Skip to main content

A Stochastic Multi-scale Approach for Numerical Modeling of Complex Materials—Application to Uniaxial Cyclic Response of Concrete

  • Chapter
  • First Online:
Computational Methods for Solids and Fluids

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 41))

  • 1499 Accesses

Abstract

In complex materials, numerous intertwined phenomena underlie the overall response at macroscale. These phenomena can pertain to different engineering fields (mechanical, chemical, electrical), occur at different scales, can appear as uncertain, and are nonlinear. Interacting with complex materials thus calls for developing nonlinear computational approaches where multi-scale techniques that grasp key phenomena at the relevant scale need to be mingled with stochastic methods accounting for uncertainties. In this chapter, we develop such a computational approach for modeling the mechanical response of a representative volume of concrete in uniaxial cyclic loading. A mesoscale is defined such that it represents an equivalent heterogeneous medium: nonlinear local response is modeled in the framework of Thermodynamics with Internal Variables; spatial variability of the local response is represented by correlated random vector fields generated with the Spectral Representation Method. Macroscale response is recovered through standard homogenization procedure from Micromechanics and shows salient features of the uniaxial cyclic response of concrete that are not explicitly modeled at mesoscale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ben-Dhia H (1998) Multiscale mechanical problems: the Arlequin method. C R Acad Sci Paris, Série IIb, 326:899–904

    Google Scholar 

  2. Benkemoun N, Hautefeuille M, Colliat J-B, Ibrahimbegovic A (2010) Failure of heterogeneous materials: 3D meso-scale FE models with embedded discontinuities. Int J Num Meth Eng, doi:10.1002/nme.2816

  3. Bocchini P, Deodatis G (2008) Critical review and latest developments of a class of simulation algorithms for strongly non-Gaussian random fields. Probab Eng Mech, doi:10.1016/j.probengmech.2007.09.001

    Google Scholar 

  4. Charmpis DC, Schuëller GI, Pellissetti MF (2007) The need for linking micromechanics of materials with stochastic finite elements: A challenge for materials science. Comput Mat Sci, doi:10.1016/j.commatsci.2007.02.014

    Google Scholar 

  5. Cottereau R (2013) Numerical strategy for unbiased homogenization of random materials. Int J Num Meth Eng, doi:10.1002/nme.4502

    Google Scholar 

  6. Deodatis G (1996) Non-stationary stochastic vector processes: seismic ground motion applications. J Eng Mech 11:149–168

    Google Scholar 

  7. Deodatis G (1996) Simulation of ergodic multivariate stochastic processes. ASCE J Eng Mech 122(8):778–787

    Google Scholar 

  8. Feyel F (2003) A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua. Comput Meth Appl Mech Eng, doi:10.1016/S0045-7825(03)00348-7

    Google Scholar 

  9. Germain P, Nguyen QS, Suquet P (1983) Continuum thermodynamics. ASME J Appl Mech 50:1010–1020

    Google Scholar 

  10. Gioffre M, Gusella V, Grigoriu M (2000) Simulation of non-Gaussian field applied to wind pressure fluctuations. Probab Eng Mech 15:339–45

    Google Scholar 

  11. Grigoriu M (1995) Applied non-Gaussian processes: Examples, theory, simulation, linear random vibration and MATLAB solutions. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  12. Hill R (1950) The mathematical theory of plasticity. Oxford University Press, London

    Google Scholar 

  13. Ibrahimbegovic A (2009) Nonlinear solid mechanics: Theoretical formulations and finite element solution methods. Springer Netherlands

    Google Scholar 

  14. Ibrahimbegovic A, Jehel P (2008) Coupled damage-plasticity constitutive model and direct stress interpolation. Comput Mech, doi:10.1007/s00466-007-0230-6

    Google Scholar 

  15. Ibrahimbegovic A, Markovic D (2003) Strong coupling methods in multi-phase and multi-scale modeling of inelastic behavior of heterogeneous structures. Comput Meth Appl Mech Eng, doi:10.1016/S0045-7825(03)00342-6

    Google Scholar 

  16. Jehel P, Cottereau R (2015) On damping created by heterogeneous yielding in the numerical analysis of nonlinear reinforced concrete frame elements. Comput Struct, doi:10.1016/j.compstruc.2015.03.001

    Google Scholar 

  17. Jehel P, Davenne L, Ibrahimbegovic A, Léger P (2010) Towards robust viscoelastic-plastic-damage material model with different hardenings / softenings capable of representing salient phenomena in seismic loading applications. Comp Concr 7(4):365–386

    Google Scholar 

  18. Ladevèze P, Loiseau O, Dureisseix D (2001) A micro-macro and parallel computational strategy for highly heterogeneous structures. Int J Num Meth Eng, doi:10.1002/nme.274

    Google Scholar 

  19. Lubliner J (1984) A maximum-dissipation principle in generalized plasticity. Acta Mech 52:225–237

    Google Scholar 

  20. Markovic D, Ibrahimbegovic A (2006) Complementary energy based FE modelling of coupled elasto-plastic and damage behavior for continuum microstructure computations. Comput Meth Appl Mech Eng, doi:10.1016/j.cma.2005.05.058

    Google Scholar 

  21. Maugin G (1999) The thermodynamics of nonlinear irreversible behaviors: An introduction. World Scientific, Singapore

    Google Scholar 

  22. Miehe C, Koch A (2002) Computational micro-to-macro transitions of discretized microstructures undergoing small strains. Arch Appl Mech, doi:10.1007/s00419-002-0212-2

    Google Scholar 

  23. Nemat-Nasser S, Hori M (1993) Micromechanics: Overall properties of heterogenous materials. Elsevier Science Publishers B.V., Amsterdam, The Netherlands

    Google Scholar 

  24. Ostoja-Starzewski M (2006) Material spatial randomness: From statistical to representative volume element. Probab Eng Mech, doi:10.1016/j.probengmech.2005.07.007

    Google Scholar 

  25. Papadopoulos V, Soimiris G, Papadrakakis M (2013) Buckling analysis of I-section portal frames with stochastic imperfections. Eng Struct, doi:10.1016/j.engstruct.2012.09.009

    Google Scholar 

  26. Popescu R, Deodatis G, Prevost JH (1998) Simulation of homogeneous nonGaussian stochastic vector fields. Probab Eng Mech 13(1):1–13

    Google Scholar 

  27. Python Software Foundation (2015) Python langage documentation, version 3.4.3. http://docs.python.org/3.4 (last consulted Nov. 6, 2015)

  28. Ragueneau F, La Borderie C, Mazars J (2000) Damage model for concrete-like materials coupling cracking and friction, contribution towards structural damping: first uniaxial applications. Mech Cohes-Frict Mater 5:607–625

    Google Scholar 

  29. Ramtani S (1990) Contribution to the modeling of the multi-axial behavior of damaged concrete with description of the unilateral characteristics. PhD Thesis (in French), Paris 6 University

    Google Scholar 

  30. Savvas D, Stefanou G, Papadrakakis M, Deodatis G (2014) Homogenization of random heterogeneous media with inclusions of arbitrary shape modeled by XFEM. Comput Mech, doi:10.1007/s00466-014-1053-x

    Google Scholar 

  31. Shields MD, Deodatis G (2013) A simple and efficient methodology to approximate a general non-Gaussian stationary stochastic vector process by a translation process with applications in wind velocity simulation. Probab Eng Mech, doi:10.1016/j.probengmech.2012.10.003

    Google Scholar 

  32. Shinozuka M (1987) Stochastic fields and their digital simulation. In: Schuëller et al. (eds) Stochastic Methods in Structural Dynamics, Martinus Nijhoff Publishers, Dordrecht

    Google Scholar 

  33. Shinozuka M, Deodatis G (1991) Simulation of of stochastic processes by spectral representation. Appl Mech Rev 44(4):191–204

    Google Scholar 

  34. Shinozuka M, Deodatis G (1996) Simulation of multi-dimensional Gaussian stochastic fields by spectral representation. Appl Mech Rev 49(1):29–53

    Google Scholar 

  35. Simo JC, Hughes TJR (1998) Computational Inelasticity. Springer, Berlin

    Google Scholar 

  36. Taylor R (2005) FEAP: A finite element analysis program, User manual & Programmer manual. University of California Berkeley, California, Version 7.4

    Google Scholar 

  37. Torrenti J-M, Pijaudier-Cabot G, Reynouard J-M (2012) Mechanical behavior of concrete. ISTE, London & Wiley, Hoboken, NJ

    Google Scholar 

  38. Trigo APM, Liborio JBL (2014) Doping technique in the interfacial transition zone between paste and lateritic aggregate for the production of structural concretes. Mat Res, doi:10.1590/S1516-14392013005000169

    Google Scholar 

  39. Zaoui A (2002) Continuum micromechanics: Survey. J Eng Mech 128(8):808–816

    Google Scholar 

  40. Zienkiewicz OC, Taylor RL (2000) The finite element method, 5th ed Butterworth-Heinemann, Boston

    Google Scholar 

Download references

Acknowledgments

The author thanks Prof. George Deodatis for fruitful discussions about the content of this book chapter and for hosting him during its preparation. This research is supported by a Marie Curie International Outgoing Fellowship within the 7th European Community Framework Programme (proposal No. 275928).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Jehel .

Editor information

Editors and Affiliations

Appendices

Appendix 1: On the Ergodicity in Correlation of the Random Fields Simulated with Eq. (41)

From Eq. (41), \(j \in [1,\ldots ,m]\):

$$\begin{aligned} g_j(\mathbf {x}; \theta ) = 2 \sqrt{\varDelta \kappa _1 \varDelta \kappa _2}&\sum _{l=1}^m \sum _{\alpha =1}^2 \sum _{n_1=0}^{N_1-1} \sum _{n_2=0}^{N_2-1} \vert H_{jl}(\varvec{\kappa }_{n_1n_2}^{\alpha }) \vert \nonumber \\&\times \cos (\varvec{\kappa }_{n_1n_2}^{\alpha } \cdot \mathbf {x}- \varphi _{jl}(\varvec{\kappa }_{n_1n_2}^{\alpha }) + \varPhi _{l, n_1n_2}^{\alpha }(\theta )) \end{aligned}$$
(105)

On the one hand, because the random phases \(\varPhi (\theta )\) are independent and uniformly distributed over \([0 \, , \, 2\pi ]\), the ensemble correlation function of two sample functions \(g_j(\varvec{\xi };\theta )\) and \(g_k(\varvec{\xi };\theta )\) reads:

$$\begin{aligned} R_{jk}(\varvec{\xi })&:= \mathbb {E}\left[ g_j(\mathbf {x}; \theta ) \ g_k(\mathbf {x}+ \varvec{\xi }; \theta ) \right] \nonumber \\&= \frac{1}{4\pi ^2} \int _0^{2\pi } \int _0^{2\pi } g_j(\mathbf {x}; \theta ) \ g_k(\mathbf {x}+\varvec{\xi }; \theta ) \ d\varPhi ^a \, d\varPhi ^b \end{aligned}$$
(106)

On the other hand, the spatial correlation of the two sample functions \(g_j(\varvec{\xi };\theta )\) and \(g_k(\varvec{\xi };\theta )\) over a 2D area of size \(L^0_1 \times L^0_2\) reads:

$$\begin{aligned} \tilde{R}_{jk}(\varvec{\xi })&:= \langle g_j(\mathbf {x}; \theta ) \ g_k(\mathbf {x}+ \varvec{\xi }; \theta ) \rangle _{L^0_1 \times L^0_2} \nonumber \\&:= \frac{1}{L^0_1 \ L^0_2} \int _0^{L^0_1} \int _0^{L^0_2} g_j(\mathbf {x}; \theta ) \ g_k(\mathbf {x}+\varvec{\xi }; \theta ) \ dx_1 \, dx_2 \end{aligned}$$
(107)

Then, we have from Eq. (105):

$$\begin{aligned}&g_j(\mathbf {x}; \theta ) \ g_k(\mathbf {x}+ \varvec{\xi }; \theta ) = 4 \varDelta \kappa _1 \varDelta \kappa _2 \nonumber \\&\qquad \qquad \qquad \qquad \times \sum _{l^a=1}^m \sum _{\alpha ^a=1}^2 \sum _{n_1^a=0}^{N_1-1} \sum _{n_2^a=0}^{N_2-1} \sum _{l^b=1}^m \sum _{\alpha ^b=1}^2 \sum _{n_1^b=0}^{N_1-1} \sum _{n_2^b=0}^{N_2-1} \vert H_{jl^a}(\varvec{\kappa }_{n_1^a n_2^a}^{\alpha ^a}) \vert \nonumber \\&\qquad \qquad \qquad \qquad \times \vert H_{kl^b}(\varvec{\kappa }_{n_1^b n_2^b}^{\alpha ^b}) \vert \ A_{jkl^al^b}(\varvec{\kappa }_{n_1^a n_2^a}^{\alpha ^a}, \varvec{\kappa }_{n_1^b n_2^b}^{\alpha ^b}; \mathbf {x}, \varvec{\xi }; \theta ) \end{aligned}$$
(108)

where we introduced

$$\begin{aligned}&A_{jkl^al^b}(\varvec{\kappa }_{n_1^a n_2^a}^{\alpha ^a}, \varvec{\kappa }_{n_1^b n_2^b}^{\alpha ^b}; \mathbf {x}, \varvec{\xi }; \theta ) = \cos (\varvec{\kappa }_{n_1^a n_2^a}^{\alpha ^a} \cdot \mathbf {x}- \varphi _{jl^a}(\varvec{\kappa }_{n_1^a n_2^a}^{\alpha ^a}) + \varPhi _{l^a, n_1^a n_2^a}^{\alpha ^a}(\theta )) \nonumber \\&\qquad \qquad \times \cos (\varvec{\kappa }_{n_1^b n_2^b}^{\alpha ^b} \cdot (\mathbf {x}+ \varvec{\xi }) - \varphi _{kl^b}(\varvec{\kappa }_{n_1^b n_2^b}^{\alpha ^b}) + \varPhi _{l^b, n_1^b n_2^b}^{\alpha ^b}(\theta )) \end{aligned}$$
(109)

Using now the relation \(\cos \beta \, \cos \gamma = \frac{1}{2} \left\{ \cos (\beta + \gamma ) + \cos (\beta - \gamma ) \right\} \), it comes:

$$\begin{aligned}&A_{jkl^al^b}(\varvec{\kappa }_{n_1^a n_2^a}^{\alpha ^a}, \varvec{\kappa }_{n_1^b n_2^b}^{\alpha ^b}; \mathbf {x}, \varvec{\xi }; \theta ) = \frac{1}{2} \Big \{ \cos \left( (\varvec{\kappa }_{n_1^b n_2^b}^{\alpha ^b} + \varvec{\kappa }_{n_1^a n_2^a}^{\alpha ^a}) \cdot \mathbf {x}+ \varvec{\kappa }_{n_1^b n_2^b}^{\alpha ^b} \cdot \varvec{\xi }- \varphi _{jl^b}(\varvec{\kappa }_{n_1^b n_2^b}^{\alpha ^b}) \right. \nonumber \\&\qquad \left. -\, \varphi _{kl^a}(\varvec{\kappa }_{n_1^a n_2^a}^{\alpha ^a}) + \varPhi _{l^b, n_1^b n_2^b}^{\alpha ^b}(\theta ) + \varPhi _{l^a, n_1^a n_2^a}^{\alpha ^a}(\theta ) \right) + \cos \left( (\varvec{\kappa }_{n_1^b n_2^b}^{\alpha ^b} - \varvec{\kappa }_{n_1^a n_2^a}^{\alpha ^a}) \cdot \mathbf {x}\right. \nonumber \\&\qquad \left. +\, \varvec{\kappa }_{n_1^b n_2^b}^{\alpha ^b} \cdot \varvec{\xi }- \varphi _{jl^b}(\varvec{\kappa }_{n_1^b n_2^b}^{\alpha ^b}) + \varphi _{kl^a}(\varvec{\kappa }_{n_1^a n_2^a}^{\alpha ^a}) + \varPhi _{l^b, n_1^b n_2^b}^{\alpha ^b}(\theta ) - \varPhi _{l^a, n_1^a n_2^a}^{\alpha ^a}(\theta ) \right) \Big \} \end{aligned}$$
(110)

To calculate the ensemble correlations \(R_{jk}(\varvec{\xi })\), we have to calculate:

$$\begin{aligned} B_{jkl^al^b}(\varvec{\kappa }_{n_1^a n_2^a}^{\alpha ^a}, \varvec{\kappa }_{n_1^b n_2^b}^{\alpha ^b}; \mathbf {x}, \varvec{\xi }) = \int _0^{2\pi } \int _0^{2\pi } A_{jkl^al^b}(\varvec{\kappa }_{n_1^a n_2^a}^{\alpha ^a}, \varvec{\kappa }_{n_1^b n_2^b}^{\alpha ^b}; \mathbf {x}, \varvec{\xi }; \theta ) \ d\varPhi ^a \, d\varPhi ^b \end{aligned}$$
(111)

Because functions \(A_{jkl^al^b}\) are periodic of period \(2\pi \), functions \(B_{jkl^al^b} = 0\) except in the case where \(\varPhi _{l^b, n_1^b n_2^b}^{\alpha ^b}(\theta ) = \varPhi _{l^a, n_1^a n_2^a}^{\alpha ^a}(\theta )\), that is as \(n_1^a = n_1^b = n_1\) and \(n_2^a = n_2^b = n_2\) and \(\alpha ^a = \alpha ^b = \alpha \) and \(l^a = l^b = l\). This yields:

$$\begin{aligned} B_{jkl^al^b}(\varvec{\kappa }_{n_1^a n_2^a}^{\alpha ^a}, \varvec{\kappa }_{n_1^b n_2^b}^{\alpha ^b}; \mathbf {x}, \varvec{\xi }) = 2 \pi ^2 \cos \left( \varvec{\kappa }_{n_1 n_2}^{\alpha } \cdot \varvec{\xi }- \varphi _{jl}(\varvec{\kappa }_{n_1 n_2}^{\alpha }) + \varphi _{kl}(\varvec{\kappa }_{n_1 n_2}^{\alpha }) \right) \end{aligned}$$
(112)

and, finally:

$$\begin{aligned} R_{jk}(\varvec{\xi }) = 2 \varDelta \kappa _1 \varDelta \kappa _2 \sum _{l=1}^m \sum _{\alpha =1}^2 \sum _{n_1=0}^{N_1-1} \sum _{n_2=0}^{N_2-1} \cos \left( \varvec{\kappa }_{n_1 n_2}^{\alpha } \cdot \varvec{\xi }- \varphi _{jl}(\varvec{\kappa }_{n_1 n_2}^{\alpha }) + \varphi _{kl}(\varvec{\kappa }_{n_1 n_2}^{\alpha }) \right) \end{aligned}$$
(113)

Then, to calculate the spatial correlations \(\tilde{R}_{jk}(\varvec{\xi })\), we have to calculate:

$$\begin{aligned} \tilde{B}_{jkl^al^b}(\varvec{\kappa }_{n_1^a n_2^a}^{\alpha ^a}, \varvec{\kappa }_{n_1^b n_2^b}^{\alpha ^b}; \varvec{\xi }; \theta ) = \int _0^{L^0_1} \int _0^{L^0_2} A_{jkl^al^b}(\varvec{\kappa }_{n_1^a n_2^a}^{\alpha ^a}, \varvec{\kappa }_{n_1^b n_2^b}^{\alpha ^b}; \mathbf {x}, \varvec{\xi }; \theta ) \ dx_1 \, dx_2 \end{aligned}$$
(114)

Because functions \(A_{jkl^al^b}\) are periodic of period \(L^0_1 \times L^0_2\), and with the condition that \(H_{jk}=0\) as any \(\kappa _i = 0\), for any \((j,k) \in [1,\ldots ,m]^2\) and for any \(i \in [1,\ldots ,d]\), functions \(\tilde{B}_{jkl^al^b}\) are equal to zero, except if \(\varvec{\kappa }_{n_1^b n_2^b}^{\alpha ^b} = \varvec{\kappa }_{n_1^a n_2^a}^{\alpha ^a}\), that is \(n_1^a = n_1^b = n_1\) and \(n_2^a = n_2^b = n_2\) and \(\alpha ^a = \alpha ^b = \alpha \), in which case:

$$\begin{aligned} \tilde{B}_{jkl^al^b}(\varvec{\kappa }_{n_1^a n_2^a}^{\alpha ^a}, \varvec{\kappa }_{n_1^b n_2^b}^{\alpha ^b}; \varvec{\xi }; \theta )&= \frac{L^0_1 \ L^0_2}{2} \cos \left( \varvec{\kappa }_{n_1 n_2}^{\alpha } \cdot \varvec{\xi }- \varphi _{jl^b}(\varvec{\kappa }_{n_1 n_2}^{\alpha }) \right. \nonumber \\&\qquad \left. +\,\varphi _{kl^a}(\varvec{\kappa }_{n_1 n_2}^{\alpha }) + \varPhi _{l^b, n_1 n_2}^{\alpha }(\theta ) - \varPhi _{l^a, n_1 n_2}^{\alpha }(\theta ) \right) \end{aligned}$$
(115)

With this expression of the functions \(\tilde{B}_{jkl^al^b}\), we do not have \(\tilde{R}(\varvec{\xi }) = R(\varvec{\xi })\). However, when wave-number shifts are introduced so that wave numbers \(\varvec{\kappa }\) become dependent on the index l (as in [7, 26]), the condition \(l^a = l^b = l\) has to be added for \(\tilde{B}_{jkl^al^b}\) not to be equal to zero. Consequently, \(\varPhi _{l^b, n_1 n_2}^{\alpha }(\theta ) = \varPhi _{l^a, n_1 n_2}^{\alpha }(\theta )\) in Eq. (115) and we finally recover \(R(\varvec{\xi }) = \tilde{R}(\varvec{\xi })\), meaning that sample fields \(g_j(\varvec{\xi }; \theta )\) are ergodic in correlation.

Appendix 2: Material Model at Mesoscale for the Numerical Applications

For the one-dimensional material model at mesoscale used in the numerical applications shown in Sect. 4, we use \(h(\sigma )=\vert \sigma \vert \) in the definition of the criterium function (see Eq. 11 in Sect. 2.2):

$$\begin{aligned} \phi _{n+1} = \vert \sigma _{n+1} \vert - \sigma _y \quad \Rightarrow \quad \nu _{n+1} := \frac{\partial \phi _{n+1}}{\partial \sigma _{n+1}} = sign(\sigma _{n+1}) \end{aligned}$$
(116)

Then, Eq. (61) can be written as:

$$\begin{aligned} \sigma _{n+1} = \sigma ^{trial}_{n+1} - D^{-1}_n \gamma _{n+1} sign(\sigma _{n+1}) \end{aligned}$$
(117)

Multiplying both sides of Eq. (117) by \(sign(\sigma _{n+1})\), it comes:

$$\begin{aligned} \vert \sigma _{n+1} \vert = \sigma ^{trial}_{n+1} sign(\sigma _{n+1}) - D^{-1}_n \gamma _{n+1} \end{aligned}$$
(118)

Multiplying now both sides of Eq. (118) by \(sign(\sigma ^{trial}_{n+1})\), it comes:

$$\begin{aligned} \left( \vert \sigma _{n+1} \vert + D^{-1}_n \gamma _{n+1} \right) sign(\sigma ^{trial}_{n+1}) = \vert \sigma ^{trial}_{n+1} \vert sign(\sigma _{n+1}) \end{aligned}$$
(119)

Setting \(\gamma _0 = 0\) and \(D_0 > 0\), \(\left( \vert \sigma _{n+1} \vert + D^{-1}_n \gamma _{n+1} \right) \) necessarily is non-negative because \(\dot{\gamma } \ge 0\) and \(\dot{D} \vert \sigma \vert = r \, \dot{\gamma } \ge 0\). Consequently:

$$\begin{aligned} sign(\sigma _{n+1}) = sign(\sigma ^{trial}_{n+1}) \end{aligned}$$
(120)

Then, we have from Eqs. (117) and (116):

$$\begin{aligned}&\vert \sigma _{n+1} \vert = \vert \sigma ^{trial}_{n+1} \vert - D^{-1}_n \gamma _{n+1} \end{aligned}$$
(121)
$$\begin{aligned}&\phi _{n+1} = \phi ^{trial}_{n+1} - D^{-1}_n \gamma _{n+1} \end{aligned}$$
(122)

with \(\phi ^{trial}_{n+1} = \vert \sigma ^{trial}_{n+1} \vert - \sigma _y\), from which we can calculate \(\gamma _{n+1}\) in case of inelastic evolution:

$$\begin{aligned} \phi _{n+1} = 0 \quad \Rightarrow \quad \gamma _{n+1} = D_n \, \phi ^{trial}_{n+1} \end{aligned}$$
(123)

Appendix 3: Translation from Gaussian to Uniform Distributions

Let \(\mathfrak {a}_1\) and \(\mathfrak {a}_2\) be two independent normal Gaussian variables: \((\mathfrak {a}_1, \mathfrak {a}_2) \sim \mathscr {N}(0,1)\). Then \(\mathfrak {b} = \exp (-(\mathfrak {a}_1^2 + \mathfrak {a}_2^2) \slash 2)\) is a random variable with uniform distribution in \([0, \, 1]\): \(\mathfrak {b} \sim \mathscr {U}(0,1)\). Indeed:

$$\begin{aligned} \Pr [\mathfrak {b} \le b] = \frac{1}{2\pi } \int _{ \{ (a_1, a_2) \vert e^{-\frac{1}{2}(a_1^2 + a_2^2)} \le b \} } e^{-\frac{1}{2}(a_1^2 + a_2^2)} da_1 da_2 \end{aligned}$$
(124)

Then:

  • if \(b > 1\), \(\Pr [\mathfrak {b} \le b] = 1\) because \(e^{-\frac{1}{2}(a_1^2 + a_2^2)} \le 1\), \(\forall (a_1, a_2) \in \mathbb {R}^2\);

  • if \(b < 0\), \(\Pr [\mathfrak {b} \le b] = 0\) because \(e^{-\frac{1}{2}(a_1^2 + a_2^2)} > 1\), \(\forall (a_1, a_2) \in \mathbb {R}^2\);

  • and, if \(0\le b \le 1\), we can rewrite relation (124) with polar coordinates as:

$$\begin{aligned} \Pr [\mathfrak {b} \le b] = \frac{1}{2\pi } \int _0^{2\pi } \int _{\sqrt{-2 \ln b}}^{+\infty } \ e^{-\frac{1}{2} r^2} \ r \, dr d\theta = \left[ -e^{-\frac{1}{2} r^2}\right] _{\sqrt{-2 \ln b}}^{+\infty } = b \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jehel, P. (2016). A Stochastic Multi-scale Approach for Numerical Modeling of Complex Materials—Application to Uniaxial Cyclic Response of Concrete. In: Ibrahimbegovic, A. (eds) Computational Methods for Solids and Fluids. Computational Methods in Applied Sciences, vol 41. Springer, Cham. https://doi.org/10.1007/978-3-319-27996-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27996-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27994-7

  • Online ISBN: 978-3-319-27996-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics