Skip to main content

Development of Treatments and Therapies to Target Mitochondrial Dysfunction

  • Chapter
  • First Online:
Mitochondrial Dysfunction in Neurodegenerative Disorders

Abstract

Mitochondrial diseases affect 1:10,000 people worldwide, with a further 1:6,000 at risk of developing symptoms, and can be caused by mutations in the nuclear genome or by mutations within/deletion of mitochondrial DNA (mtDNA). There is currently no therapy for patients with these diseases. In addition, mitochondrial dysfunction can be considered contributory or causal for other neurological diseases, such that therapies that improve mitochondrial function may have wide-reaching benefits. This chapter summarizes cell- and animal-based attempts to find a therapy by modulating major mitochondrial pathways including mitochondrial biogenesis, fission, fusion and altering metabolic intermediates, mitophagy and the mammalian target of rapamycin (mTOR) pathway. Clinical trials currently in progress include drugs that are direct or indirect antioxidants, a mitogenesis activator, an antiapoptotic compound and a compound that improves electron transport chain efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Turnbull DM, Rustin P. Neurobiology of disease genetic and biochemical intricacy shapes mitochondrial cytopathies. Neurobiol Dis. [Internet]. 2015;S0969-9961(15)00023-6 Feb [Epub ahead of print].

    Google Scholar 

  2. Koopman WJ, Distelmaier F, Smeitink JA, Willems PH. OXPHOS mutations and neurodegeneration. EMBO J. 2013;32(1):9–29 [Internet].

    Article  CAS  PubMed  Google Scholar 

  3. Calvo SE, Mootha VK. The mitochondrial proteome and human disease. Annu Rev Genomics Hum Genet. 2010;11:25–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pagliarini DJ, Calvo SE, Chang B, Sheth SA, Vafai SB, Ong SE, et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell. 2008;134(1):112–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Smith AC, Blackshaw JA, Robinson AJ. MitoMiner: a data warehouse for mitochondrial proteomics data. Nucleic Acids Res. 2012;40(D1):1160–7.

    Article  CAS  Google Scholar 

  6. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular biology of the cell. 4th ed. New York: Garland Science; 2002. 1616 p.

    Google Scholar 

  7. Vafai SB, Mootha VK. Mitochondrial disorders as windows into an ancient organelle. Nature. 2012;491(7424):374–83 [Internet].

    Article  CAS  PubMed  Google Scholar 

  8. Taylor RW, Turnbull DM. Mitochondrial mutations in human disease. Nat Rev Genet. 2005;6(5):389–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Russell O, Turnbull D. Mitochondrial DNA disease-molecular insights and potential routes to a cure. Exp Cell Res. 2014;325(1):38–43. [Internet]. Elsevier.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Burté F, Carelli V, Chinnery PF, Yu-Wai-Man P. Disturbed mitochondrial dynamics and neurodegenerative disorders. Nat Rev Neurol. 2014;11(1):11–24 [Internet].

    Article  PubMed  CAS  Google Scholar 

  11. Yu-wai-man P, Grif PG, Chinnery PF. Progress in retinal and eye research mitochondrial optic neuropathies – disease mechanisms and therapeutic strategies. Prog Retin Eye Res. 2011;30(2):81–114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Koopman W, Willems P, Smeitink J. Monogenic mitochondrial disorders. N Engl J Med. 2012;366:1132–41.

    Article  CAS  PubMed  Google Scholar 

  13. Lott MT, Leipzig JN, Derbeneva O, Xie HM, Chalkia D, Sarmady M, et al. mtDNA variation and analysis using MITOMAP and MITOMASTER. Curr Protoc Bioinforma. 2013;1(123):1.23.1–1.23.26 [Internet].

    Article  Google Scholar 

  14. Wallace DC, Zheng XX, Lott MT, Shoffner JM, Hodge JA, Kelley RI, et al. Familial mitochondrial encephalomyopathy (MERRF): genetic, pathophysiological, and biochemical characterization of a mitochondrial DNA disease. Cell. 1988;55(4):601–10.

    Article  CAS  PubMed  Google Scholar 

  15. Scharfe C, Lu HHS, Neuenburg JK, Allen EA, Li GC, Klopstock T, et al. Mapping gene associations in human mitochondria using clinical disease phenotypes. PLoS Comput Biol. 2009;5(4):e1000374.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Calvo SE, Compton AG, Hershman SG, Lim SC, Lieber DS, Tucker EJ, et al. Molecular diagnosis of infantile mitochondrial disease with targeted next-generation sequencing. Sci Transl Med. 2012;4(118):118ra10–0.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Wortmann S, Koolen D, Smeitink J, van den Heuvel L, Rodenburg R. Whole exome sequencing of suspected mitochondrial patients in clinical practice. J Inherit Metab Dis. [Internet]. 2015;38(3):437–43.

    Google Scholar 

  18. Taylor RW, Pyle A, Griffin H, Blakely EL, Duff J, He L, et al. Use of whole-exome sequencing to determine the genetic basis of multiple mitochondrial respiratory chain complex deficiencies. JAMA. 2014;312(1):68 [Internet].

    Article  PubMed  CAS  Google Scholar 

  19. Carroll CJ, Brilhante V, Suomalainen A. Next-generation sequencing for mitochondrial disorders. Br J Pharmacol. 2014;171(8):1837–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chinnery PF, Johnson MA, Wardell TM, Singh-Kler R, Hayes C, Brown DT, et al. The epidemiology of pathogenic mitochondrial DNA mutations. Ann Neurol. 2000;48(2):188–93.

    Article  CAS  PubMed  Google Scholar 

  21. Komen JC, Thorburn DR. Turn up the power – pharmacological activation of mitochondrial biogenesis in mouse models. Br J Pharmacol. 2014;171(8):1818–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Uittenbogaard M, Chiaramello A, Street NW, Dc W. Mitochondrial biogenesis: a therapeutic target for neurodevelopmental disorders and neurodegenerative diseases. Curr Pharm Des. 2014;20:5574–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Andreux PA, Houtkooper RH, Auwerx J. Pharmacological approaches to restore mitochondrial function. Nat Rev Drug Discov. 2013;12(6):465–83 [Internet].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell. 1999;98(1):115–24.

    Article  CAS  PubMed  Google Scholar 

  25. Nunnari J, Suomalainen A. Mitochondria: in sickness and in health. Cell. 2012;148(6):1145–59. [Internet]. Elsevier Inc.

    Article  CAS  PubMed  Google Scholar 

  26. Wenz T. Regulation of mitochondrial biogenesis and PGC-1alpha under cellular stress. Mitochondrion. 2013;13(2):134–42 [Internet].

    Article  CAS  PubMed  Google Scholar 

  27. Scarpulla RC, Vega RB, Kelly DP. Transcriptional integration of mitochondrial biogenesis. Trends Endocrinol Metab. 2012;23(9):459–66 [Internet].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wenz T, Diaz F, Spiegelman BM, Moraes CT. Activation of the PPAR/PGC-1 a pathway prevents a bioenergetic deficit and effectively improves a mitochondrial myopathy phenotype. Cell Metab. 2008;8:249–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Viscomi C, Bottani E, Civiletto G, Cerutti R, Moggio M, Fagiolari G, et al. In vivo correction of COX deficiency by activation of the AMPK/PGC-1 a axis. Cell Metab. 2011;14(1):80–90 [Internet].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dillon LM, Williams SL, Hida A, Peacock JD, Prolla TA, Lincoln J, et al. Increased mitochondrial biogenesis in muscle improves aging phenotypes in the mtDNA mutator mouse. Hum Mol Genet. 2012;21(10):2288–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Selsby JT, Morine KJ, Pendrak K, Barton ER, Sweeney HL. Rescue of dystrophic skeletal muscle by PGC-1alpha involves a fast to slow fiber type shift in the mdx mouse. PLoS ONE. 2012;7(1):1–10.

    Article  CAS  Google Scholar 

  32. Zhao W, Varghese M, Yemul S, Pan Y, Cheng A, Marano P, et al. Peroxisome proliferator activator receptor gamma coactivator-1alpha (PGC-1α) improves motor performance and survival in a mouse model of amyotrophic lateral sclerosis. Mol Neurodegener. 2011;6(1):51 [Internet], [cited 2015 Apr 20].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mudò G, Mäkelä J, Di Liberto V, Tselykh TV, Olivieri M, Piepponen P, et al. Transgenic expression and activation of PGC-1α protect dopaminergic neurons in the MPTP mouse model of Parkinson’s disease. Cell Mol Life Sci. 2012;69(7):1153–65.

    Article  PubMed  CAS  Google Scholar 

  34. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. 2003;425(6954):191–6 [Internet].

    Article  CAS  PubMed  Google Scholar 

  35. Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL, Tatar M, et al. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature. 2004;430(7000):686–9 [Internet].

    Article  CAS  PubMed  Google Scholar 

  36. Borra MT, Smith BC, Denu JM. Mechanism of human SIRT1 activation by resveratrol. J Biol Chem. 2005;280(17):17187–95 [Internet].

    Article  CAS  PubMed  Google Scholar 

  37. Kaeberlein M, McDonagh T, Heltweg B, Hixon J, Westman EA, Caldwell SD, et al. Substrate-specific activation of sirtuins by resveratrol. J Biol Chem. 2005;280(17):17038–45 [Internet].

    Article  CAS  PubMed  Google Scholar 

  38. Beher D, Wu J, Kim KW, Lu S, Atangan L, Wang M. Resveratrol is not a direct activator of SIRT1 enzyme activity. Chem Biol Drug Des. 2009;74(6):619–24.

