Skip to main content

Mitochondrial Dynamics and Neurodegeneration

  • Chapter
  • First Online:
Mitochondrial Dysfunction in Neurodegenerative Disorders

Abstract

In vivo, mitochondria display a high degree of connectivity and mobility. Within the cell, mitochondrial fusion and fission machineries tightly control the dynamics and distribution of the mitochondrial network. Due to their key energetic role, the localization of mitochondria at intracellular sites of high-energy demand is crucial to maintain cell energy metabolism. Neurons are metabolically active cells with high-energy demands at locations distant from the cell body (see Chaps. 8 and 9). Consequently, they are particularly dependent on mitochondrial distribution and function. Accordingly, new evidence identifies defective mitochondrial dynamics as a central pathological event underpinning a number of early and late-onset neurodegenerative disorders. Mutations in genes encoding proteins playing central roles in mitochondrial dynamics and functions have been identified in patients with peripheral neuropathies such as Charcot-Marie-Tooth (CMT) and dominant inherited optic atrophy. Moreover, defects of mitochondrial dynamics have recently been associated with common neurodegenerative diseases such as Parkinson’s, Alzheimer’s, and Huntington’s diseases. Understanding the regulation of mitochondrial dynamics in neurons may open new avenues for the development of therapies in neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benda C. Ueber die Spermatogenese der Vertebraten und höherer Evertebraten, II. Theil: Die Histiogenese der Spermien. Arch Anat Physiol. 1989;73:393–8.

    Google Scholar 

  2. Gilkerson RW, Selker JML, Capaldi RA. The cristae membrane of mitochondria is the principal site of oxidative phosphorylation. FEBS Lett. 2003;546(2–3):355–8.

    Article  CAS  PubMed  Google Scholar 

  3. Appelhans T, Richter CP, Wilkens V, Hess ST, Piehler J, Busch KB. Nanoscale organization of mitochondrial microcompartments revealed by combining tracking and localization microscopy. Nano Lett. 2012;12(2):610–6.

    Article  CAS  PubMed  Google Scholar 

  4. Busch KB, Deckers-Hebestreit G, Hanke GT, Mulkidjanian AY. Dynamics of bioenergetic microcompartments. Biol Chem. 2013;394(2):163–88.

    Article  CAS  PubMed  Google Scholar 

  5. Mitchell P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature. 1961;191:144–8.

    Article  CAS  PubMed  Google Scholar 

  6. Falkenberg M, Larsson N-G, Gustafsson CM. DNA replication and transcription in mammalian mitochondria. Annu Rev Biochem. 2007;76:679–99.

    Article  CAS  PubMed  Google Scholar 

  7. Rorbach J, Soleimanpour-Lichaei R, Lightowlers RN, Chrzanowska-Lightowlers ZMA. How do mammalian mitochondria synthesize proteins? Biochem Soc Trans. 2007;35(Pt 5):1290–1.

    Article  CAS  PubMed  Google Scholar 

  8. Bolender N, Sickmann A, Wagner R, Meisinger C, Pfanner N. Multiple pathways for sorting mitochondrial precursor proteins. EMBO Rep. 2008;9(1):42–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tatsuta T, Langer T. Quality control of mitochondria: protection against neurodegeneration and ageing. EMBO J. 2008;27(2):306–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lill R, Mühlenhoff U. Maturation of iron-sulfur proteins in eukaryotes: mechanisms, connected processes, and diseases. Annu Rev Biochem. 2008;77:669–700.

    Article  CAS  PubMed  Google Scholar 

  11. Koning AJ, Lum PY, Williams JM, Wright R. DiOC6 staining reveals organelle structure and dynamics in living yeast cells. Cell Motil Cytoskeleton. 1993;25(2):111–28.

    Article  CAS  PubMed  Google Scholar 

  12. Bereiter-Hahn J, Vöth M. Dynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria. Microsc Res Tech. 1994;27(3):198–219.

    Article  CAS  PubMed  Google Scholar 

  13. Chen H, Chan DC. Mitochondrial dynamics in mammals. Curr Top Dev Biol. 2004;59:119–44.

    Article  CAS  PubMed  Google Scholar 

  14. Morris RL, Hollenbeck PJ. Axonal transport of mitochondria along microtubules and F-actin in living vertebrate neurons. J Cell Biol. 1995;131(5):1315–26.

    Article  CAS  PubMed  Google Scholar 

  15. Grafstein B, Forman DS. Intracellular transport in neurons. Physiol Rev. 1980;60(4):1167–283.

    CAS  PubMed  Google Scholar 

  16. Hollenbeck PJ, Saxton WM. The axonal transport of mitochondria. J Cell Sci. 2005;118(Pt 23):5411–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rojo M, Legros F, Chateau D, Lombès A. Membrane topology and mitochondrial targeting of mitofusins, ubiquitous mammalian homologs of the transmembrane GTPase Fzo. J Cell Sci. 2002;115(Pt 8):1663–74.

    CAS  PubMed  Google Scholar 

  18. Legros F, Lombès A, Frachon P, Rojo M. Mitochondrial fusion in human cells is efficient, requires the inner membrane potential, and is mediated by mitofusins. Mol Biol Cell. 2002;13(12):4343–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol. 2003;160(2):189–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mattenberger Y, James DI, Martinou JC. Fusion of mitochondria in mammalian cells is dependent on the mitochondrial inner membrane potential and independent of microtubules or actin. FEBS Lett. 2003;538(1–3):53–9.

    Article  CAS  PubMed  Google Scholar 

  21. Hales KG, Fuller MT. Developmentally regulated mitochondrial fusion mediated by a conserved, novel, predicted GTPase. Cell. 1997;90(1):121–9.

    Article  CAS  PubMed  Google Scholar 

  22. Hermann GJ, Thatcher JW, Mills JP, Hales KG, Fuller MT, Nunnari J, et al. Mitochondrial fusion in yeast requires the transmembrane GTPase Fzo1p. J Cell Biol. 1998;143(2):359–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rapaport D, Brunner M, Neupert W, Westermann B. Fzo1p is a mitochondrial outer membrane protein essential for the biogenesis of functional mitochondria in Saccharomyces cerevisiae. J Biol Chem. 1998;273(32):20150–5.

    Article  CAS  PubMed  Google Scholar 

  24. Okamoto K, Shaw JM. Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annu Rev Genet. 2005;39:503–36.

    Article  CAS  PubMed  Google Scholar 

  25. Wong ED, Wagner JA, Gorsich SW, McCaffery JM, Shaw JM, Nunnari J. The dynamin-related GTPase, Mgm1p, is an intermembrane space protein required for maintenance of fusion competent mitochondria. J Cell Biol. 2000;151(2):341–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Herlan M, Vogel F, Bornhövd C, Neupert W, Reichert AS. Processing of Mgm1 by the rhomboid-type protease Pcp1 is required for maintenance of mitochondrial morphology and of mitochondrial DNA. J Biol Chem. 2003;278(30):27781–8.

    Article  CAS  PubMed  Google Scholar 

  27. Griparic L, van der Wel NN, Orozco IJ, Peters PJ, van der Bliek AM. Loss of the intermembrane space protein Mgm1/OPA1 induces swelling and localized constrictions along the lengths of mitochondria. J Biol Chem. 2004;279(18):18792–8.

    Article  CAS  PubMed  Google Scholar 

  28. Sesaki H, Jensen RE. UGO1 encodes an outer membrane protein required for mitochondrial fusion. J Cell Biol. 2001;152(6):1123–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sesaki H, Jensen RE. Ugo1p links the Fzo1p and Mgm1p GTPases for mitochondrial fusion. J Biol Chem. 2004;279(27):28298–303.

    Article  CAS  PubMed  Google Scholar 

  30. Coonrod EM, Karren MA, Shaw JM. Ugo1p is a multipass transmembrane protein with a single carrier domain required for mitochondrial fusion. Traffic. 2007;8(5):500–11.

    Article  CAS  PubMed  Google Scholar 

  31. Eura Y, Ishihara N, Yokota S, Mihara K. Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion. J Biochem. 2003;134(3):333–44.

    Article  CAS  PubMed  Google Scholar 

  32. Delettre C, Lenaers G, Griffoin JM, Gigarel N, Lorenzo C, Belenguer P, et al. Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat Genet. 2000;26(2):207–10.

    Article  CAS  PubMed  Google Scholar 

  33. Alexander C, Votruba M, Pesch UE, Thiselton DL, Mayer S, Moore A, et al. OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat Genet. 2000;26(2):211–5.

    Article  CAS  PubMed  Google Scholar 

  34. Santel A, Frank S, Gaume B, Herrler M, Youle RJ, Fuller MT. Mitofusin-1 protein is a generally expressed mediator of mitochondrial fusion in mammalian cells. J Cell Sci. 2003;116(Pt 13):2763–74.

    Article  CAS  PubMed  Google Scholar 

  35. Kawalec M, Zabłocka B, Kabzińska D, Neska J, Beręsewicz M. Mitofusin 2 expression dominates over mitofusin 1 exclusively in mouse dorsal root ganglia – a possible explanation for peripheral nervous system involvement in Charcot-Marie-Tooth 2A. Folia Neuropathol. 2014;52(4):436–42.

    Article  PubMed  Google Scholar 

  36. Fritz S, Rapaport D, Klanner E, Neupert W, Westermann B. Connection of the mitochondrial outer and inner membranes by Fzo1 is critical for organellar fusion. J Cell Biol. 2001;152(4):683–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Koshiba T, Detmer SA, Kaiser JT, Chen H, McCaffery JM, Chan DC. Structural basis of mitochondrial tethering by mitofusin complexes. Science. 2004;305(5685):858–62.

    Article  CAS  PubMed  Google Scholar 

  38. Ishihara N, Eura Y, Mihara K. Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity. J Cell Sci. 2004;117(Pt 26):6535–46.

    Article  CAS  PubMed  Google Scholar 

  39. Leboucher GP, Tsai YC, Yang M, Shaw KC, Zhou M, Veenstra TD, et al. Stress-induced phosphorylation and proteasomal degradation of mitofusin 2 facilitates mitochondrial fragmentation and apoptosis. Mol Cell. 2012;47(4):547–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Anton F, Dittmar G, Langer T, Escobar-Henriques M. Two deubiquitylases Act on mitofusin and regulate mitochondrial fusion along independent pathways. Mol Cell. 2013;49(3):487–98.

    Article  CAS  PubMed  Google Scholar 

  41. Cohen MMJ, Leboucher GP, Livnat-Levanon N, Glickman MH, Weissman AM. Ubiquitin-proteasome-dependent degradation of a mitofusin, a critical regulator of mitochondrial fusion. Mol Biol Cell. 2008;19(6):2457–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Park Y-Y, Cho H. Mitofusin 1 is degraded at G(2)/M phase through ubiquitylation by MARCH5. Cell Div. 2012;7(7:25):1–6.

    Google Scholar 

  43. Olichon A, Emorine LJ, Descoins E, Pelloquin L, Brichese L, Gas N, et al. The human dynamin-related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter-membrane space. FEBS Lett. 2002;523(1–3):171–6.

    Article  CAS  PubMed  Google Scholar 

  44. Ehses S, Raschke I, Mancuso G, Bernacchia A, Geimer S, Tondera D, et al. Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1. J Cell Biol. 2009;187(7):1023–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Head B, Griparic L, Amiri M, Gandre-Babbe S, van der Bliek AM. Inducible proteolytic inactivation of OPA1 mediated by the OMA1 protease in mammalian cells. J Cell Biol. 2009;187(7):959–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Griparic L, Kanazawa T, van der Bliek AM. Regulation of the mitochondrial dynamin-like protein Opa1 by proteolytic cleavage. J Cell Biol. 2007;178(5):757–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Song Z, Chen H, Fiket M, Alexander C, Chan DC. OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L. J Cell Biol. 2007;178(5):749–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Anand R, Wai T, Baker MJ, Kladt N, Schauss AC, Rugarli E, et al. The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J Cell Biol. 2014;204(6):919–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Delettre C, Griffoin JM, Kaplan J, Dollfus H, Lorenz B, Faivre L, et al. Mutation spectrum and splicing variants in the OPA1 gene. Hum Genet. 2001;109(6):584–91.

    Article  CAS  PubMed  Google Scholar 

  50. Otsuga D, Keegan BR, Brisch E, Thatcher JW, Hermann GJ, Bleazard W, et al. The dynamin-related GTPase, Dnm1p, controls mitochondrial morphology in yeast. J Cell Biol. 1998;143(2):333–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bleazard W, McCaffery JM, King EJ, Bale S, Mozdy A, Tieu Q, et al. The dynamin-related GTPase Dnm1 regulates mitochondrial fission in yeast. Nat Cell Biol. 1999;1(5):298–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mozdy AD, McCaffery JM, Shaw JM. Dnm1p GTPase-mediated mitochondrial fission is a multi-step process requiring the novel integral membrane component Fis1p. J Cell Biol. 2000;151(2):367–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tieu Q, Nunnari J. Mdv1p is a WD repeat protein that interacts with the dynamin-related GTPase, Dnm1p, to trigger mitochondrial division. J Cell Biol. 2000;151(2):353–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cerveny KL, McCaffery JM, Jensen RE. Division of mitochondria requires a novel DMN1-interacting protein, Net2p. Mol Biol Cell. 2001;12(2):309–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tieu Q, Okreglak V, Naylor K, Nunnari J. The WD repeat protein, Mdv1p, functions as a molecular adaptor by interacting with Dnm1p and Fis1p during mitochondrial fission. J Cell Biol. 2002;158(3):445–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cerveny KL, Jensen RE. The WD-repeats of Net2p interact with Dnm1p and Fis1p to regulate division of mitochondria. Mol Biol Cell. 2003;14(10):4126–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Karren MA, Coonrod EM, Anderson TK, Shaw JM. The role of Fis1p-Mdv1p interactions in mitochondrial fission complex assembly. J Cell Biol. 2005;171(2):291–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Naylor K, Ingerman E, Okreglak V, Marino M, Hinshaw JE, Nunnari J. Mdv1 interacts with assembled dnm1 to promote mitochondrial division. J Biol Chem. 2006;281(4):2177–83.

    Article  CAS  PubMed  Google Scholar 

  59. Schauss AC, Bewersdorf J, Jakobs S. Fis1p and Caf4p, but not Mdv1p, determine the polar localization of Dnm1p clusters on the mitochondrial surface. J Cell Sci. 2006;119(Pt 15):3098–106.

    Article  CAS  PubMed  Google Scholar 

  60. Guo Q, Koirala S, Perkins EM, McCaffery JM, Shaw JM. The mitochondrial fission adaptors Caf4 and Mdv1 are not functionally equivalent. PLoS One. 2012;7(12):e53523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ingerman E, Perkins EM, Marino M, Mears JA, McCaffery JM, Hinshaw JE, et al. Dnm1 forms spirals that are structurally tailored to fit mitochondria. J Cell Biol. 2005;170(7):1021–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mears JA, Lackner LL, Fang S, Ingerman E, Nunnari J, Hinshaw JE. Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission. Nat Struct Mol Biol. 2011;18(1):20–6.

    Article  CAS  PubMed  Google Scholar 

  63. James DI, Parone PA, Mattenberger Y, Martinou JC. hFis1, a novel component of the mammalian mitochondrial fission machinery. J Biol Chem. 2003;278(38):36373–9.

    Article  CAS  PubMed  Google Scholar 

  64. Smirnova E, Griparic L, Shurland DL, van der Bliek AM. Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell. 2001;12(8):2245–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yoon Y, Krueger EW, Oswald BJ, McNiven MA. The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1. Mol Cell Biol. 2003;23(15):5409–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gandre-Babbe S, van der Bliek AM. The novel tail-anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells. Mol Biol Cell. 2008;19(6):2402–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Palmer CS, Osellame LD, Laine D, Koutsopoulos OS, Frazier AE, Ryan MT. MiD49 and MiD51, new components of the mitochondrial fission machinery. EMBO Rep. 2011;12(6):565–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhao J, Liu T, Jin S, Wang X, Qu M, Uhlén P, et al. Human MIEF1 recruits Drp1 to mitochondrial outer membranes and promotes mitochondrial fusion rather than fission. EMBO J. 2011;30(14):2762–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Losón OC, Song Z, Chen H, Chan DC. Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol Biol Cell. 2013;24(5):659–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Losón OC, Liu R, Rome ME, Meng S, Kaiser JT, Shan S-O, et al. The mitochondrial fission receptor MiD51 requires ADP as a cofactor. Structure. 2014;22(3):367–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Losón OC, Meng S, Ngo H, Liu R, Kaiser JT, Chan DC. Crystal structure and functional analysis of MiD49, a receptor for the mitochondrial fission protein Drp1. Protein Sci. 2015;24(3):386–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Niemann A, Ruegg M, La Padula V, Schenone A, Suter U. Ganglioside-induced differentiation associated protein 1 is a regulator of the mitochondrial network: new implications for Charcot-Marie-Tooth disease. J Cell Biol. 2005;170(7):1067–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pedrola L, Espert A, Wu X, Claramunt R, Shy ME, Palau F. GDAP1, the protein causing Charcot-Marie-Tooth disease type 4A, is expressed in neurons and is associated with mitochondria. Hum Mol Genet. 2005;14(8):1087–94.

    Article  CAS  PubMed  Google Scholar 

  74. Niemann A, Wagner KM, Ruegg M, Suter U. GDAP1 mutations differ in their effects on mitochondrial dynamics and apoptosis depending on the mode of inheritance. Neurobiol Dis. 2009;36(3):509–20.

    Article  CAS  PubMed  Google Scholar 

  75. Shield AJ, Murray TP, Board PG. Functional characterisation of ganglioside-induced differentiation-associated protein 1 as a glutathione transferase. Biochem Biophys Res Commun. 2006;347(4):859–66.

    Article  CAS  PubMed  Google Scholar 

  76. Taguchi N, Ishihara N, Jofuku A, Oka T, Mihara K. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J Biol Chem. 2007;282(15):11521–9.

    Article  CAS  PubMed  Google Scholar 

  77. Cribbs JT, Strack S. Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep. 2007;8(10):939–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chang C-R, Blackstone C. Drp1 phosphorylation and mitochondrial regulation. EMBO Rep. 2007;8(12):1088–9, author reply 1089–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Cereghetti GM, Stangherlin A, Martins de Brito O, Chang CR, Blackstone C, Bernardi P, et al. Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. Proc Natl Acad Sci U S A. 2008;105(41):15803–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cho D-H, Nakamura T, Fang J, Cieplak P, Godzik A, Gu Z, et al. S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. Science. 2009;324(5923):102–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nakamura T, Cieplak P, Cho D-H, Godzik A, Lipton SA. S-nitrosylation of Drp1 links excessive mitochondrial fission to neuronal injury in neurodegeneration. Mitochondrion. 2010;10(5):573–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nakamura N, Kimura Y, Tokuda M, Honda S, Hirose S. MARCH-V is a novel mitofusin 2- and Drp1-binding protein able to change mitochondrial morphology. EMBO Rep. 2006;7(10):1019–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Karbowski M, Neutzner A, Youle RJ. The mitochondrial E3 ubiquitin ligase MARCH5 is required for Drp1 dependent mitochondrial division. J Cell Biol. 2007;178(1):71–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Horn SR, Thomenius MJ, Johnson ES, Freel CD, Wu JQ, Coloff JL, et al. Regulation of mitochondrial morphology by APC/CCdh1-mediated control of Drp1 stability. Mol Biol Cell. 2011;22(8):1207–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wasiak S, Zunino R, McBride HM. Bax/Bak promote sumoylation of DRP1 and its stable association with mitochondria during apoptotic cell death. J Cell Biol. 2007;177(3):439–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Braschi E, Zunino R, McBride HM. MAPL is a new mitochondrial SUMO E3 ligase that regulates mitochondrial fission. EMBO Rep. 2009;10(7):748–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Figueroa-Romero C, Iñiguez-Lluhí JA, Stadler J, Chang C-R, Arnoult D, Keller PJ, et al. SUMOylation of the mitochondrial fission protein Drp1 occurs at multiple nonconsensus sites within the B domain and is linked to its activity cycle. FASEB J. 2009;23(11):3917–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Koch A, Thiemann M, Grabenbauer M, Yoon Y, McNiven MA, Schrader M. Dynamin-like protein 1 is involved in peroxisomal fission. J Biol Chem. 2003;278(10):8597–605.

    Article  CAS  PubMed  Google Scholar 

  89. Li X, Gould SJ. The dynamin-like GTPase DLP1 is essential for peroxisome division and is recruited to peroxisomes in part by PEX11. J Biol Chem. 2003;278(19):17012–20.

    Article  CAS  PubMed  Google Scholar 

  90. Jones BA, Fangman WL. Mitochondrial DNA maintenance in yeast requires a protein containing a region related to the GTP-binding domain of dynamin. Genes Dev. 1992;6(3):380–9.

    Article  CAS  PubMed  Google Scholar 

  91. Shepard KA, Yaffe MP. The yeast dynamin-like protein, Mgm1p, functions on the mitochondrial outer membrane to mediate mitochondrial inheritance. J Cell Biol. 1999;144(4):711–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chen H, Vermulst M, Wang YE, Chomyn A, Prolla TA, McCaffery JM, et al. Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell. 2010;141(2):280–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Murley A, Lackner LL, Osman C, West M, Voeltz GK, Walter P, et al. ER-associated mitochondrial division links the distribution of mitochondria and mitochondrial DNA in yeast. Elife. 2013;2:e00422.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Ban-Ishihara R, Ishihara T, Sasaki N, Mihara K, Ishihara N. Dynamics of nucleoid structure regulated by mitochondrial fission contributes to cristae reformation and release of cytochrome c. Proc Natl Acad Sci U S A. 2013;110(29):11863–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Meeusen S, Nunnari J. Evidence for a two membrane-spanning autonomous mitochondrial DNA replisome. J Cell Biol. 2003;163(3):503–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kornmann B, Currie E, Collins SR, Schuldiner M, Nunnari J, Weissman JS, et al. An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science. 2009;325(5939):477–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sesaki H, Jensen RE. Division versus fusion: Dnm1p and Fzo1p antagonistically regulate mitochondrial shape. J Cell Biol. 1999;147(4):699–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ishihara N, Nomura M, Jofuku A, Kato H, Suzuki SO, Masuda K, et al. Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nat Cell Biol. 2009;11(8):958–66.

    Article  CAS  PubMed  Google Scholar 

  99. Sebastián D, Hernández-Alvarez MI, Segalés J, Sorianello E, Muñoz JP, Sala D, et al. Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis. Proc Natl Acad Sci U S A. 2012;109(14):5523–8.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Loiseau D, Chevrollier A, Verny C, Guillet V, Gueguen N, Pou de Crescenzo M-A, et al. Mitochondrial coupling defect in Charcot-Marie-Tooth type 2A disease. Ann Neurol. 2007;61(4):315–23.

    Article  CAS  PubMed  Google Scholar 

  101. Mourier A, Motori E, Brandt T, Lagouge M, Atanassov I, Galinier A, et al. Mitofusin 2 is required to maintain mitochondrial coenzyme Q levels. J Cell Biol. 2015;208(4):429–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Chen H, McCaffery JM, Chan DC. Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell. 2007;130(3):548–62.

    Article  CAS  PubMed  Google Scholar 

  103. de Brito OM, Scorrano L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature. 2008;456(7222):605–10.

    Article  PubMed  CAS  Google Scholar 

  104. Wasilewski M, Semenzato M, Rafelski SM, Robbins J, Bakardjiev AI, Scorrano L. Optic atrophy 1-dependent mitochondrial remodeling controls steroidogenesis in trophoblasts. Curr Biol. 2012;22(13):1228–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Misko A, Jiang S, Wegorzewska I, Milbrandt J, Baloh RH. Mitofusin 2 is necessary for transport of axonal mitochondria and interacts with the Miro/Milton complex. J Neurosci. 2010;30(12):4232–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Misko AL, Sasaki Y, Tuck E, Milbrandt J, Baloh RH. Mitofusin2 mutations disrupt axonal mitochondrial positioning and promote axon degeneration. J Neurosci. 2012;32(12):4145–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Cosson P, Marchetti A, Ravazzola M, Orci L. Mitofusin-2 independent juxtaposition of endoplasmic reticulum and mitochondria: an ultrastructural study. PLoS One. 2012;7(9):e46293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Filadi R, Greotti E, Turacchio G, Luini A, Pozzan T, Pizzo P. Mitofusin 2 ablation increases endoplasmic reticulum-mitochondria coupling. Proc Natl Acad Sci USA. 2015;112(17):2174–81.

    Google Scholar 

  109. Duarte A, Poderoso C, Cooke M, Soria G, Cornejo Maciel F, Gottifredi V, et al. Mitochondrial fusion is essential for steroid biosynthesis. PLoS One. 2012;7(9):e45829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lee S, Sterky FH, Mourier A, Terzioglu M, Cullheim S, Olson L, et al. Mitofusin 2 is necessary for striatal axonal projections of midbrain dopamine neurons. Hum Mol Genet. 2012;21(22):4827–35.

    Article  CAS  PubMed  Google Scholar 

  111. Pham AH, Meng S, Chu QN, Chan DC. Loss of Mfn2 results in progressive, retrograde degeneration of dopaminergic neurons in the nigrostriatal circuit. Hum Mol Genet. 2012;21(22):4817–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Papanicolaou KN, Khairallah RJ, Ngoh GA, Chikando A, Luptak I, O’Shea KM, et al. Mitofusin-2 maintains mitochondrial structure and contributes to stress-induced permeability transition in cardiac myocytes. Mol Cell Biol. 2011;31(6):1309–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Amiott EA, Lott P, Soto J, Kang PB, McCaffery JM, Dimauro S, et al. Mitochondrial fusion and function in Charcot-Marie-Tooth type 2A patient fibroblasts with mitofusin 2 mutations. Exp Neurol. 2008;211(1):115–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Meeusen S, McCaffery JM, Nunnari J. Mitochondrial fusion intermediates revealed in vitro. Science. 2004;305(5691):1747–52.

    Article  CAS  PubMed  Google Scholar 

  115. Malka F, Guillery O, Cifuentes-Diaz C, Guillou E, Belenguer P, Lombès A, et al. Separate fusion of outer and inner mitochondrial membranes. EMBO Rep. 2005;6(9):853–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Sauvanet C, Duvezin-Caubet S, di Rago J-P, Rojo M. Energetic requirements and bioenergetic modulation of mitochondrial morphology and dynamics. Semin Cell Dev Biol. 2010;21(6):558–65.

    Article  CAS  PubMed  Google Scholar 

  117. Benard G, Bellance N, James D, Parrone P, Fernandez H, Letellier T, et al. Mitochondrial bioenergetics and structural network organization. J Cell Sci. 2007;120(Pt 5):838–48.

    Article  CAS  PubMed  Google Scholar 

  118. Duvezin-Caubet S, Jagasia R, Wagener J, Hofmann S, Trifunovic A, Hansson A, et al. Proteolytic processing of OPA1 links mitochondrial dysfunction to alterations in mitochondrial morphology. J Biol Chem. 2006;281(49):37972–9.

    Article  CAS  PubMed  Google Scholar 

  119. Egner A, Jakobs S, Hell SW. Fast 100-nm resolution three-dimensional microscope reveals structural plasticity of mitochondria in live yeast. Proc Natl Acad Sci U S A. 2002;99(6):3370–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Jimenez L, Laporte D, Duvezin-Caubet S, Courtout F, Sagot I. Mitochondrial ATP synthases cluster as discrete domains that reorganize with the cellular demand for oxidative phosphorylation. J Cell Sci. 2014;127(Pt 4):719–26.

    Article  CAS  PubMed  Google Scholar 

  121. Rossignol R, Gilkerson R, Aggeler R, Yamagata K, Remington SJ, Capaldi RA. Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells. Cancer Res. 2004;64(3):985–93.

    Article  CAS  PubMed  Google Scholar 

  122. Mishra P, Carelli V, Manfredi G, Chan DC. Proteolytic cleavage of Opa1 stimulates mitochondrial inner membrane fusion and couples fusion to oxidative phosphorylation. Cell Metab. 2014;19(4):630–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Gomes LC, Di Benedetto G, Scorrano L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol. 2011;13(5):589–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Rambold AS, Kostelecky B, Elia N, Lippincott-Schwartz J. Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc Natl Acad Sci U S A. 2011;108(25):10190–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Cassidy-Stone A, Chipuk JE, Ingerman E, Song C, Yoo C, Kuwana T, et al. Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev Cell. 2008;14(2):193–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Skre H. Genetic and clinical aspects of Charcot-Marie-Tooth disease. Clin Genet. 1974;6(2):98–118.

    Article  CAS  PubMed  Google Scholar 

  127. Emery AE. Population frequencies of inherited neuromuscular diseases – a world survey. Neuromuscul Disord. 1991;1(1):19–29.

    Article  CAS  PubMed  Google Scholar 

  128. Hoyer H, Braathen GJ, Busk OL, Holla OL, Svendsen M, Hilmarsen HT, et al. Genetic diagnosis of Charcot-Marie-Tooth disease in a population by next-generation sequencing. Biomed Res Int. 2014;2014:210401.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Chung KW, Kim SB, Park KD, Choi KG, Lee JH, Eun HW, et al. Early onset severe and late-onset mild Charcot-Marie-Tooth disease with mitofusin 2 (MFN2) mutations. Brain. 2006;129(Pt 8):2103–18.

    Article  CAS  PubMed  Google Scholar 

  130. Züchner SS, Mersiyanova IVI, Muglia MM, Bissar-Tadmouri NN, Rochelle JJ, Dadali ELE, et al. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet. 2004;36(5):449–51.

    Article  PubMed  CAS  Google Scholar 

  131. Kijima K, Numakura C, Izumino H, Umetsu K, Nezu A, Shiiki T, et al. Mitochondrial GTPase mitofusin 2 mutation in Charcot-Marie-Tooth neuropathy type 2A. Hum Genet. 2005;116(1–2):23–7.

    Article  CAS  PubMed  Google Scholar 

  132. Cartoni R, Martinou JC. Role of mitofusin 2 mutations in the physiopathology of Charcot-Marie-Tooth disease type 2A. Exp Neurol. 2009;218(2):268–73.

    Article  CAS  PubMed  Google Scholar 

  133. Vallat J-M, Ouvrier RA, Pollard JD, Magdelaine C, Zhu D, Nicholson GA, et al. Histopathological findings in hereditary motor and sensory neuropathy of axonal type with onset in early childhood associated with mitofusin 2 mutations. J Neuropathol Exp Neurol. 2008;67(11):1097–102.

    Article  PubMed  Google Scholar 

  134. Verhoeven K, Claeys KG, Züchner S, Schröder JM, Weis J, Ceuterick C, et al. MFN2 mutation distribution and genotype/phenotype correlation in Charcot-Marie-Tooth type 2. Brain. 2006;129(Pt 8):2093–102.

    Article  PubMed  Google Scholar 

  135. Detmer SA, Vande Velde C, Cleveland DW, Chan DC. Hind limb gait defects due to motor axon loss and reduced distal muscles in a transgenic mouse model of Charcot-Marie-Tooth type 2A. Hum Mol Genet. 2008;17(3):367–75.

    Article  CAS  PubMed  Google Scholar 

  136. Cuesta A, Pedrola L, Sevilla T, García-Planells J, Chumillas MJ, Mayordomo F, et al. The gene encoding ganglioside-induced differentiation-associated protein 1 is mutated in axonal Charcot-Marie-Tooth type 4A disease. Nat Genet. 2002;30(1):22–5.

    Article  CAS  PubMed  Google Scholar 

  137. Baxter RV, Ben Othmane K, Rochelle JM, Stajich JE, Hulette C, Dew-Knight S, et al. Ganglioside-induced differentiation-associated protein-1 is mutant in Charcot-Marie-Tooth disease type 4A/8q21. Nat Genet. 2002;30(1):21–2.

    Article  CAS  PubMed  Google Scholar 

  138. Claramunt R, Pedrola L, Sevilla T, López de Munain A, Berciano J, Cuesta A, et al. Genetics of Charcot-Marie-Tooth disease type 4A: mutations, inheritance, phenotypic variability, and founder effect. J Med Genet. 2005;42(4):358–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Senderek J, Bergmann C, Ramaekers VT, Nelis E, Bernert G, Makowski A, et al. Mutations in the ganglioside-induced differentiation-associated protein-1 (GDAP1) gene in intermediate type autosomal recessive Charcot-Marie-Tooth neuropathy. Brain. 2003;126(Pt 3):642–9.

    Article  PubMed  Google Scholar 

  140. Niemann A, Huber N, Wagner KM, Somandin C, Horn M, Lebrun-Julien F, et al. The Gdap1 knockout mouse mechanistically links redox control to Charcot-Marie-Tooth disease. Brain. 2014;137(Pt 3):668–82.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Barneo-Muñoz M, Juárez P, Civera-Tregón A, Yndriago L, Pla-Martin D, Zenker J, et al. Lack of GDAP1 induces neuronal calcium and mitochondrial defects in a knockout mouse model of Charcot-Marie-Tooth neuropathy. PLoS Genet. 2015;11(4):e1005115.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Lenaers G, Hamel C, Delettre C, Amati-Bonneau P, Procaccio V, Bonneau D, et al. Dominant optic atrophy. Orphanet J Rare Dis. 2012;7:46.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Thiselton DL, Alexander C, Taanman J-W, Brooks S, Rosenberg T, Eiberg H, et al. A comprehensive survey of mutations in the OPA1 gene in patients with autosomal dominant optic atrophy. Invest Ophthalmol Vis Sci. 2002;43(6):1715–24.

    PubMed  Google Scholar 

  144. Yu-Wai-Man P, Sitarz KS, Samuels DC, Griffiths PG, Reeve AK, Bindoff LA, et al. OPA1 mutations cause cytochrome c oxidase deficiency due to loss of wild-type mtDNA molecules. Hum Mol Genet. 2010;19(15):3043–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Davies VJ, Hollins AJ, Piechota MJ, Yip W, Davies JR, White KE, et al. Opa1 deficiency in a mouse model of autosomal dominant optic atrophy impairs mitochondrial morphology, optic nerve structure and visual function. Hum Mol Genet. 2007;16(11):1307–18.

    Article  CAS  PubMed  Google Scholar 

  146. Alavi MV, Bette S, Schimpf S, Schuettauf F, Schraermeyer U, Wehrl HF, et al. A splice site mutation in the murine Opa1 gene features pathology of autosomal dominant optic atrophy. Brain. 2007;130(Pt 4):1029–42.

    PubMed  Google Scholar 

  147. Williams PA, Piechota M, von Ruhland C, Taylor E, Morgan JE, Votruba M. Opa1 is essential for retinal ganglion cell synaptic architecture and connectivity. Brain. 2012;135(Pt 2):493–505.

    Article  PubMed  Google Scholar 

  148. Waterham HR, Koster J, van Roermund CWT, Mooyer PAW, Wanders RJA, Leonard JV. A lethal defect of mitochondrial and peroxisomal fission. N Engl J Med. 2007;356(17):1736–41.

    Article  CAS  PubMed  Google Scholar 

  149. Chang C-R, Manlandro CM, Arnoult D, Stadler J, Posey AE, Hill RB, et al. A lethal de novo mutation in the middle domain of the dynamin-related GTPase Drp1 impairs higher order assembly and mitochondrial division. J Biol Chem. 2010;285(42):32494–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Wakabayashi J, Zhang Z, Wakabayashi N, Tamura Y, Fukaya M, Kensler TW, et al. The dynamin-related GTPase Drp1 is required for embryonic and brain development in mice. J Cell Biol. 2009;186(6):805–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Berthet A, Margolis EB, Zhang J, Hsieh I, Zhang J, Hnasko TS, et al. Loss of mitochondrial fission depletes axonal mitochondria in midbrain dopamine neurons. J Neurosci. 2014;34(43):14304–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Shirendeb U, Reddy AP, Manczak M, Calkins MJ, Mao P, Tagle DA, et al. Abnormal mitochondrial dynamics, mitochondrial loss and mutant huntingtin oligomers in Huntington’s disease: implications for selective neuronal damage. Hum Mol Genet. 2011;20(7):1438–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Costa V, Giacomello M, Hudec R, Lopreiato R, Ermak G, Lim D, et al. Mitochondrial fission and cristae disruption increase the response of cell models of Huntington’s disease to apoptotic stimuli. EMBO Mol Med. 2010;2(12):490–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Wang X, Yan MH, Fujioka H, Liu J, Wilson-Delfosse A, Chen SG, et al. LRRK2 regulates mitochondrial dynamics and function through direct interaction with DLP1. Hum Mol Genet. 2012;21(9):1931–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Su B, Wang X, Bonda D, Perry G, Smith M, Zhu X. Abnormal mitochondrial dynamics – a novel therapeutic target for Alzheimer’s disease? Mol Neurobiol. 2010;41(2–3):87–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Wang X, Su B, Lee H-G, Li X, Perry G, Smith MA, et al. Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. J Neurosci. 2009;29(28):9090–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Calkins MJ, Manczak M, Mao P, Shirendeb U, Reddy PH. Impaired mitochondrial biogenesis, defective axonal transport of mitochondria, abnormal mitochondrial dynamics and synaptic degeneration in a mouse model of Alzheimer’s disease. Hum Mol Genet. 2011;20(23):4515–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Wang S, Song J, Tan M, Albers KM, Jia J. Mitochondrial fission proteins in peripheral blood lymphocytes are potential biomarkers for Alzheimer’s disease. Eur J Neurol. 2012;19(7):1015–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Mourier PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing

About this chapter

Cite this chapter

Mourier, A. (2016). Mitochondrial Dynamics and Neurodegeneration. In: Reeve, A., Simcox, E., Duchen, M., Turnbull, D. (eds) Mitochondrial Dysfunction in Neurodegenerative Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-28637-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28637-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28635-8

  • Online ISBN: 978-3-319-28637-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics