Skip to main content

C-SOMAQI: Self Organizing Migrating Algorithm with Quadratic Interpolation Crossover Operator for Constrained Global Optimization

  • Chapter
  • First Online:
Self-Organizing Migrating Algorithm

Part of the book series: Studies in Computational Intelligence ((SCI,volume 626))

Abstract

SOMAQI is a variant of Self Organizing Migrating Algorithm (SOMA) in which SOMA is hybridized with Quadratic Interpolation crossover operator, presented by Singh et al. (Advances in intelligent and soft computing. Springer, India, pp. 225–234, 2014). The algorithm SOMAQI has been designed to solve unconstrained nonlinear optimization problems. Earlier it has been tested on several benchmark problems and the results obtained by this technique outperform the results taken by several other techniques in terms of population size and function evaluations. In this chapter SOMAQI has been extended for solving constrained nonlinear optimization problems (C-SOMAQI) by including a penalty parameter free approach to select the feasible solutions. This algorithm also works with small population size and converges very fast. A set of 10 constrained optimization problems has been used to test the performance of the proposed algorithm. These problems are varying in complexity. To validate the efficiency of the proposed algorithm results are compared with the results obtained by C-SOMGA and C-SOMA. On the basis of the comparison it has been concluded that C-SOMAQI is efficient to solve constrained nonlinear optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim, J.H., Myung, H.: A two phase evolutionary programming for general constrained optimization problem. In: Proceedings of the Fifth Annual Conference on Evolutionary Programming, San Diego (1996)

    Google Scholar 

  2. Michalewicz, Z.: Genetic algorithms, numerical optimization and constraints. In: Echelman L.J. (ed.) Proceedings of the Sixth International Conference on Genetic Algorithms, pp. 151–158 (1995)

    Google Scholar 

  3. Myung, H., Kim, J.H.: Hybrid evolutionary programming for heavily constrained problems. Bio-Systems 38, 29–43 (1996)

    Article  Google Scholar 

  4. Orvosh, D., Davis, L.: Using a genetic algorithm to optimize problems with feasibility constraints. In: Echelman L.J. (ed.) Proceedings of the Sixth International Conference on Genetic Algorithms, pp. 548–552 (1995)

    Google Scholar 

  5. Michalewicz, Z., Attia, N.: Evolutionary optimization of constrained problems. In: Proceedings of Third Annual Conference on Evolutionary Programming, pp. 998–1008. World Scientific, River Edge (1994)

    Google Scholar 

  6. Joines, J., Houck, C.: On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GAs. In: Proceedings of the First IEEE Conference on Evolutionary Computation, pp. 587–602. IEEE Press, Orlando (1994)

    Google Scholar 

  7. Homaifar, A.A., Lai, S.H.Y., Qi, X.: Constrained optimization via genetic algorithms. Simulation 62, 242–254 (1994)

    Article  Google Scholar 

  8. Smith, A.E., Coit, D.W.: Constraint Handling Techniques-Penalty Functions, Handbook of Evolutionary Computation. Oxford University Press and Institute of Physics Publishing, Oxford (Chapter C 5.2) (1997)

    Google Scholar 

  9. Coello, C.A.: Theoretical and numerical constraint handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput. Methods Appl. Mech. Eng. 191, 1245–1287 (2002)

    Article  MATH  Google Scholar 

  10. Deb, K.: An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng. 186, 311–338 (2000)

    Article  MATH  Google Scholar 

  11. Coello, C.A., Mezura-Montes, E.: Constraint-handling in genetic algorithms through the use of dominance-based tournamen selection. Adv. Eng. Inf. 16, 193–203 (2002)

    Article  Google Scholar 

  12. Deb, K., Agarwal, S.: A niched-penalty approach for constraint handling in genetic algorithms. In: Proceedings of the ICANNGA, Portoroz, Slovenia (1999)

    Google Scholar 

  13. Akhtar, S., Tai, K., Ray, T.: A Socio-behavioural simulation model for engineering design optimization. Eng. Optim. 34, 341–354 (2002)

    Article  Google Scholar 

  14. Eskandar, A., Sadollah, A., Bahreininejad, A., Hamdi, M.: Water cycle algorithm—a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput. Struct. 110–111, 151–166 (2012)

    Article  Google Scholar 

  15. Eskandar, A., Sadollah, A., Bahreininejad, A., Hamdi, M.: Mine blast algorithms: a new population based algorithm for solving constrained engineering optimization problems. Appl. Soft Comput. (in press) (2012)

    Google Scholar 

  16. Pant, M., Thangaraj, R., Abraham, A.: A new PSO algorithm with crossover operator for global optimization problems. In: Corchado E. et al. (eds.) Second International Symposium on Hybrid Artificial Intelligent Systems (HAIS’07), Soft computing Series, Innovations in Hybrid Intelligent Systems, vol. 44, pp. 215–222. Springer, Germany (2007)

    Google Scholar 

  17. Deep, K., Dipti, S.: A self organizing migrating genetic algorithm for constrained optimization. Appl. Math. Comput. 198, 237–250 (2008)

    Google Scholar 

  18. Pant, M., Thangaraj, R., Abraham, A.: New mutation schemes for differential evolution algorithm and their application to the optimization of directional over-current relay settings. Appl. Math. Comput. 216, 532–544 (2010)

    Google Scholar 

  19. Deep, K., Bansal, J.C.: Quadratic approximation PSO for economic dispatch problems with valve-point effects. In: International Conference on Swarm, Evolutionary and Memetic computing, SRM University, Chennai, pp. 460–467, Proceedings Springer (2010)

    Google Scholar 

  20. Deep, K., Das, K. N.: Hybrid Binary Coded Genetic Algorithm for Constrained Optimization. In: ICGST AIML-11 Conference, Dubai, UAE (2011)

    Google Scholar 

  21. Singh, D., Agrawal, S., Singh, N.: A novel variant of self organizing migrating algorithm for function optimization. In Proceedings of the 3rd International Conference on Soft Computing for Problem Solving. Advances in Intelligent and Soft Computing, vol. 258, pp. 225–234. Springer, India (2014)

    Google Scholar 

  22. Zelinka, I., Lampinen, J.: SOMA—Self Organizing Migrating Algorithm. In: Proceedings of the 6th International Mendel Conference on Soft Computing, pp. 177–187. Brno, Czech, Republic (2000)

    Google Scholar 

  23. Zelinka, I.: SOMA—Self Organizing Migrating Algorithm. In: Onwubolu G.C., Babu B.V. (eds.) New Optimization Techniques in Engineering. Springer, Berlin (2004)

    Google Scholar 

  24. Nolle, L., Zelinka, I.: SOMA applied to optimum work roll profile selection in the hot rolling of wide steel. In: Proceedings of the 17th European Simulation Multiconference ESM 2003, pp. 53–58. Nottingham, UK, ISBN 3-936150-25-7, 9–11 June 2003 (2003)

    Google Scholar 

  25. Nolle, L., Zelinka, I., Hopgood, A.A., Goodyear, A.: Comparision of an self organizing migration algorithm with simulated annealing and differential evolution for automated waveform tuning. Adv. Eng. Softw. 36, 645–653 (2005)

    Google Scholar 

  26. Oplatkova, Z., Zelinka, I.: Investigation on Shannon-Kotelnik theorem impact on soma algorithm performance. In: Proceedings 19th European Conference on Modelling and Simulation Yuri Merkuryev, Richard Zobel (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipti Singh .

Editor information

Editors and Affiliations

Appendix

Appendix

Problem 1

$$ \begin{aligned} & \mathop {{{\min}}}\limits_{x} \;f\left( x \right) = - x_{1} - x_{2} , \\ & {\text{Subject to:}} \\ & g_{1} \left( x \right) = \left[ {\left( {x_{1} - 1} \right)^{2} + \left( {x_{2} - 1} \right)} \right]\left[ {{1 \mathord{\left/ {\vphantom {1 {2a^{2} - {1 \mathord{\left/ {\vphantom {1 {2b^{2} }}} \right. \kern-0pt} {2b^{2} }}}}} \right. \kern-0pt} {2a^{2} - {1 \mathord{\left/ {\vphantom {1 {2b^{2} }}} \right. \kern-0pt} {2b^{2} }}}}} \right] \\ & \quad \quad \qquad + \left( {x{}_{1} - 1} \right)\left( {x_{2} - 1} \right)\left[ {{1 \mathord{\left/ {\vphantom {1 {a^{2} - {1 \mathord{\left/ {\vphantom {1 {b^{2} }}} \right. \kern-0pt} {b^{2} }}}}} \right. \kern-0pt} {a^{2} - {1 \mathord{\left/ {\vphantom {1 {b^{2} }}} \right. \kern-0pt} {b^{2} }}}}} \right] - 1 \ge 0. \end{aligned}$$

where a = 2, b = 0.25.

This problem has two global minima one of which is at (1, 0.8729) with fmin = −1.8729. The feasible domain of the problem is disconnected. The bounds on the variables are 0 ≤ x1, x2 ≤ 1.

Problem 2

$$ \begin{aligned} & \mathop {{{\min}}}\limits_{x} \;f\left( x \right) = 3x_{1} + x_{2} + 2x{}_{3} + x_{4} - x_{5} , \\ & {\text{Subject to:}} \\ & g_{1} \left( x \right) = 25x_{1} - 40x_{2} + 16x_{3} + 21x_{4} + x_{5} \le 300, \\ & g_{2} \left( x \right) = x_{1} + 20x_{2} - 50x_{3} + x_{4} - x_{5} \le 200, \\ & g_{3} \left( x \right) = 60x_{1} + x_{2} - x_{3} + 2x_{4} + x_{5} \le 600, \\ & g_{4} \left( x \right) = - 7x{}_{1} + 4x_{2} + 15x_{3} - x_{4} + 65x_{5} \le 700. \\ \end{aligned}$$

This problem has global minima at (4, 88, 35, 150, 0) with f min = 320. The bounds on the variables are 1 ≤ x1 ≤ 4, 80 ≤ x2 ≤ 88, 30 ≤ x3 ≤ 35, 145 ≤ x4 ≤ 150, 0 ≤ x5 ≤ 2.

Problem 3

$$ \begin{aligned} & \mathop {{{\min}}}\limits_{x} \;f\left( x \right) = 4.3x_{1} + 31.8x_{2} + 63.3x{}_{3} + 15.8x_{4} + 68.5x_{5} + 4.7x_{6} ,\\ & {\text{Subject to:}} \\ & g_{1} \left( x \right) = 17.1x_{1} + 38.2x_{2} + 204.2x_{3} + 212.3x_{4} + 623.4x_{5} + 1495.5x_{6} - 169x_{1} x_{3} - 3580x_{3} x_{5} \\ & \quad \qquad - 3810x_{4} x_{5} - 18500x_{4} x_{6} - 24300x_{5} x_{6} - 4.97 \ge 0, \\& g_{2} \left( x \right) = 1.88 + 17.9x_{1} + 36.8x_{2} + 113.9x_{3} + 169.7x_{4} + 337.8x_{5} + 1385.2x_{6} - 139x_{1} x_{3} \\ & \quad \qquad - 2450x_{4} x_{5} - 600x_{4} x_{6} - 17200x_{5} x_{6} \ge 0, \\& g_{3} \left( x \right) = 429.08 - 273x_{2} - 70x_{4} - 819x_{5} + 26000x_{4} x_{5} \ge 0, \\ &g_{4} \left( x \right) = 159.9x{}_{1} - 311x_{2} + 587x_{4} + 391x_{5} + 2198x_{6} - 14000x_{1} x_{6} + 78.02 \ge 0. \\ \end{aligned} $$

This problem has global minima at (0, 0, 0, 0, 0, 0.00333) with fmin = 0.0156. The bounds on the variables are 0 ≤ x1 ≤ 0.31, 0 ≤ x2 ≤ 0.046, 0 ≤ x3 ≤ 0.068, 0 ≤ x4 ≤ 0.042, 0 ≤ x5 ≤ 0.028, 0 ≤ x6 ≤ 0.0134.

Problem 4

$$ \begin{aligned} & \mathop {{\max} }\limits_{x} \;f\left( x \right) = 25\left( {x_{1} - 2} \right)^{2} + \left( {x_{2} - 2} \right)^{2} + \left( {x_{3} - 1} \right)^{2} + \left( {x_{4} - 4} \right)^{2} + \left( {x_{5} - 1} \right)^{2} + \left( {x_{6} - 4} \right)^{2} , \\ & {\text{Subject to:}} \\ & g{}_{1}\left( x \right) = x_{1} + x_{2} - 2 \ge 0, \\ & g_{2} \left( x \right) = - x_{1} + x_{2} + 6 \ge 0, \\ & g{}_{3}\left( x \right) = x_{1} - x_{2} + 2 \ge 0, \\ & g{}_{4}\left( x \right) = - x_{1} + 3x_{2} + 2 \ge 0, \\ & g{}_{5}\left( x \right) = \left( {x_{3} - 3} \right)^{2} + x_{4} - 4 \ge 0, \\ & g{}_{6}\left( x \right) = \left( {x_{5} - 3} \right)^{2} + x_{6} - 4 \ge 0, \\ \end{aligned} $$

This problem has 18 global maxima and one global maxima at (5, 1, 5, 0, 5, 10) with fmax = 310. The bounds on the variables are 0 ≤ x1 ≤ 5, 0 ≤ x2 ≤ 1, 1 ≤ x3 ≤ 5, 0 ≤ x4 ≤ 6, 0 ≤ x5 ≤ 5, 0 ≤ x6 ≤ 10.

Problem 5

$$ \begin{aligned} & \mathop {{{\min}}}\limits_{x} \;f\left( x \right) = \left( {x_{1}^{2} + x_{2} - 11} \right)^{2} + \left( {x_{1} + x_{2}^{2} - 7} \right)^{2} , \\ & {\text{Subject to:}} \\ & g{}_{1}\left( x \right) = 4.84 - \left( {x_{1} - 0.05} \right)^{2} - \left( {x_{2} - 2.5} \right)^{2} \ge 0, \\ & g_{2} \left( x \right) = x_{1}^{2} + \left( {x_{2} - 2.5} \right)^{2} - 4.84 \ge 0. \\ \end{aligned} $$

This problem has two decision variables. It has global minima at \( x^{*} = \left( {2.246826,\,2.381865} \right) \) with fmin = 13.59085. The bounds on the variables are \( 0 \le x_{i} \le 6,\;for\;i = 1,\,2. \)

Problem 6

$$ \begin{aligned} \mathop {{{\min}}}\limits_{x} \;f\left( x \right) & = 5\sum\limits_{i = 1}^{4} {x_{i} } - 5\sum\limits_{i = 1}^{4} {x_{i}^{2} } - \sum\limits_{i = 5}^{13} {x_{i} } , \\ g{}_{1}\left( x \right) & = 10 - (2x_{1} + 2x_{2} + x_{10} + x_{11} ) \ge 0, \\ g_{2} \left( x \right) & = 10 - (2x_{1} + 2x_{3} + x_{10} + x_{12} ) \ge 0, \\ g{}_{3}\left( x \right) & = 10 - (2x_{2} + 2x_{3} + x_{11} + x_{12} ) \ge 0, \\ g{}_{4}\left( x \right) & = 8x_{1} - x_{10} \ge 0, \\ g{}_{5}\left( x \right) & = 8x_{2} - x_{11} \ge 0, \\ g{}_{6}\left( x \right) & = 8x_{3} - x_{12} \ge 0, \\ g{}_{7}\left( x \right) & = 2x_{4} + x_{5} - x_{10} \ge 0, \\ g{}_{8}\left( x \right) & = 2x_{6} + x_{7} - x_{11} \ge 0, \\ g{}_{9}\left( x \right) & = 2x_{8} + x_{9} - x_{12} \ge 0, \\ x_{i} & \ge 0,\quad i = 1, \ldots ,13, \\ x_{i} & \le 1,\quad i = 1, \ldots 9,13. \\ \end{aligned} $$

This problem has global minima at \( x^{*} = \left( {1,\,1,\, \ldots 1,\,3,\,3,\,3,\,1} \right) \) with fmin = −15. The bounds on the variables are \( 0 \le x_{i} \le u_{i} ,\;i = 1,2, \ldots ,n, \) where \( u = \left( {1,\,1, \ldots ,1,\,100,\,100,\,100,\,1} \right). \)

Problem 7

$$ \begin{aligned} & \mathop {{{\max}}}\limits_{x} \;f\left( x \right) = \frac{{\sin^{3} \left( {2\pi x_{1} } \right)\sin \left( {2\pi x_{2} } \right)}}{{x_{1}^{3} \left( {x_{1} + x_{2} } \right)}}, \\ & {\text{Subject to:}} \\ & g_{1} \left( x \right) = - x_{1}^{2} + x_{2} - 1 \ge 0, \\ & g_{2} \left( x \right) = - 1 + x_{1} - \left( {x_{2} - 4} \right)^{2} \ge 0. \\ \end{aligned} $$

This problem has global maxima at \( x^{*} = \left( {1.2279713,\,4.2453733} \right),\;f\left( {x^{*} } \right) = 0.095 \) with fmax = 0.095. The bounds on the variables are \( 0 \le x_{i} \le 10,\;i = 1,2. \)

Problem 8

$$ \begin{aligned} & \mathop {{{\min}}}\limits_{x} \;f\left( x \right) = x_{1}^{2} + \left( {x_{2} - 1} \right)^{2}\\ & {\text{Subject to:}} \\ & h_{1} \left( x \right) = x{}_{2} - x_{1}^{2} = 0. \\ \end{aligned} $$

This problem has global minima at \( x^{*} = \pm \left( {{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 {2^{0.5} }}}\right.\kern-0pt} \!\lower0.7ex\hbox{${2^{0.5} }$}},{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}}} \right),\;f\left( {x^{*} } \right) = 0.75 \) with fmin = 0.75. The bounds on the variables are: \( - 1 \le x_{i} \le 1,\;i = 1,2. \)

Problem 9

$$ \begin{aligned} & \mathop {{{\max}}}\limits_{x} \;f\left( x \right) = \left( {\sqrt n } \right)^{n} \prod\limits_{i = 1}^{n} {x_{i} } , \\ & {\text{Subject to:}} \\ &h_{1} \left( x \right) = \sum\limits_{i = 1}^{n} {x_{i}^{2} } - 1 = 0.\\ \end{aligned} $$

This problem has global maxima at \( x^{*} = \left( {{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 {n^{0.5} }}}\right.\kern-0pt} \!\lower0.7ex\hbox{${n^{0.5} }$}}, \ldots {\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 {n^{0.5} }}}\right.\kern-0pt} \!\lower0.7ex\hbox{${n^{0.5} }$}}} \right) \) with fmax = 1. The bounds on the variables are: \( 0 \le x_{i} \le 1,\;i = 1,2, \ldots ,n. \)

Problem 10

$$ \begin{aligned} & \mathop {{{\max}}}\limits_{x} \;f\left( x \right) = \left| {\frac{{\sum\nolimits_{i = 1}^{n} {\cos^{4} \left( {x_{i} } \right) - 2\prod\nolimits_{i = 1}^{n} {\cos^{2} \left( {x_{i} } \right)} } }}{{\sqrt {\sum\nolimits_{i = 1}^{n} {ix_{i}^{2} } } }}} \right|\,,\\ & {\text{Subject to:}} \\ & g{}_{1}\left( x \right) = \prod\limits_{i = 1}^{n} {x_{i} } - 0.75 \ge 0, \\ & g_{2} \left( x \right) = 7.5n - \sum\limits_{i = 1}^{n} {x_{i} } \ge 0, \\ \end{aligned} $$

This problem has global maxima at fmax = 0.803619 for n = 20. The bounds on the variables are: \( 0 \le x_{i} \le 10,\;i = 1,2, \ldots ,n. \)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Singh, D., Agrawal, S., Deep, K. (2016). C-SOMAQI: Self Organizing Migrating Algorithm with Quadratic Interpolation Crossover Operator for Constrained Global Optimization. In: Davendra, D., Zelinka, I. (eds) Self-Organizing Migrating Algorithm. Studies in Computational Intelligence, vol 626. Springer, Cham. https://doi.org/10.1007/978-3-319-28161-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28161-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28159-9

  • Online ISBN: 978-3-319-28161-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics