Skip to main content

Therapy Optimization in Population Dynamics Models

  • Chapter
  • First Online:
System Engineering Approach to Planning Anticancer Therapies

Abstract

Cell subpopulations dealt with in the preceding chapter were the result of compartmentalizing the model. In this chapter we focus on growth of cancer cells and the associated vascular system and interactions with the immune system. Therefore, though the variables will still describe the amount of cells of different type, there will be no flux from one type to another. We start with introduction of standard models of population dynamics, with exponential, Gompertzian, and logistic growth. The difference between stochastic and deterministic approach to model population size is explained, a point often misinterpreted in various sources. Then, the angiogenic aspects of cancer growth are discussed, followed by several models of cancer growth including vascularization. Consequently, the problem of optimization of antiangiogenic and combined therapies is analyzed. Finally, models of gene and immunotherapy in cancer treatments are briefly reviewed. In addition to discussion of optimal treatment protocols, the focus of this chapter is on the formal, system engineering-based analysis of dynamical properties of systems under investigation, such as stability and controllability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Z. Agur, L. Arakelyan, P. Daugulis, Y. Ginosar, Hopf point analysis for angiogenesis models. Discrete Continuous Dyn. Syst. Ser. B 4, 29–38 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. T. Alarcon, H. Byrne, P. Maini, J. Panovska, Mathematical modelling of angiogenesis and vascular adaptation. Stud. Multidiscip. 3, 369–387 (2006)

    Article  Google Scholar 

  3. A.R.A. Anderson, M.A.J. Chaplain, Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull. Math. Biol. 60, 857–900 (2003)

    Article  MATH  Google Scholar 

  4. L. Arakelyan, V. Vainstein, Z. Agur, A computer algorithm describing the process of vessel formation and maturation, and its use for predicting the effects of antiangiogenic and antimaturation therapy on vascular tumor growth. Angiogenesis 5, 203–214 (2002)

    Article  Google Scholar 

  5. A.L. Bauer, T.L. Jackson, Y. Jiang, A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis. Biophys. J. 92(9), 3105–3121 (2007)

    Article  Google Scholar 

  6. G. Bergers, D. Hanahan, Modes of resistance to antiangiogenic therapy. Nat. Rev. Cancer 8, 592–603 (2008)

    Article  Google Scholar 

  7. M. Biesecker, J.-H. Kimn, H. Lu, D. Dingli, Z. Bajzer, Optimization of virotherapy for cancer. Bull. Math. Biol. 72, 469–489 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Bischoff, Approaches to studying cell adhesion and angiogenesis. Trends Cell Biol. 5, 69–73 (1995)

    Article  Google Scholar 

  9. M. Bodnar, U. Forys, Angiogenesis model with carrying capacity depending on vessel density. J. Biol. Syst. 17(1), 1–25 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. J.B. Brayer, J. Pinilla-Ibarz, Developing strategies in the immunotherapy of leukemias. Cancer Control 20(1), 49–59 (2013)

    Google Scholar 

  11. T. Browder, C.E. Butterfield, B.M. Kraling, B. Shi, B. Marshall, M.S. OReilly, J. Folkman, Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res. 60, 1878 (2000)

    Google Scholar 

  12. F. Castiglione, B. Piccoli, Cancer immunotherapy, mathematical modeling and optimal control. J. Theor. Biol. 247, 723–732 (2007)

    Article  MathSciNet  Google Scholar 

  13. M. Colleoni, A. Rocca, M.T. Sandri, L. Zorzino, G. Masci, F. Nole, G. Peruzzotti, C. Robertson, L. Orlando, S. Cinieri, F. de Braud, G. Viale, A. Goldhirsch, Low-dose oral methotrexate and cyclophosphamide in metastatic breast cancer: antitumour activity and correlation with vascular endothelial growth factor levels. Ann. Oncol. 13, 73 (2002)

    Article  Google Scholar 

  14. R.J. D’Amato, M.S. Loughnan, E. Flynn, J. Folkman, Thalidomide is an inhibitor of angio-genesis. Proc. Natl. Acad. Sci. U.S.A. 91, 4082–4085 (1994)

    Article  Google Scholar 

  15. S. Davis, G.D. Yancopoulos, The angio-poietins: Yin and Yang in angiogenesis. Curr. Top. Microbiol. Immunol. 237, 173–185 (1999)

    Google Scholar 

  16. L.G. de Pillis, W. Gua, A.E. Radunskaya, Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretations. J. Theor. Biol 238, 841–862 (2006)

    Article  MathSciNet  Google Scholar 

  17. J. Denekamp, Angiogenesis, neovascular proliferation and vascular pathophysiology as targets for cancer therapy. Br. J. Radiol. 66, 181–196 (1993)

    Article  Google Scholar 

  18. M. Dolbniak, A. Swierniak, Comparison of simple models of periodic protocols for combined anticancer therapy. Comput. Math. Methods Med. 2013, 567213 (2013)

    Article  MathSciNet  Google Scholar 

  19. A. d’Onofrio, A. Gandolfi, Tumor eradication by antiangiogenic therapy: analysis and extensions of the model by Hahnfeldt et al. (1999). Math. Biosci. 191(2), 159–184 (2004)

    Google Scholar 

  20. A. d’Onofrio, A. Gandolfi, A family of models of angiogenesis and anti-angiogenesis anti-cancer therapy. Math. Med. Biol. 26, 63–95 (2009)

    Article  MATH  Google Scholar 

  21. A. d’Onofrio, A. Gandolfi, Chemotherapy of vascularised tumours: role of vessel density and the effect of vascular “pruning”. J. Theor. Biol. 264, 253–265 (2010)

    Article  MathSciNet  Google Scholar 

  22. A. d’Onofrio, U. Ledzewicz, H. Maurer, H. Schaettler, On optimal delivery of combination therapy for tumors. Math. Biosci. 222, 13–26 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. R. Eftimie, J.L. Bramson, D.J.D. Earn, Interactions between the immune system and cancer: a brief review of non-spatial mathematical models. Bull. Math. Biol. 73, 2–32 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. R. Eftimie, J. Dushoff, B.W. Bridle, J.L. Bramson, D.J.D. Earn, Multi-stability and multi-instability phenomena in a mathematical model of tumor-immune-virus interactions. Bull. Math. Biol. 73, 2932–2961 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Eggermont, G. Kroemer, L. Zitvogel, Immunotherapy and the concept of a clinical cure. Eur. J. Cancer 49, 2965–2967 (2013)

    Article  Google Scholar 

  26. A. Eggermont, C. Robert, J.C. Soria, L. Zitvogel, Harnessing the immune system to provide long-term survival in patients with melanoma and other solid tumors. OncoImmunology 3, e27560 (2014)

    Article  Google Scholar 

  27. A. Ergun, K. Camphausen, L. Wein, Optimal scheduling of radiotherapy and angiogenic inhibitors. Bull. Math. Biol. 65, 407–424 (2003)

    Article  MATH  Google Scholar 

  28. M. Essand, A.S.I. Loskog, Genetically engineered T cells for the treatment of cancer. J. Intern. Med. 273, 166–181 (2013)

    Article  Google Scholar 

  29. J. Folkman, Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 295, 1182–1186 (1971)

    Google Scholar 

  30. J. Folkman, Antiangiogenesis: new concept for therapy of solid tumors. Ann. Surg. 175, 409–416 (1972)

    Article  Google Scholar 

  31. J. Folkman, Angiogenesis inhibitors generated by tumors. Mol. Med. 1, 120–122 (1995)

    Google Scholar 

  32. J. Folkman, C. Haudenschild, Angiogenesis in vitro. Nature 288, 551–555 (1980)

    Article  Google Scholar 

  33. J. Folkman, M. Klagsburn, Angiogenic factors. Science 235, 442–447 (1987)

    Article  Google Scholar 

  34. U. Forys, Y. Kheifetz, Y. Kogan, Critical point analysis for three variable cancer angiogenesis models. Math. Biosci. Eng. 2, 511–525 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. G. Gasparini, R. Longo, M. Fanelli, B.A. Teicher, Combination of antiangiogenic therapy with other anticancer therapies:results, challenges, and open questions. J. Clin. Oncol. 23, 1295–1311 (2005)

    Article  Google Scholar 

  36. S. Gill, M. Kalos, T cell-based gene therapy of cancer. Transl. Res. 161(4), 365–379 (2013)

    Article  Google Scholar 

  37. B. Gompertz, On nature of the function expressive of the law of human mortality, and a new mode of determining the value of life contingencies, Letter to F. Batly. Esq. Phil. Trans. R. Soc. 115, 513–585 (1825)

    Google Scholar 

  38. M. Gyllenberg, G.F. Webb, Quiescence as an explanation of Gompertzian tumor growth. Growth Dev. Aging 53, 25–33 (1989)

    Google Scholar 

  39. P. Hahnfeldt, D. Panigraphy, J. Folkman, L. Hlatky, Tumor development under angiogenic signaling: a dynamic theory of tumor growth, treatment response and postvascular dormacy. Cancer Res. 59, 4770–4778 (1999)

    Google Scholar 

  40. K.J. Harrington, R.G. Vile, H.S. Pandha (eds.), Viral Therapy of Cancer (Wiley, Hoboken, 2008)

    Google Scholar 

  41. F.S. Hodi et al., Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363(8), 711–723 (2010)

    Article  Google Scholar 

  42. T. Jackson, X. Zheng, A cell-based model of endothelial cell migration, proliferation and maturation during corneal angiogenesis. Bull. Math. Biol. 72, 830–868 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. R.K. Jain, R.T. Tong, L.L. Munn, Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model. Cancer Res. 67(6), 2729–2735 (2007)

    Article  Google Scholar 

  44. R. Kerbel, A cancer therapy resistant to resistance. Nature 390, 335–340 (1997)

    Article  Google Scholar 

  45. R. Kerbel, Tumor angiogenesis: past, present and near future. Carcinogenesis 21, 505–515 (2000)

    Article  Google Scholar 

  46. M. Kimmel, A. Swierniak, Control theory approach to cancer chemotherapy: benefiting from phase dependence and overcoming drug resistance, in Tutorials in Mathematical Biosciences III: Cell Cycle, Proliferation, and Cancer, ed. by A. Friedman. Lecture Notes in Mathematics. Mathematical Biosciences Subseries, vol. 1872 (Springer, Heidelberg, 2006), pp. 185–222

    Google Scholar 

  47. K.L. Kiran, S. Lakshminarayanan, Optimization of chemotherapy and immunotherapy: in silico analysis using pharmacokinetic-pharmacodynamic and tumor growth models. J. Process Control 23, 396–403 (2013)

    Article  Google Scholar 

  48. M. Klagsburn, S. Soker, VEGF/VPF: the angiogenesis factor found? Curr. Biol. 3, 699–702 (1993)

    Article  Google Scholar 

  49. J. Klamka, Controllability of Dynamical Systems (Kluwer Academic, Dordrecht, 1991)

    MATH  Google Scholar 

  50. J. Klamka, A. Swierniak, Controllability of a model of combined anticancer therapy. Control Cybern. 42(1), 123–138 (2013)

    MathSciNet  MATH  Google Scholar 

  51. N. Kronik, Y. Kogan, V. Vainstein, Z. Agur, Improving alloreactive CTL immunotherapy for malignant gliomas using a simulation model of their interactive dynamics. Cancer Immunol. Immunother. 57, 425–439 (2008)

    Article  Google Scholar 

  52. V.A. Kuznetsov, I.A. Makalkin, M.A. Taylor, A.S. Perelson, Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis. Bull. Math. Biol. 56(2), 295–321 (1994)

    Article  MATH  Google Scholar 

  53. A.K. Laird, Cell fractionation of normal and malignant tissues. Exp. Cell Res. 6(1), 30–44 (1954)

    Article  Google Scholar 

  54. U. Ledzewicz, H. Schaettler, Antiangiogenic therapy in cancer treatment as an optimal control problem. SIAM J. Control Optim. 46, 1052–1079 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  55. U. Ledzewicz, H. Schaettler, Optimal and suboptimal protocols for a class of mathematical models of tumor anti-angiogenesis. J. Theor. Biol 252, 295–312 (2008)

    Article  MathSciNet  Google Scholar 

  56. U. Ledzewicz, H. Schaettler, On the optimality of singular controls for a class of mathematical models for tumor antiangiogenesis. Discrete Contin. Dyn. Syst. Ser. B 11, 691–715 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  57. U. Ledzewicz, J. Marriott, H. Maurer, H. Schaettler, Realizable protocols for optimal administration of drugs in mathematical models for anti-angiogenic treatment. Math. Med. Biol. 27, 157–179 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  58. U. Ledzewicz, H. Maurer, H. Schaettler, Minimizing tumor volume for a mathematical model of anti-angiogenesis with linear pharmacokinetics, in Recent Advances in Optimization and Its Applications in Engineering (Springer, New York, 2010), pp. 267–276

    Google Scholar 

  59. J. Ma, D.J. Waxman, Combination of antiangiogenesis with chemotherapy for more effective cancer treatment. Mol. Cancer Ther. 7, 3670–3684 (2008)

    Article  Google Scholar 

  60. M. Malisoff, F. Mazenc, Constructions of Strict Lyapunov Functions. Communications and Control Engineering (Springer, London, 2009)

    Book  MATH  Google Scholar 

  61. T.R. Malthus, An Essay on the Principle of Population (St. Paul’s Church-yard, London, 1798)

    Google Scholar 

  62. N. Mantzaris, S. Webb, H. Othmer, Mathematical modeling of tumor-induced angiogenesis. J. Math. Biol. 49, 111–127 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  63. S.R. McDougall, A.R.A. Anderson, M.A.J. Chaplain, J.A. Sheratt, Mathematical modelling of flow through vascular networks: implications for tumor-induced angiogenesis and chemotherapy strategies. Bull. Math. Biol. 64, 673–702 (2002)

    Article  MATH  Google Scholar 

  64. M. J. Piotrowska, U. Forys, Analysis of the Hopf bifurcation for the family of angiogenesis models. J. Math. Anal. Appl. 382(1), 180–203 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  65. M.J. Plank, B.D. Sleeman, A reinforced random walk model of tumour angiogenesis and anti-angiogenic strategies. Math. Med. Biol. 20, 135–181 (2003)

    Article  MATH  Google Scholar 

  66. R. Ramakrishnan, D.I. Gabrilovich, Novel mechanism of synergistic effects of conventional chemotherapy and immune therapy of cancer. Cancer Immunol. Immunother. 62, 405–410 (2013)

    Article  Google Scholar 

  67. A. Ribas, Tumor immunotherapy directed at PD-1. N. Engl. J. Med. 366(26), 2517–2519 (2012)

    Article  Google Scholar 

  68. C.R. Robert et al., Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N. Engl. J. Med. 364(26), 2517–2526 (2011)

    Article  Google Scholar 

  69. K. Roesch, D. Hasenclever, M. Scholz, Modelling lymphoma therapy and outcome. Bull. Math. Biol. 76, 401–430 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  70. J.L. Salle, S. Lefschetz, Stability by Liapunov’s Direct Method (Academic, New York, 1961)

    MATH  Google Scholar 

  71. B.D. Sleeman, M. Hubbard, P.F. Jones, The foundations of an unified approach to mathematical modelling of angiogenesis. Int. J. Adv. Eng. Sci. Appl. Math. 1, 43–52 (2009)

    Article  Google Scholar 

  72. C.L. Stokes, D.A. Lauffenberger, Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis. J. Theor. Biol. 152, 377–403 (1991)

    Article  Google Scholar 

  73. A. Swierniak, Direct and indirect control of cancer populations. Bull. Pol. Acad. Sci. 56(4), 367–378 (2008)

    Google Scholar 

  74. A. Swierniak, Comparison of six models of antiangiogenic therapy. Appl. Math. 36(2), 333–348 (2009)

    MathSciNet  MATH  Google Scholar 

  75. A. Swierniak, J. Klamka, Control properties of models of antiangiogenic therapy, in Advances in Automatics and Robotics (Postepy Automatyki i Robotyki), ed. by K. Malinowski, R. Dindorf. Monograph of Committee of Automatics and Robotics PAS, Kielce, 2011, 16, part 2, pp. 300–312

    Google Scholar 

  76. A. Swierniak, J. Klamka, Local controllability of models of combined anticancer therapy with delays in control. Math. Model. Nat. Phenom. 9(4), 216–226 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  77. A. Swierniak, K. Ploskonski, Periodic control of antiangiogenic and combined anticancer therapies, in Proceedings of the IFAC Workshop on Periodic Control Systems PSYCO 2010, Antalya, 2010. CD ROM edition

    Google Scholar 

  78. A. Swierniak, J. Smieja, Singularity of optimal antiangiogenic strategies - exception or rule, in Proceedings of the 7th IASTED Biomedical Engineering, Innsbruck, 2010

    Google Scholar 

  79. R.D.M. Travaso, E. Corvera Poire, M. Castro, J.C. Rodriguez-Manzaneque, A. Hernandez-Machado, Tumor angiogenesis and vascular patterning: a mathematical model. Plos ONE 6, e19989 (2011)

    Article  Google Scholar 

  80. L.S. Tseng, K.T. Jin, K.F. He, H.H. Wang, J. Cao, D.C. Yu, Advances in combination of antiangiogenic agents targeting VEGF-binding and conventional chemotherapy and radiation for cancer treatment. J. Chin. Med. Assoc. 73, 281–288 (2010)

    Article  Google Scholar 

  81. P.F. Verhulst, Notice sur la loi que la population poursuit dans son accroissement. Corresp. Math. Phys. 10, 113–121 (1838)

    Google Scholar 

  82. N. Weidner, Intramural microvessel density as a prognostic factor in cancer. Am. J. Pathol. 147, 9–19 (1995)

    Google Scholar 

  83. A.L. Woelke, M.S. Murgueitio, R. Preissner, Theoretical modeling techniques and their impact on tumor immunology. Clin. Dev. Immunol. (2010). doi:10.1155/2010/271794

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

Š 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Świerniak, A., Kimmel, M., Smieja, J., Puszynski, K., Psiuk-Maksymowicz, K. (2016). Therapy Optimization in Population Dynamics Models. In: System Engineering Approach to Planning Anticancer Therapies. Springer, Cham. https://doi.org/10.1007/978-3-319-28095-0_3

Download citation

Publish with us

Policies and ethics