    Article  CAS  PubMed  Google Scholar 

  39. Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, et al. AMPK regulates energy expenditure by modulating NAD 1 metabolism and SIRT1 activity. Nature. 2009;458:1056–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Canto C, Jiang LQ, Deshmukh AS, Mataki C, Coste A, Lagouge M, et al. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab. 2010;11(3):213–9 [Internet].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Um J, Park S, Kang H, Yang S, Foretz M, Mcburney MW, et al. AMP-activated protein kinase – deficient mice are resistant to the metabolic effects of resveratrol. Diabetes. 2010;59(3):554–63.

    Article  CAS  PubMed  Google Scholar 

  42. Pacholec M, Bleasdale JE, Chrunyk B, Cunningham D, Flynn D, Garofalo RS, et al. SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J Biol Chem. 2010;285(11):8340–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Baur JA. Biochemical effects of SIRT1 activators. Biochim Biophys Acta Protein Proteomics. 2010;1804(8):1626–34 [Internet].

    Article  CAS  Google Scholar 

  44. Sajish M, Schimmel P. A human tRNA synthetase is a potent PARP1-activating effector target for resveratrol. Nature. 2015;519(7543):370–3 [Internet].

    Article  CAS  PubMed  Google Scholar 

  45. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006;444(7117):337–42 [Internet].

    Article  CAS  PubMed  Google Scholar 

  46. Lagouge M, Argmann C, Gerhart-hines Z, Meziane H, Lerin C, Daussin F, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1 a. Cell. 2006;127:1109–22.

    Article  CAS  PubMed  Google Scholar 

  47. Milne JC, Lambert PD, Schenk S, Carney DP, Smith JJ, Gagne DJ, et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature. 2007;450(7170):712–6 [Internet].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Feige JN, Lagouge M, Canto C, Strehle A, Houten SM, Milne JC, et al. Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab. 2008;8:347–58.

    Article  CAS  PubMed  Google Scholar 

  49. Herskovits AZ, Guarente L. SIRT1 in neurodevelopment and brain senescence. Neuron. 2014;81(3):471–83 [Internet].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li L, Voullaire L, Sandi C, Pook MA, Ioannou PA, Delatycki MB, et al. Pharmacological screening using an FXN-EGFP cellular genomic reporter assay for the therapy of friedreich ataxia. PLoS ONE. 2013;8(2):e55940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sullivan JE, Brocklehurst KJ, Marley AE, Carey F, Carling D, Beri RK. Inhibition of lipolysis and lipogenesis in isolated rat adipocytes with AICAR, a cell-permeable activator of AMP-activated protein kinase. FEBS Lett. 1994;353(1):33–6 [Internet].

    Article  CAS  PubMed  Google Scholar 

  52. Corton JM, Gillespie JG, Hawley SA, Hardie DG. 5-aminoimidazole-4-carboxamide ribonucleoside. Eur J Biochem. 1995;229(2):558–65 [Internet].

    Article  CAS  PubMed  Google Scholar 

  53. Golubitzky A, Dan P, Weissman S, Link G, Wikstrom JD, Saada A. Screening for active small molecules in mitochondrial complex I deficient patient’s fibroblasts, reveals AICAR as the most beneficial compound. PLoS ONE. 2011;6(10):e26883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Marangos P, Loftus T, Wiesner J, Lowe T, Rossi E, Browne C, et al. Adenosinergic modulation of homocysteine-induced seizures in mice. Epilepsia. 1990;31:239–46.

    Article  CAS  PubMed  Google Scholar 

  55. Arkwright RT, Deshmukh R, Adapa N, Stevens R, Zonder E, Zhang Z, et al. Lessons from nature: sources and strategies for developing AMPK activators for cancer chemotherapeutics. Anticancer Agents Med Chem. 2015;15(5):657–71.

    Article  CAS  PubMed  Google Scholar 

  56. Lai Y-C, Kviklyte S, Vertommen D, Lantier L, Foretz M, Viollet B, et al. A small-molecule benzimidazole derivative that potently activates AMPK to increase glucose transport in skeletal muscle: comparison with effects of contraction and other AMPK activators. Biochem J. 2014;375(460):363–75.

    Article  CAS  Google Scholar 

  57. Giordanetto F, Karis D. Direct AMP-activated protein kinase activators: a review of evidence from the patent literature. Expert Opin Ther Patents. 2012;22:1467.

    Article  CAS  Google Scholar 

  58. Cool B, Zinker B, Chiou W, Kifle L, Cao N, Perham M, et al. Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab. 2006;3:403–16.

    Article  CAS  PubMed  Google Scholar 

  59. Steinberg GR, Kemp BE. AMPK in health and disease. Physiol Rev. 2009;89:1025–78.

    Article  CAS  PubMed  Google Scholar 

  60. Tenenbaum A, Motro M, Fisman EZ. Dual and pan-peroxisome proliferator-activated receptors (PPAR) co-agonism: the bezafibrate lessons. Cardiovasc Diabetol. 2005;5(1):1–5 [Internet], [cited 2015 Apr 21].

    Google Scholar 

  61. Hondares E, Pineda-Torra I, Iglesias R, Staels B, Villarroya F, Giralt M. PPARδ, but not PPARα, activates PGC-1α gene transcription in muscle. Biochem Biophys Res Commun. 2007;354(4):1021–7 [Internet].

    Article  CAS  PubMed  Google Scholar 

  62. Bastin J, Aubey F, Rötig A, Munnich A, Djouadi F. Activation of peroxisome proliferator-activated receptor pathway stimulates the mitochondrial respiratory chain and can correct deficiencies in patients’ cells lacking its components. J Clin Endocrinol Metab. 2008;93(4):1433–41 [Internet].

    Article  CAS  PubMed  Google Scholar 

  63. Srivastava S, Diaz F, Iommarini L, Aure K, Lombes A, Moraes CT. PGC-1α/β induced expression partially compensates for respiratory chain defects in cells from patients with mitochondrial disorders. Hum Mol Genet. 2009;18(10):1805–12 [Internet].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Casarin A, Giorgi G, Pertegato V, Siviero R, Cerqua C, Doimo M, et al. Copper and bezafibrate cooperate to rescue cytochrome c oxidase deficiency in cells of patients with SCO2 mutations. Orphanet J Rare Dis. 2012;7(1):21 [Internet], Jan [cited 2015 Apr 23].

    Article  PubMed  PubMed Central  Google Scholar 

  65. Tyynismaa H, Mjosund KP, Wanrooij S, Lappalainen I, Ylikallio E, Jalanko A, et al. Mutant mitochondrial helicase twinkle causes multiple mtDNA deletions and a late-onset mitochondrial disease in mice. Proc Natl Acad Sci U S A. 2005;102(49):17687–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE, et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature. 2004;429(6990):417–23 [Internet].

    Article  CAS  PubMed  Google Scholar 

  67. Yatsuga S, Suomalainen A. Effect of bezafibrate treatment on late-onset mitochondrial myopathy in mice. Hum Mol Genet. 2012;21(3):526–35 [Internet].

    Article  CAS  PubMed  Google Scholar 

  68. Dillon LM, Hida A, Garcia S, Prolla TA, Moraes CT. Long-term bezafibrate treatment improves skin and spleen phenotypes of the mtDNA mutator mouse. PLoS ONE. 2012;7(9):e44335 [Internet].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Khan NA, Auranen M, Paetau I, Pirinen E, Euro L, Forsström S, et al. Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3. EMBO Mol Med. 2014;6(6):721–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Lightowlers RN, Chrzanowska-Lightowlers ZM. Salvaging hope: is increasing NAD+ a key to treating mitochondrial myopathy? EMBO Mol Med. 2014;6(6):1–3 [Internet].

    Article  CAS  Google Scholar 

  71. Cantó C, Houtkooper RH, Pirinen E, Youn DY, Oosterveer MH, Cen Y, et al. The NAD+ precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab. 2012;15(6):838–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Westermann B. Mitochondrial fusion and fission in cell life and death. Nat Publ Gr. 2010;11(12):872–84 [Internet].

    CAS  Google Scholar 

  73. Labbé K, Murley A, Nunnari J. Determinants and functions of mitochondrial behavior. Annu Rev Cell Dev Biol. 2014;30(1):357–91 [Internet].

    Article  PubMed  CAS  Google Scholar 

  74. Mishra P, Chan DC. Mitochondrial dynamics and inheritance during cell division, development and disease. Nat Publ Gr. 2014;15(10):634–46 [Internet].

    CAS  Google Scholar 

  75. Chen H, Chan DC. Mitochondrial dynamics-fusion, fission, movement, and mitophagy-in neurodegenerative diseases. Hum Mol Genet. 2009;18(R2):169–76.

    Article  CAS  Google Scholar 

  76. Chen H, McCaffery JM, Chan DC. Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell. 2007;130(3):548–62 [Internet].

    Article  CAS  PubMed  Google Scholar 

  77. Chen H, Vermulst M, Wang YE, Chomyn A, Prolla TA, McCaffery JM, et al. Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell. 2010;141(2):280–9 [Internet].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Verstreken P, Ly CV, Venken KJT, Koh T-W, Zhou Y, Bellen HJ. Synaptic mitochondria are critical for mobilization of reserve pool vesicles at drosophila neuromuscular junctions. Neuron. 2005;47(3):365–78 [Internet].

    Article  CAS  PubMed  Google Scholar 

  79. Delettre C, Lenaers G, Griffoin JM, Gigarel N, Lorenzo C, Belenguer P, et al. Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat Genet. 2000;26(2):207–10.

    Article  CAS  PubMed  Google Scholar 

  80. Alexander C, Votruba M, Pesch UE, Thiselton DL, Mayer S, Moore A, et al. OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat Genet. 2000;26(2):211–5.

    Article  CAS  PubMed  Google Scholar 

  81. Züchner S, Mersiyanova IV, Muglia M, Bissar-Tadmouri N, Rochelle J, Dadali EL, et al. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet. 2004;36(5):449–51.

    Article  PubMed  CAS  Google Scholar 

  82. Waterham HR, Koster J, van Roermund CWT, Mooyer PAW, Wanders RJA, Leonard JV. A lethal defect of mitochondrial and peroxisomal fission. N Engl J Med. 2007;356(17):1736–41 [Internet].

    Article  CAS  PubMed  Google Scholar 

  83. Pareyson D, Saveri P, Sagnelli A, Piscosquito G. Mitochondrial dynamics and inherited peripheral nerve diseases. Neurosci Lett. 2015;596:66–77 [Internet].

    Article  CAS  PubMed  Google Scholar 

  84. Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol. 2003;160(2):189–200 [Internet].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Strickland AV, Rebelo AP, Zhang F, Price J, Bolon B, Silva JP, et al. Characterization of the mitofusin 2 R94W mutation in a knock-in mouse model. J Peripher Nerv Syst. 2014;19(2):152–64 [Internet].

    Article  CAS  PubMed  Google Scholar 

  86. Lackner LL, Nunnari J. Small molecule inhibitors of mitochondrial division: tools that translate basic biological research into medicine. Chem Biol. 2010;17(6):578–83 [Internet].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wang D, Wang J, Bonamy GMC, Meeusen S, Brusch RG, Turk C, et al. A small molecule promotes mitochondrial fusion in mammalian. Angew Chem. 2012;51:9302–5.

    Article  CAS  Google Scholar 

  88. Yue W, Chen Z, Liu H, Yan C, Chen M, Feng D, et al. A small natural molecule promotes mitochondrial fusion through inhibition of the deubiquitinase USP30. Nat Publ Gr. 2014;24(4):482–96 [Internet].

    CAS  Google Scholar 

  89. Cassidy-Stone A, Chipuk JE, Ingerman E, Song C, Yoo C, Kuwana T, et al. Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev Cell. 2008;14(2):193–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ong SB, Subrayan S, Lim SY, Yellon DM, Davidson SM, Hausenloy DJ. Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation. 2010;121(18):2012–22.

    Article  CAS  PubMed  Google Scholar 

  91. Park SW, Kim K-Y, Lindsey JD, Dai Y, Heo H, Nguyen DH, et al. A selective inhibitor of Drp1, Mdivi-1, increases retinal ganglion cell survival in acute ischemic mouse retina. Invest Ophthalmol Vis Sci. 2011;52(5):2837–43 [Internet].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sharp WW, Fang YH, Han M, Zhang HJ, Hong Z, Banathy A, et al. Dynamin-related protein 1 (Drp1)-mediated diastolic dysfunction in myocardial ischemia-reperfusion injury: therapeutic benefits of Drp1 inhibition to reduce mitochondrial fission. FASEB J. 2014;28(1):316–26 [Internet].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Disatnik M-H, Hwang S, Ferreira JCB, Mochly-Rosen D. New therapeutics to modulate mitochondrial dynamics and mitophagy in cardiac diseases. J Mol Med (Berl). 2015;93(3):279–87 [Internet].

    Article  CAS  Google Scholar 

  94. Rappold PM, Cui M, Grima JC, Fan RZ, de Mesy-Bentley KL, Chen L, et al. Drp1 inhibition attenuates neurotoxicity and dopamine release deficits in vivo. Nat Commun. 2014;5:5244 [Internet].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Youle RJ, Narendra DP. Mechanisms of mitophagy. Nat Publ Gr. 2011;12(1):9–14 [Internet].

    CAS  Google Scholar 

  96. Ney PA. Mitochondrial autophagy: origins, significance, and role of BNIP3 and NIX. Biochim Biophys Acta, Mol Cell Res. 2015;1853(0):2775–83 [Internet].

    Article  CAS  PubMed  Google Scholar 

  97. Pickrell AM, Youle RJ. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’ s disease. Neuron. 2015;85(2):257–73 [Internet].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Eiyama A, Okamoto K. PINK1/Parkin-mediated mitophagy in mammalian cells. Curr Opin Cell Biol. 2015;33:95–101 [Internet].

    Article  CAS  PubMed  Google Scholar 

  99. Matsumine H, Saito M, Shimoda-Matsubayashi S, Tanaka H, Ishikawa A, Nakagawa-Hattori Y, et al. Localization of a gene for an autosomal recessive form of juvenile Parkinsonism to chromosome 6q25.2-27. Am J Hum Genet. 1997;60(3):588–96 [Internet].

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. 1998;392(6676):605–8 [Internet].

    Article  CAS  PubMed  Google Scholar 

  101. Valente EM, Bentivoglio AR, Dixon PH, Ferraris A, Ialongo T, Frontali M, et al. Localization of a novel locus for autosomal recessive early-onset Parkinsonism, PARK6, on human chromosome 1p35-p36. Am J Hum Genet. 2001;68(4):895–900 [Internet].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Narendra D, Tanaka A, Suen DF, Youle RJ. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol. 2008;183(5):795–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Geisler S, Holmström KM, Treis A, Skujat D, Weber SS, Fiesel FC, et al. The PINK1/Parkin-mediated mitophagy is compromised by PD-associated mutations. Autophagy. 2010;6(7):871–8.

    Article  CAS  PubMed  Google Scholar 

  104. Cai Q, Zakaria HM, Simone A, Sheng ZH. Spatial parkin translocation and degradation of damaged mitochondria via mitophagy in live cortical neurons. Curr Biol. 2012;22(6):545–52 [Internet].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Deng H, Dodson MW, Huang H, Guo M. The Parkinson’s disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila. Proc Natl Acad Sci. 2008;105(38):14503–8 [Internet].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Poole AC, Thomas RE, Yu S, Vincow ES, Pallanck L. The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/Parkin pathway. PLoS ONE. 2010;5(4):e10054.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Dorn 2nd GW. Mitochondrial dynamism and heart disease: changing shape and shaping change. EMBO Mol Med. 2015;7(7):865–77.

    Article  CAS  PubMed  Google Scholar 

  108. Ryan BJ, Hoek S, Fon EA, Wade-Martins R. Mitochondrial dysfunction and mitophagy in Parkinson’s: from familial to sporadic disease. Trends Biochem Sci. 2015;40(4):200–10 [Internet].

    Article  CAS  PubMed  Google Scholar 

  109. Sanders L, McCoy J, Hu X, Mastroberardino PG, Dickinson BC, Chang CJ, et al. Mitochondrial DNA damage: molecular marker of vulnerable nigral neurons in Parkinson’s disease. Neurobiol Dis. 2014;70:214–23 [Internet].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bender A, Krishnan KJ, Morris CM, Taylor GA, Reeve AK, Perry RH, et al. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet. 2006;38(5):515–7.

    Article  CAS  PubMed  Google Scholar 

  111. Kraytsberg Y, Kudryavtseva E, McKee AC, Geula C, Kowall NW, Khrapko K. Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet. 2006;38(5):518–20.

    Article  CAS  PubMed  Google Scholar 

  112. Reeve AK, Krishnan KJ, Elson JL, Morris CM, Bender A, Lightowlers RN, et al. Nature of mitochondrial DNA deletions in Substantia Nigra neurons. Am J Hum Genet. 2008;82(1):228–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Suen D-F, Narendra DP, Tanaka A, Manfredi G, Youle RJ. Parkin overexpression selects against a deleterious mtDNA mutation in heteroplasmic cybrid cells. Proc Natl Acad Sci U S A. 2010;107(26):11835–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Bingol B, Tea JS, Phu L, Reichelt M, Bakalarski CE, Song Q, et al. The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature. 2014;509(7505):370–5 [Internet].

    Google Scholar 

  115. Liang J-R, Martinez A, Lane JD, Mayor U, Clague MJ, Urbé S. USP30 deubiquitylates mitochondrial Parkin substrates and restricts apoptotic cell death. EMBO Rep. 2015;16:618–27. [Internet].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Durcan TM, Tang MY, Pérusse JR, Dashti EA, Aguileta MA, Mclelland L, et al. USP 8 regulates mitophagy by removing K 6 -linked ubiquitin conjugates from parkin. EMBO J. 2014;33(21):2473–91.

    Google Scholar 

  117. Cornelissen T, Haddad D, Wauters F, Van Humbeeck C, Mandemakers W, Koentjoro B, et al. The deubiquitinase USP15 antagonizes Parkin-mediated mitochondrial ubiquitination and mitophagy. Hum Mol Genet [Internet]. 2014;23(19):5227–42.

    Google Scholar 

  118. Wang Y, Serricchio M, Jauregui M, Shanbhag R, Stoltz T, Paolo T Di, et al. Autophagy deubiquitinating enzymes regulate PARK2-mediated mitophagy. Autophagy. 2015;11(4):595–606.

    Google Scholar 

  119. Tian X, Isamiddinova NS, Peroutka RJ, Goldenberg SJ, Mattern MR, Nicholson B, et al. Characterization of selective ubiquitin and ubiquitin-like protease inhibitors using a fluorescence-based multiplex assay format. Assay Drugs Dev Technol. 2011;9(2):165–73 [Internet].

    Article  CAS  Google Scholar 

  120. Lee B-H, Lee MJ, Park S, Oh D-C, Elsasser S, Chen P-C, et al. Enhancement of proteasome activity by a small-molecule inhibitor of Usp14. Nature. 2010;467(7312):179–84 [Internet].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hasson SA, Fogel AI, Wang C, MacArthur R, Guha R, Heman-Ackah S, et al. Chemogenomic profiling of endogenous PARK2 expression using a genome-edited coincidence reporter. ACS Chem Biol. 2015;10:1188–97. [Internet].

    Article  CAS  PubMed  Google Scholar 

  122. Chambers JW, Pachori A, Howard S, Ganno M, Hansen D, Kamenecka T, et al. Small molecule c-jun-N-terminal kinase inhibitors protect dopaminergic neurons in a model of Parkinson’s disease. ACS Chem Neurosci. 2011;2(4):198–206 [Internet].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hertz NT, Berthet A, Sos ML, Thorn KS, Burlingame AL, Nakamura K, et al. A neo-substrate that amplifies catalytic activity of parkinson’s-disease- related kinase PINK1. Cell. 2013;154(4):737–47 [Internet].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Laplante M, Sabatini DM. MTOR signaling in growth control and disease. Cell. 2012;149(2):274–93 [Internet].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. De Cabo R, Carmona-Gutierrez D, Bernier M, Hall MN, Madeo F. The search for antiaging interventions: from elixirs to fasting regimens. Cell. 2014;157(7):1515–28 [Internet].

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Albert V, Hall MN. mTOR signaling in cellular and organismal energetics. Curr Opin Cell Biol. 2015;33:55–66 [Internet].

    Article  CAS  PubMed  Google Scholar 

  127. Johnson SC, Rabinovitch PS, Kaeberlein M. mTOR is a key modulator of ageing and age-related disease. Nature. 2013;493(7432):338–45 [Internet].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Li J, Kim SG, Blenis J. Rapamycin: one drug, many effects. Cell Metab. 2014;19(3):373–9 [Internet].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Iommarini L, Peralta S, Torraco A, Diaz F. Mitochondrial diseases part II: mouse models of OXPHOS deficiencies caused by defects in regulatory factors and other components required for mitochondrial function. Mitochondrion. 2015;22:96–118 [Internet].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Torraco A, Peralta S, Iommarini L, Diaz F. Mitochondrial diseases part I : mouse models of OXPHOS deficiencies caused by defects in respiratory complex subunits or assembly factors. MITOCH. 2015;21:76–91 [Internet].

    Article  CAS  Google Scholar 

  131. Johnson SC, Yanos ME, Kayser E-B, Quintana A, Sangesland M, Castanza A, et al. mTOR inhibition alleviates mitochondrial disease in a mouse model of Leigh syndrome. Science. 2013;342(6165):1524–8 [Internet].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Mannick JB, Del Giudice G, Lattanzi M, Valiante NM, Praestgaard J, Huang B, et al. mTOR inhibition improves immune function in the elderly. Sci Transl Med. 2014;6(268):1–7.

    Article  CAS  Google Scholar 

  133. Prior M, Chiruta C, Currais A, Goldberg J, Ramsey J, Dargusch R, et al. Back to the future with phenotypic screening. ACS Chem Neurosci. 2014;5:503–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Schreiber SL. Small molecules: the missing link in the central dogma. Nat Chem Biol. 2005;1(2):64–6.

    Article  CAS  PubMed  Google Scholar 

  135. Wagner BK, Kitami T, Gilbert TJ, Peck D, Ramanathan A, Schreiber SL, et al. Large-scale chemical dissection of mitochondrial function. Nat Biotechnol. 2008;26(3):343–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Andreux PA, Mouchiroud L, Wang X, Jovaisaite V, Mottis A, Bichet S, et al. A method to identify and validate mitochondrial modulators using mammalian cells and the worm C. elegans. Sci Rep. 2014;4:5285. [Internet], (Figure 1).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Gohil VM, Sheth SA, Nilsson R, Wojtovich AP, Lee JH, Perocchi F, et al. Nutrient-sensitized screening for drugs that shift energy metabolism from mitochondrial respiration to glycolysis. Nat Biotechnol. 2010;28(3):249–55 [Internet].

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Kitami T, Logan DJ, Negri J, Hasaka T, Tolliday NJ, Carpenter AE, et al. A chemical screen probing the relationship between mitochondrial content and cell size. PLoS ONE. 2012;7(3):1–7.

    Article  CAS  Google Scholar 

  139. Sahdeo S, Tomilov A, Komachi K, Iwahashi C, Datta S, Hughes O, et al. High-throughput screening of FDA-approved drugs using oxygen biosensor plates reveals secondary mitofunctional effects. Mitochondrion. 2014;17:116–25 [Internet].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Gohil VM, Offner N, Walker JA, Sheth SA, Fossale E, Gusella JF, et al. Meclizine is neuroprotective in models of Huntington’s disease. Hum Mol Genet. 2011;20(2):294–300.

    Article  CAS  PubMed  Google Scholar 

  141. Casaluce F, Sgambato A, Maione P, Ciardiello F, Gridelli C. Emerging mitotic inhibitors for non-small cell carcinoma. Expert Opin Emerg Drugs. 2013;18(1):97–107 [Internet].

    Article  CAS  PubMed  Google Scholar 

  142. King MP, Attardi G. Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science. 1989;246(4929):500–3.

    Article  CAS  PubMed  Google Scholar 

  143. Wilkins HM, Carl SM, Swerdlow RH. Cytoplasmic hybrid (cybrid) cell lines as a practical model for mitochondriopathies. Redox Biol. 2014;2(1):619–31 [Internet].

    Article  CAS  PubMed Central  Google Scholar 

  144. de la Mata M, Garrido-Maraver J, Cotán D, Cordero MD, Oropesa-Ávila M, Izquierdo LG, et al. Recovery of MERRF fibroblasts and cybrids pathophysiology by coenzyme Q10. Neurotherapeutics. 2012;9(2):446–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Desquiret-Dumas V, Gueguen N, Barth M, Chevrollier A, Hancock S, Wallace DC, et al. Metabolically induced heteroplasmy shifting and l-arginine treatment reduce the energetic defect in a neuronal-like model of MELAS. Biochim Biophys Acta Mol Basis Dis. 2012;1822(6):1019–29 [Internet].

    Article  CAS  Google Scholar 

  146. Dai Y, Zheng K, Clark J, Swerdlow RH, Pulst SM, Sutton JP, et al. Rapamycin drives selection against a pathogenic heteroplasmic mitochondrial DNA mutation. Hum Mol Genet. 2014;23(3):637–47.

    Article  CAS  PubMed  Google Scholar 

  147. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.

    Article  CAS  PubMed  Google Scholar 

  148. Prigione A. Mitochondrial medicine. In: Weissig V, Edeas M, editors. Mitochondrial medicine: volume II, manipulating mitochondrial function, methods in molecular biology [internet]. New York: Springer; 2015. p. 349–56.

    Google Scholar 

  149. Fujikura J, Nakao K, Sone M, Noguchi M. Induced pluripotent stem cells generated from diabetic patients with mitochondrial DNA A3243G mutation. Diabetologia. 2012;55:1689–98.

    Article  CAS  PubMed  Google Scholar 

  150. Hämäläinen RH, Manninen T, Koivumäki H, Kislin M, Otonkoski T. Tissue- and cell-type – specific manifestations of heteroplasmic mtDNA 3243A>G mutation in human induced pluripotent stem cell-derived disease model. Proc Natl Acad Sci U S A. 2013;110(38):E3622–30.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Folmes C, Martinez-fernandez A, Perales-clemente E, Li X, Mcdonald A, Oglesbee D, et al. Disease-causing mitochondrial heteroplasmy segregated within induced pluripotent stem cell clones derived from a patient with. Stem Cells. 2013;31(7):1298–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Cherry ABC, Gagne KE, McLoughlin EM, Baccei A, Gorman B, Hartung O, et al. Induced pluripotent stem cells with a mitochondrial DNA deletion. Stem Cells. 2013;31(7):1287–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Cooper O, Seo H, Andrabi S, Guardia-laguarta C. Pharmacological rescue of mitochondrial deficits in iPSC-derived neural cells from patients with familial Parkinson’s disease. Sci Transl Med. 2012;4(141):141ra90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Sanders LH, Laganière J, Cooper O, Mak SK, Vu BJ, Huang YA, et al. Neurobiology of disease LRRK2 mutations cause mitochondrial DNA damage in iPSC-derived neural cells from Parkinson’s disease patients : reversal by gene correction. Neurobiol Dis. 2014;62:381–6 [Internet].

    Article  CAS  PubMed  Google Scholar 

  155. Pfeffer G, Horvath R, Klopstock T, Mootha VK, Suomalainen A, Koene S, et al. New treatments for mitochondrial disease-no time to drop our standards. Nat Rev Neurol. 2013;9(8):474–81 [Internet].

    Article  CAS  PubMed  Google Scholar 

  156. Pfeffer G, Majamaa K, Turnbull D, Thorburn D, Chinnery P. Treatment for mitochondrial disorders. Cochrane Database Syst Rev. 2012;1, CD004426.

    Google Scholar 

  157. Kerr DS. Review of clinical trials for mitochondrial disorders: 1997–2012. Neurotherapeutics. 2013;10(2):307–19 [Internet].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Martinelli D, Catteruccia M, Piemonte F, Pastore A, Tozzi G, Dionisi-Vici C, et al. EPI-743 reverses the progression of the pediatric mitochondrial disease-genetically defined Leigh syndrome. Mol Genet Metab. 2012;107(3):383–8 [Internet].

    Article  CAS  PubMed  Google Scholar 

  159. Reisman SA, Lee CYI, Meyer CJ, Proksch JW, Ward KW. Topical application of the synthetic triterpenoid RTA 408 activates Nrf2 and induces cytoprotective genes in rat skin. Arch Dermatol Res. 2014;306(5):447–54.

    Article  CAS  PubMed  Google Scholar 

  160. Szeto HH, Birk AV. Serendipity and the discovery of novel compounds that restore mitochondrial plasticity. Clin Pharmacol Ther. 2014;96(6):672–83 [Internet].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

I would like to thank Nathalie Vancampenhout for her help with clinical trial database searches.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen B. Helliwell BSc, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing

About this chapter

Cite this chapter

Helliwell, S.B. (2016). Development of Treatments and Therapies to Target Mitochondrial Dysfunction. In: Reeve, A., Simcox, E., Duchen, M., Turnbull, D. (eds) Mitochondrial Dysfunction in Neurodegenerative Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-28637-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28637-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28635-8

  • Online ISBN: 978-3-319-28637-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics