 (2008)

    Article  Google Scholar 

  68. S.H. Jeong, K. Hjort, Z.G. Wu, Tape transfer atomization patterning of liquid alloys for microfluidic stretchable wireless power transfer. Sci. Rep. UK 5 (2015)

    Google Scholar 

  69. S. De, T.M. Higgins, P.E. Lyons, E.M. Doherty, P.N. Nirmalraj, W.J. Blau et al., Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios. ACS Nano 3(7), 1767–1774 (2009)

    Article  Google Scholar 

  70. J. Lee, P. Lee, H.B. Lee, S. Hong, I. Lee, J. Yeo et al., Room-temperature nanosoldering of a very long metal nanowire network by conducting-polymer-assisted joining for a flexible touch-panel application. Adv. Funct. Mater. 23(34), 4171–4176 (2013)

    Article  Google Scholar 

  71. C. Yang, H.W. Gu, W. Lin, M.M. Yuen, C.P. Wong, M.Y. Xiong et al., Silver nanowires: from scalable synthesis to recyclable foldable electronics. Adv. Mater. 23(27), 3052–3056 (2011)

    Google Scholar 

  72. J. Lee, P. Lee, H. Lee, D. Lee, S.S. Lee, S.H. Ko, Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel. Nanoscale 4(20), 6408–6414 (2012)

    Article  Google Scholar 

  73. Y.J. Jung, S. Kar, S. Talapatra, C. Soldano, G. Viswanathan, X.S. Li et al., Aligned carbon nanotube-polymer hybrid architectures for diverse flexible electronic applications. Nano Lett. 6(3), 413–418 (2006)

    Article  Google Scholar 

  74. M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, I. Park, Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano 8(5), 5154–5163 (2014)

    Article  Google Scholar 

  75. J. Yoon, S.Y. Hong, Y. Lim, S.J. Lee, G. Zi, J.S. Ha, Design and fabrication of novel stretchable device arrays on a deformable polymer substrate with embedded liquid-metal interconnections. Adv. Mater. 26(38), 6580–6586 (2014)

    Article  Google Scholar 

  76. W.J. Ma, L. Song, R. Yang, T.H. Zhang, Y.C. Zhao, L.F. Sun et al., Directly synthesized strong, highly conducting, transparent single-walled carbon nanotube films. Nano Lett. 7(8), 2307–2311 (2007)

    Article  Google Scholar 

  77. L. Wang, J. Liu, Printing low-melting-point alloy ink to directly make a solidified circuit or functional device with a heating pen. Proc. Roy. Soc A-Math. Phys. Eng. Sci. 470(2172) (2014)

    Google Scholar 

  78. S.Z. Guo, X.L. Yang, M.C. Heuzey, D. Therriault, 3D printing of a multifunctional nanocomposite helical liquid sensor. Nanoscale 7(15), 6451–6456 (2015)

    Article  Google Scholar 

  79. D.H. Kim, Y.S. Kim, J. Amsden, B. Panilaitis, D.L. Kaplan, F.G. Omenetto et al., Silicon electronics on silk as a path to bioresorbable, implantable devices. Appl. Phys. Lett. 95(13) (2009)

    Google Scholar 

  80. R. Luginbuehl, U. Rosler, M. Wipf, Biological evaluation according to ISO 10993-1: methods and pitfalls. Eur. Cells Mater. 27 (2014)

    Google Scholar 

  81. U. Roesler, R. Luginbuehl, M. Wipf, Biological evaluation according to ISO 10993-1: approach and structure. Eur. Cells Mater. 27 (2014)

    Google Scholar 

  82. G.H. Altman, F. Diaz, C. Jakuba, T. Calabro, R.L. Horan, J.S. Chen et al., Silk-based biomaterials. Biomaterials 24(3), 401–416 (2003)

    Article  Google Scholar 

  83. R.L. Horan, K. Antle, A.L. Collette, Y.Z. Huang, J. Huang, J.E. Moreau et al., In vitro degradation of silk fibroin. Biomaterials 26(17), 3385–3393 (2005)

    Article  Google Scholar 

  84. B. Joseph, S.J. Raj, Therapeutic applications and properties of silk proteins from Bombyx mori. Front Life Sci. 6(3–4), 55–60 (2012)

    Article  Google Scholar 

  85. S. Lee, J. Kim, C. Park, J.Y. Hwang, J.S. Hong, K. Lee et al., Self-adhesive and capacitive carbon nanotube-based electrode to record electroencephalograph signals from the hairy scalp. IEEE Trans. Bio-Med. Eng. (2015)

    Google Scholar 

  86. C. Pang, G.Y. Lee, T.I. Kim, S.M. Kim, H.N. Kim, S.H. Ahn et al., A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat. Mater. 11(9), 795–801 (2012)

    Article  Google Scholar 

  87. K.I. Jang, S.Y. Han, S. Xu, K.E. Mathewson, Y.H. Zhang, J.W. Jeong et al., Rugged and breathable forms of stretchable electronics with adherent composite substrates for transcutaneous monitoring. Nat. Commun. 5 (2014)

    Google Scholar 

  88. T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D.N. Futaba et al., A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 6(5), 296–301 (2011)

    Article  Google Scholar 

  89. D.J. Lipomi, M. Vosgueritchian, B.C.K. Tee, S.L. Hellstrom, J.A. Lee, C.H. Fox et al., Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 6(12), 788–792 (2011)

    Article  Google Scholar 

  90. S. Gong, W. Schwalb, Y.W. Wang, Y. Chen, Y. Tang, J. Si et al., A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun. 5 (2014)

    Google Scholar 

  91. G.-W. Hong, S.-H. Kim, J.-H. Kim (eds.), Flexible pressure sensors for burnt skin patient monitoring. SPIE Smart Structures and Materials+Nondestructive Evaluation and Health Monitoring, in International Society for Optics and Photonics, 2015

    Google Scholar 

  92. X.L. Zhao, Q.L. Hua, R.M. Yu, Y. Zhang, C.F. Pan, Flexible, stretchable and wearable multifunctional sensor array as artificial electronic skin for static and dynamic strain mapping. Adv. Electron. Mater. 1(7) (2015)

    Google Scholar 

  93. Y.P. Zang, F.J. Zhang, C.A. Di, D.B. Zhu, Advances of flexible pressure sensors toward artificial intelligence and health care applications. Mater. Horiz. 2(2), 140–156 (2015)

    Article  Google Scholar 

  94. K. Chu, D. Kim, Y. Sohn, S. Lee, C. Moon, S. Park, Electrical and thermal properties of carbon-nanotube composite for flexible electric heating-unit applications. IEEE Electr. Device Lett. 34(5), 668–670 (2013)

    Article  Google Scholar 

  95. S. Choi, J. Park, W. Hyun, J. Kim, J. Kim, Y.B. Lee et al., Stretchable heater using ligand-exchanged silver nanowire nanocomposite for wearable articular thermotherapy. ACS Nano 9(6), 6626–6633 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.-H. Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lee, J.H., Kim, H.S., Kim, J.H., Kim, I.Y., Lee, SH. (2016). Nanomaterials-Based Skin-Like Electronics for the Unconscious and Continuous Monitoring of Body Status. In: Rogers, J., Ghaffari, R., Kim, DH. (eds) Stretchable Bioelectronics for Medical Devices and Systems. Microsystems and Nanosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-28694-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28694-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28692-1

  • Online ISBN: 978-3-319-28694-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics