Skip to main content

Mitochondrial Genes and Neurodegenerative Disease

  • Chapter
  • First Online:
Mitochondrial Dysfunction in Neurodegenerative Disorders

Abstract

Mitochondrial dysfunction is increasingly recognised as a cause of neurodegeneration in both primary mitochondrial diseases and common neurodegenerative diseases, including Parkinson’s, Alzheimer’s and Huntington’s diseases and amyotrophic lateral sclerosis (ALS).

In this chapter, we will focus on the molecular basis of mitochondrial dysfunction and the mechanisms bridging it to neurodegeneration. In the first part, we will summarise some basic concepts of mitochondrial biology. We will then cover paediatric diseases, including different types of encephalopathies, Leigh disease, leukoencephalopathies and a variety of syndromes with peculiar features. Finally, we will cover diseases in adults, including MNGIE disease, Friedreich ataxia and the disorders associated with alterations in mitochondrial dynamics and quality control. These include axonal Charcot–Marie–Tooth neuropathy, hereditary spastic paraplegia, and autosomal dominant optic atrophy, as well as the inherited and idiopathic forms of common neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Ann Rev Genet. 2005;39:359–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zeviani M, Di Donato S. Mitochondrial disorders. Brain. 2004;127(Pt 10):2153–72.

    Article  PubMed  Google Scholar 

  3. Elliott HR, Samuels DC, Eden JA, Relton CL, Chinnery PF. Pathogenic mitochondrial DNA mutations are common in the general population. Am J Hum Genet. 2008;83(2):254–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Matthews PM, Marchington DR, Squier M, Land J, Brown RM, Brown GK. Molecular genetic characterization of an X-linked form of Leigh’s syndrome. Ann Neurol. 1993;33(6):652–5.

    Article  CAS  PubMed  Google Scholar 

  5. Finsterer J. Leigh and Leigh-like syndrome in children and adults. Pediatr Neurol. 2008;39(4):223–35.

    Article  PubMed  Google Scholar 

  6. Shoubridge EA. Cytochrome c oxidase deficiency. Am J Med Genet. 2001;106(1):46–52.

    Article  CAS  PubMed  Google Scholar 

  7. Zeviani M, Corona P, Nijtmans L, Tiranti V. Nuclear gene defects in mitochondrial disorders. Ital J Neurol Sci. 1999;20(6):401–8.

    Article  CAS  PubMed  Google Scholar 

  8. Lee IC, El-Hattab AW, Wang J, Li FY, Weng SW, Craigen WJ, et al. SURF1-associated Leigh syndrome: a case series and novel mutations. Hum Mutat. 2012;33(8):1192–200.

    Article  CAS  PubMed  Google Scholar 

  9. Piekutowska-Abramczuk D, Magner M, Popowska E, Pronicki M, Karczmarewicz E, Sykut-Cegielska J, et al. SURF1 missense mutations promote a mild Leigh phenotype. Clin Genet. 2009;76(2):195–204.

    Article  CAS  PubMed  Google Scholar 

  10. Tiranti V, Jaksch M, Hofmann S, Galimberti C, Hoertnagel K, Lulli L, et al. Loss-of-function mutations of SURF-1 are specifically associated with Leigh syndrome with cytochrome c oxidase deficiency. Ann Neurol. 1999;46(2):161–6.

    Article  CAS  PubMed  Google Scholar 

  11. Rahman S, Brown RM, Chong WK, Wilson CJ, Brown GK. A SURF1 gene mutation presenting as isolated leukodystrophy. Ann Neurol. 2001;49(6):797–800.

    Article  CAS  PubMed  Google Scholar 

  12. Salviati L, Freehauf C, Sacconi S, DiMauro S, Thoma J, Tsai AC. Novel SURF1 mutation in a child with subacute encephalopathy and without the radiological features of Leigh Syndrome. Am J Med Genet Part A. 2004;128A(2):195–8.

    Article  PubMed  Google Scholar 

  13. Tiranti V, Viscomi C, Hildebrandt T, Di Meo I, Mineri R, Tiveron C, et al. Loss of ETHE1, a mitochondrial dioxygenase, causes fatal sulfide toxicity in ethylmalonic encephalopathy. Nat Med. 2009;15(2):200–5.

    Article  CAS  PubMed  Google Scholar 

  14. Tiranti V, D’Adamo P, Briem E, Ferrari G, Mineri R, Lamantea E, et al. Ethylmalonic encephalopathy is caused by mutations in ETHE1, a gene encoding a mitochondrial matrix protein. Am J Hum Genet. 2004;74(2):239–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Uziel G, Ghezzi D, Zeviani M. Infantile mitochondrial encephalopathy. Semin Fetal Neonat Med. 2011;16(4):205–15.

    Article  Google Scholar 

  16. Invernizzi F, Ardissone A, Lamantea E, Garavaglia B, Zeviani M, Farina L, et al. Cavitating leukoencephalopathy with multiple mitochondrial dysfunction syndrome and NFU1 mutations. Front Genet. 2014;5:412.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Diodato D, Ghezzi D, Tiranti V. The mitochondrial aminoacyl tRNA synthetases: genes and syndromes. Int J Cell Biol. 2014;2014:787956.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Steenweg ME, Ghezzi D, Haack T, Abbink TE, Martinelli D, van Berkel CG, et al. Leukoencephalopathy with thalamus and brainstem involvement and high lactate ‘LTBL’ caused by EARS2 mutations. Brain. 2012;135(Pt 5):1387–94.

    Article  PubMed  Google Scholar 

  19. van Berge L, Hamilton EM, Linnankivi T, Uziel G, Steenweg ME, Isohanni P, et al. Leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation: clinical and genetic characterization and target for therapy. Brain. 2014;137(Pt 4):1019–29.

    Article  PubMed  Google Scholar 

  20. Scheper GC, van der Klok T, van Andel RJ, van Berkel CG, Sissler M, Smet J, et al. Mitochondrial aspartyl-tRNA synthetase deficiency causes leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation. Nat Genet. 2007;39(4):534–9.

    Article  CAS  PubMed  Google Scholar 

  21. van der Knaap MS, van der Voorn P, Barkhof F, Van Coster R, Krageloh-Mann I, Feigenbaum A, et al. A new leukoencephalopathy with brainstem and spinal cord involvement and high lactate. Ann Neurol. 2003;53(2):252–8.

    Article  PubMed  Google Scholar 

  22. Bayat V, Thiffault I, Jaiswal M, Tetreault M, Donti T, Sasarman F, et al. Mutations in the mitochondrial methionyl-tRNA synthetase cause a neurodegenerative phenotype in flies and a recessive ataxia (ARSAL) in humans. PLoS Biol. 2012;10(3):e1001288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Moroni I, Bugiani M, Bizzi A, Castelli G, Lamantea E, Uziel G. Cerebral white matter involvement in children with mitochondrial encephalopathies. Neuropediatrics. 2002;33(2):79–85.

    Article  CAS  PubMed  Google Scholar 

  24. Valente L, Tiranti V, Marsano RM, Malfatti E, Fernandez-Vizarra E, Donnini C, et al. Infantile encephalopathy and defective mitochondrial DNA translation in patients with mutations of mitochondrial elongation factors EFG1 and EFTu. Am J Hum Genet. 2007;80(1):44–58.

    Article  CAS  PubMed  Google Scholar 

  25. Sofou K, Steneryd K, Wiklund LM, Tulinius M, Darin N. MRI of the brain in childhood-onset mitochondrial disorders with central nervous system involvement. Mitochondrion. 2013;13(4):364–71.

    Article  CAS  PubMed  Google Scholar 

  26. Brockmann K, Bjornstad A, Dechent P, Korenke CG, Smeitink J, Trijbels JM, et al. Succinate in dystrophic white matter: a proton magnetic resonance spectroscopy finding characteristic for complex II deficiency. Ann Neurol. 2002;52(1):38–46.

    Article  CAS  PubMed  Google Scholar 

  27. Ghezzi D, Goffrini P, Uziel G, Horvath R, Klopstock T, Lochmuller H, et al. SDHAF1, encoding a LYR complex-II specific assembly factor, is mutated in SDH-defective infantile leukoencephalopathy. Nat Genet. 2009;41(6):654–6.

    Article  CAS  PubMed  Google Scholar 

  28. Kopajtich R, Nicholls TJ, Rorbach J, Metodiev MD, Freisinger P, Mandel H, et al. Mutations in GTPBP3 cause a mitochondrial translation defect associated with hypertrophic cardiomyopathy, lactic acidosis, and encephalopathy. Am J Hum Genet. 2014;95(6):708–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Baertling F, Haack TB, Rodenburg RJ, Schaper J, Seibt A, Strom TM, et al. MRPS22 mutation causes fatal neonatal lactic acidosis with brain and heart abnormalities. Neurogenetics. 2015;16(3):237–40.

    Google Scholar 

  30. Brea-Calvo G, Haack TB, Karall D, Ohtake A, Invernizzi F, Carrozzo R, et al. COQ4 mutations cause a broad spectrum of mitochondrial disorders associated with CoQ10 deficiency. Am J Hum Genet. 2015;96(2):309–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ghezzi D, Sevrioukova I, Invernizzi F, Lamperti C, Mora M, D’Adamo P, et al. Severe X-linked mitochondrial encephalomyopathy associated with a mutation in apoptosis-inducing factor. Am J Hum Genet. 2010;86(4):639–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ardissone A, Piscosquito G, Legati A, Langella T, Lamantea E, Garavaglia B, et al. A slowly progressive mitochondrial encephalomyopathy widens the spectrum of AIFM1 disorders. Neurology. 2015;84(21):2193–5.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rinaldi C, Grunseich C, Sevrioukova IF, Schindler A, Horkayne-Szakaly I, Lamperti C, et al. Cowchock syndrome is associated with a mutation in apoptosis-inducing factor. Am J Hum Genet. 2012;91(6):1095–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ardissone A, Granata T, Legati A, Diodato D, Melchionda L, Lamantea E, et al. Mitochondrial complex III deficiency caused by TTC19 defects: report of a novel mutation and review of literature. JIMD Rep. 2015;22:115–20.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Atwal PS. Mutations in the complex III assembly factor tetratricopeptide 19 gene TTC19 are a rare cause of Leigh syndrome. JIMD Rep. 2014;14:43–5.

    Article  CAS  PubMed  Google Scholar 

  36. Ghezzi D, Arzuffi P, Zordan M, Da Re C, Lamperti C, Benna C, et al. Mutations in TTC19 cause mitochondrial complex III deficiency and neurological impairment in humans and flies. Nat Genet. 2011;43(3):259–63.

    Article  CAS  PubMed  Google Scholar 

  37. Mordaunt DA, Jolley A, Balasubramaniam S, Thorburn DR, Mountford HS, Compton AG, et al. Phenotypic variation of TTC19-deficient mitochondrial complex III deficiency: a case report and literature review. Am J Med Genet Part A. 2015;167(6):1330–6.

    Article  PubMed  Google Scholar 

  38. Morino H, Miyamoto R, Ohnishi S, Maruyama H, Kawakami H. Exome sequencing reveals a novel TTC19 mutation in an autosomal recessive spinocerebellar ataxia patient. BMC Neurol. 2014;14:5.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Nogueira C, Barros J, Sa MJ, Azevedo L, Taipa R, Torraco A, et al. Novel TTC19 mutation in a family with severe psychiatric manifestations and complex III deficiency. Neurogenetics. 2013;14(2):153–60.

    Article  CAS  PubMed  Google Scholar 

  40. Gai X, Ghezzi D, Johnson MA, Biagosch CA, Shamseldin HE, Haack TB, et al. Mutations in FBXL4, encoding a mitochondrial protein, cause early-onset mitochondrial encephalomyopathy. Am J Hum Genet. 2013;93(3):482–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Melchionda L, Haack TB, Hardy S, Abbink TE, Fernandez-Vizarra E, Lamantea E, et al. Mutations in APOPT1, encoding a mitochondrial protein, cause cavitating leukoencephalopathy with cytochrome c oxidase deficiency. Am J Hum Genet. 2014;95(3):315–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Moraes CT, Shanske S, Tritschler HJ, Aprille JR, Andreetta F, Bonilla E, et al. mtDNA depletion with variable tissue expression: a novel genetic abnormality in mitochondrial diseases. Am J Hum Genet. 1991;48(3):492–501.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Korhonen JA, Pham XH, Pellegrini M, Falkenberg M. Reconstitution of a minimal mtDNA replisome in vitro. EMBO J. 2004;23(12):2423–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Naviaux RK, Nguyen KV. POLG mutations associated with Alpers’ syndrome and mitochondrial DNA depletion. Ann Neurol. 2004;55(5):706–12.

    Article  CAS  PubMed  Google Scholar 

  45. Naviaux RK, Nyhan WL, Barshop BA, Poulton J, Markusic D, Karpinski NC, et al. Mitochondrial DNA polymerase gamma deficiency and mtDNA depletion in a child with Alpers’ syndrome. Ann Neurol. 1999;45(1):54–8.

    Article  CAS  PubMed  Google Scholar 

  46. Uusimaa J, Hinttala R, Rantala H, Paivarinta M, Herva R, Roytta M, et al. Homozygous W748S mutation in the POLG1 gene in patients with juvenile-onset alpers syndrome and status epilepticus. Epilepsia. 2008;49(6):1038–45.

    Google Scholar 

  47. Wiltshire E, Davidzon G, DiMauro S, Akman HO, Sadleir L, Haas L, et al. Juvenile Alpers disease. Arch Neurol. 2008;65(1):121–4.

    Article  PubMed  Google Scholar 

  48. Horvath R, Hudson G, Ferrari G, Futterer N, Ahola S, Lamantea E, et al. Phenotypic spectrum associated with mutations of the mitochondrial polymerase gamma gene. Brain. 2006;129(Pt 7):1674–84.

    Article  PubMed  Google Scholar 

  49. Milone M, Massie R. Polymerase gamma 1 mutations: clinical correlations. Neurologist. 2010;16(2):84–91.

    Article  PubMed  Google Scholar 

  50. Poulton J, Hirano M, Spinazzola A, Arenas Hernandez M, Jardel C, Lombes A, et al. Collated mutations in mitochondrial DNA (mtDNA) depletion syndrome (excluding the mitochondrial gamma polymerase, POLG1). Biochim Biophys Acta. 2009;1792(12):1109–12.

    Article  CAS  PubMed  Google Scholar 

  51. Suomalainen A, Isohanni P. Mitochondrial DNA depletion syndromes – many genes, common mechanisms. Neuromuscul Disord. 2010;20(7):429–37.

    Article  PubMed  Google Scholar 

  52. Dallabona C, Marsano RM, Arzuffi P, Ghezzi D, Mancini P, Zeviani M, et al. Sym1, the yeast ortholog of the MPV17 human disease protein, is a stress-induced bioenergetic and morphogenetic mitochondrial modulator. Hum Mol Genet. 2010;19(6):1098–107.

    Article  CAS  PubMed  Google Scholar 

  53. Hakonen AH, Davidzon G, Salemi R, Bindoff LA, Van Goethem G, Dimauro S, et al. Abundance of the POLG disease mutations in Europe, Australia, New Zealand, and the United States explained by single ancient European founders. Eur J Hum Genet. 2007;15(7):779–83.

    Article  CAS  PubMed  Google Scholar 

  54. Prasad C, Melancon SB, Rupar CA, Prasad AN, Nunez LD, Rosenblatt DS, et al. Exome sequencing reveals a homozygous mutation in TWINKLE as the cause of multisystemic failure including renal tubulopathy in three siblings. Mol Genet Metab. 2013;108(3):190–4.

    Article  CAS  PubMed  Google Scholar 

  55. Ostergaard E, Hansen FJ, Sorensen N, Duno M, Vissing J, Larsen PL, et al. Mitochondrial encephalomyopathy with elevated methylmalonic acid is caused by SUCLA2 mutations. Brain. 2007;130(Pt 3):853–61.

    Article  PubMed  Google Scholar 

  56. Carrozzo R, Dionisi-Vici C, Steuerwald U, Lucioli S, Deodato F, Di Giandomenico S, et al. SUCLA2 mutations are associated with mild methylmalonic aciduria, Leigh-like encephalomyopathy, dystonia and deafness. Brain. 2007;130(Pt 3):862–74.

    Article  PubMed  Google Scholar 

  57. Jaberi E, Chitsazian F, Ali Shahidi G, Rohani M, Sina F, Safari I, et al. The novel mutation p.Asp251Asn in the beta-subunit of succinate-CoA ligase causes encephalomyopathy and elevated succinylcarnitine. J Hum Genet. 2013;58(8):526–30.

    Article  CAS  PubMed  Google Scholar 

  58. Lamperti C, Fang M, Invernizzi F, Liu X, Wang H, Zhang Q, et al. A novel homozygous mutation in SUCLA2 gene identified by exome sequencing. Mol Genet Metab. 2012;107(3):403–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rouzier C, Le Guedard-Mereuze S, Fragaki K, Serre V, Miro J, Tuffery-Giraud S, et al. The severity of phenotype linked to SUCLG1 mutations could be correlated with residual amount of SUCLG1 protein. J Med Genet. 2010;47(10):670–6.

    Article  CAS  PubMed  Google Scholar 

  60. Acham-Roschitz B, Plecko B, Lindbichler F, Bittner R, Mache CJ, Sperl W, et al. A novel mutation of the RRM2B gene in an infant with early fatal encephalomyopathy, central hypomyelination, and tubulopathy. Mol Genet Metab. 2009;98(3):300–4.

    Article  CAS  PubMed  Google Scholar 

  61. Bornstein B, Area E, Flanigan KM, Ganesh J, Jayakar P, Swoboda KJ, et al. Mitochondrial DNA depletion syndrome due to mutations in the RRM2B gene. Neuromuscul Disord. 2008;18(6):453–9.

    Article  PubMed  PubMed Central  Google Scholar 

  62. van Rahden VA, Fernandez-Vizarra E, Alawi M, Brand K, Fellmann F, Horn D, et al. Mutations in NDUFB11, encoding a complex I component of the mitochondrial respiratory chain, cause microphthalmia with linear skin defects syndrome. Am J Hum Genet. 2015;96(4):640–50.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Gregory A, Hayflick SJ. Genetics of neurodegeneration with brain iron accumulation. Curr Neurol Neurosci Rep. 2011;11(3):254–61.

    Article  CAS  PubMed  Google Scholar 

  64. Brunetti D, Dusi S, Morbin M, Uggetti A, Moda F, D’Amato I, et al. Pantothenate kinase-associated neurodegeneration: altered mitochondria membrane potential and defective respiration in Pank2 knock-out mouse model. Hum Mol Genet. 2012;21(24):5294–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Isaya G. Mitochondrial iron-sulfur cluster dysfunction in neurodegenerative disease. Front Pharmacol. 2014;5:29.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Yu-Wai-Man P, Griffiths PG, Chinnery PF. Mitochondrial optic neuropathies – disease mechanisms and therapeutic strategies. Prog Retin Eye Res. 2011;30(2):81–114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Garone C, Tadesse S, Hirano M. Clinical and genetic spectrum of mitochondrial neurogastrointestinal encephalomyopathy. Brain. 2011;134(Pt 11):3326–32.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Mishra P, Chan DC. Mitochondrial dynamics and inheritance during cell division, development and disease. Nat Rev Mol Cell Biol. 2014;15(10):634–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Youle RJ, Narendra DP. Mechanisms of mitophagy. Nat Rev Mol Cell Biol. 2011;12(1):9–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Durcan TM, Fon EA. The three ‘P’s of mitophagy: PARKIN, PINK1, and post-translational modifications. Genes Dev. 2015;29(10):989–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Greene AW, Grenier K, Aguileta MA, Muise S, Farazifard R, Haque ME, et al. Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment. EMBO Rep. 2012;13(4):378–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rugarli EI, Langer T. Mitochondrial quality control: a matter of life and death for neurons. EMBO J. 2012;31(6):1336–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Anand R, Langer T, Baker MJ. Proteolytic control of mitochondrial function and morphogenesis. Biochim Biophys Acta. 2013;1833(1):195–204.

    Article  CAS  PubMed  Google Scholar 

  74. Di Bella D, Lazzaro F, Brusco A, Plumari M, Battaglia G, Pastore A, et al. Mutations in the mitochondrial protease gene AFG3L2 cause dominant hereditary ataxia SCA28. Nat Genet. 2010;42(4):313–21.

    Article  PubMed  Google Scholar 

  75. Gorman GS, Pfeffer G, Griffin H, Blakely EL, Kurzawa-Akanbi M, Gabriel J, et al. Clonal expansion of secondary mitochondrial DNA deletions associated with spinocerebellar ataxia type 28. JAMA Neurol. 2015;72(1):106–11.

    Article  PubMed  Google Scholar 

  76. Pfeffer G, Gorman GS, Griffin H, Kurzawa-Akanbi M, Blakely EL, Wilson I, et al. Mutations in the SPG7 gene cause chronic progressive external ophthalmoplegia through disordered mitochondrial DNA maintenance. Brain. 2014;137(Pt 5):1323–36.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Pierson TM, Adams D, Bonn F, Martinelli P, Cherukuri PF, Teer JK, et al. Whole-exome sequencing identifies homozygous AFG3L2 mutations in a spastic ataxia-neuropathy syndrome linked to mitochondrial m-AAA proteases. PLoS Genet. 2011;7(10):e1002325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Almajan ER, Richter R, Paeger L, Martinelli P, Barth E, Decker T, et al. AFG3L2 supports mitochondrial protein synthesis and Purkinje cell survival. J Clin Invest. 2012;122(11):4048–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Burte F, Carelli V, Chinnery PF, Yu-Wai-Man P. Disturbed mitochondrial dynamics and neurodegenerative disorders. Nat Rev Neurol. 2015;11(1):11–24.

    Article  CAS  PubMed  Google Scholar 

  80. Zuchner S, Mersiyanova IV, Muglia M, Bissar-Tadmouri N, Rochelle J, Dadali EL, et al. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet. 2004;36(5):449–51.

    Article  PubMed  Google Scholar 

  81. Carelli V, Musumeci O, Caporali L, Zanna C, La Morgia C, Del Dotto V, et al. Syndromic parkinsonism and dementia associated with OPA1 missense mutations. Ann Neurol. 2015;78(1):21–38.

    Article  CAS  PubMed  Google Scholar 

  82. Haelterman NA, Yoon WH, Sandoval H, Jaiswal M, Shulman JM, Bellen HJ. A mitocentric view of Parkinson’s disease. Ann Rev Neurosci. 2014;37:137–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Pickrell AM, Youle RJ. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron. 2015;85(2):257–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Itoh K, Nakamura K, Iijima M, Sesaki H. Mitochondrial dynamics in neurodegeneration. Trend Cell Biol. 2013;23(2):64–71.

    Article  CAS  Google Scholar 

  85. Pinho CM, Teixeira PF, Glaser E. Mitochondrial import and degradation of amyloid-beta peptide. Biochim Biophys Acta. 2014;1837(7):1069–74.

    Article  CAS  PubMed  Google Scholar 

  86. Jayadev S, Leverenz JB, Steinbart E, Stahl J, Klunk W, Yu CE, et al. Alzheimer’s disease phenotypes and genotypes associated with mutations in presenilin 2. Brain. 2010;133(Pt 4):1143–54.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Schon EA, Area-Gomez E. Mitochondria-associated ER membranes in Alzheimer disease. Mol Cell Neurosci. 2013;55:26–36.

    Article  CAS  PubMed  Google Scholar 

  88. de Brito OM, Scorrano L. An intimate liaison: spatial organization of the endoplasmic reticulum-mitochondria relationship. EMBO J. 2010;29(16):2715–23.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Palomo GM, Manfredi G. Exploring new pathways of neurodegeneration in ALS: the role of mitochondria quality control. Brain Res. 1607;2015:36–46.

    Google Scholar 

  90. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993;362(6415):59–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Zeviani MD, PhD .

Editor information

Editors and Affiliations

Glossary

Ataxia

Lack of voluntary coordination of muscle movements that includes gait abnormality

Athetosis

Slow, involuntary, convoluted, movements of the fingers, hands, toes and feet

Coloboma

A hole in one of the structures of the eye (e.g. iris, retina, choroid or optic disc)

Demyelinating polyneuropathy

Neurological disorder characterised by progressive weakness and impaired sensory function in the legs and arms due to the damage to the myelin sheath

Dysarthria

Speech disorder due impaired coordination of movements in the muscles used for speech production

Dysphagia

Difficulty in swallowing

Dystonia

A state of abnormal muscle tone resulting in muscular spasm and abnormal posture

Hyperreflexia

Abnormal reaction of the involuntary (autonomic) nervous system to stimulation

Hypertrichosis

Abnormal amount of hair growing over the body

Hypotonia

Low resistance to stretch of muscles

Leukoencephalopathy

Disease affecting the brain white matter

Megalencephalic leukoencephalopathy

Progressive condition that affects brain development and function, characterised by an enlarged brain

Microangiopathy

Disease affecting small vessels

Myoclonus

Brief, involuntary twitching of a muscle or a group of muscles

Myoglobinuria

Presence of myoglobin in the urine

Nystagmus

Repetitive, uncontrolled movements of the eyes

Ophthalmoplegia

Slowly progressive paralysis of the extraocular muscles

Pes cavus

High arch of the foot

Polyhydramnios

Excessive accumulation of amniotic fluid

Pyramidal signs

Symptoms related to the descending tract originated from pyramidal cells of motor cortex

Quadriparesis

Weakness of the four limbs

Seizures

Symptoms due to abnormal excessive or synchronous neuronal activity in the brain

Spasticity

Abnormal muscle contraction characterised by a combination of paralysis, increased tendon reflex activity and hypertonia

Supratentorial

The brain area located above the tentorium cerebelli, the membranous roof over the cerebellum

T1, T2, T2 FLAIR

Neuroradiological terms that refer to the relaxation times that protons need to revert back to their resting states after the initial pulse at a certain radiofrequency

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing

About this chapter

Cite this chapter

Viscomi, C., Ardissone, A., Zeviani, M. (2016). Mitochondrial Genes and Neurodegenerative Disease. In: Reeve, A., Simcox, E., Duchen, M., Turnbull, D. (eds) Mitochondrial Dysfunction in Neurodegenerative Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-28637-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28637-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28635-8

  • Online ISBN: 978-3-319-28637-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics