Skip to main content

Improved Implicit Immersed Boundary Method via Operator Splitting

  • Chapter
  • First Online:
Computational Methods for Solids and Fluids

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 41))

Abstract

We present an implicit immersed boundary method via operator splitting technique for simulating fluid flow over moving solid with complex shape. An additional moving force equation is derived in order to impose the interface velocity condition exactly on the immersed surface. The moving force matrix is formulated to be symmetric and positive definite, thus its calculation is computational inexpensive by using the conjugate gradient method. Moreover, the proposed immersed boundary method is incorporated into the rotational incremental projection method as a plug-in. No numerical boundary layers will be generated towards the velocity and pressure during the calculation. The method is validated through various benchmark tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cai, S.-G., Ouahsine, A., Smaoui, H., Favier, J., Hoarau, Y.: An efficient implicit direct forcing immersed boundary method for incompressible flows. Journal of Physics: Conference Series. 574, 012165 (2014)

    Google Scholar 

  2. Cai, S.-G., Ouahsine, A., Favier, J., Hoarau, Y., Smaoui, H.: Immersed boundary method for the simulation of lid-driven cavity flow with an embedded cylinder. COUPLED PROBLEMS 2015-Proceedings of the 6th International Conference on Coupled Problems in Science and Engineering. Venice, Italy, 1130–1137 (2015)

    Google Scholar 

  3. Coutanceau, M., Bouard, R.: Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. Part 1. Steady flow. Journal of Fluid Mechanics. 79, 231–256 (1977)

    Article  Google Scholar 

  4. Darbani, M., Ouahsine, A., Villon, P., Naceur, H., Smaoui, H.: Meshless method for shallow water equations with free surface flow. Applied Mathematics and Computation. 217, 5113–5124 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dütsch, H., Durst, F., Becker, S., Lienhart, H.: Low-Reynolds-number flow around an oscillating circular cylinder at low Keulegan-Carpenter numbers. Journal of Fluid Mechanics. 360, 249–271 (1998)

    Article  MATH  Google Scholar 

  6. Fadlun, E.A., Verzicco, R., Orlandi, P., Mohd-Yusof, J.: Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. Journal of Computational Physics. 161, 35–60 (2000)

    Google Scholar 

  7. Goldstein, D., Handler, R., Sirovich, L.: Modeling a no-slip flow boundary with an external force field. Journal of Computational Physics. 105, 354–366 (1993)

    Article  MATH  Google Scholar 

  8. Guermond, J.L., Minev, P., Shen, J.: An overview of projection methods for incompressible flows. Computer Methods in Applied Mechanics and Engineering. 195, 6011–6045 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kempe, T., Fröhlich, J.: An improved immersed boundary method with direct forcing for the simulation of particle laden flows. Journal of Computational Physics. 231, 3663–3684 (2012)

    Google Scholar 

  10. Lai, M.-C., Peskin, C.S.: An immersed boundary method with formal second-order accuracy and reduced numerical viscosity. Journal of Computational Physics. 160, 705–719 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mohd-Yosuf, J.: Combined immersed boundary/b-spline methods for simulation of flow in complex geometries. Annual Research Briefs, Center for Turbulence Research, 317–327 (1997)

    Google Scholar 

  12. Peskin, C.S.: Flow patterns around heart valves: A numerical method. Journal of Computational Physics, 10, 252–271 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  13. Peskin, C.S.: The immersed boundary method. Acta Numerica, 11, 479–517 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Pinelli, A., Naqavi, I.Z., Piomelli, U., Favier, J.: Immersed-boundary methods for general finite-difference and finite-volume Navier-Stokes solvers. Journal of Computational Physics, 229, 9073–9091 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Saiki, E.M., Biringen, S.: Numerical simulation of a cylinder in uniform flow: Application of a virtual boundary method. Journal of Computational Physics, 123, 450–465 (1996)

    Article  MATH  Google Scholar 

  16. Souli, M., Ouahsine, A., Lewin, L.: ALE formulation for fluid-structure interaction problems. Computer Methods in Applied Mechanics and Engineering, 190, 659–675 (2000)

    Article  MATH  Google Scholar 

  17. Taira, K., Colonius, T.: The immersed boundary method: A projection approach. Journal of Computational Physics, 225, 2118–2137 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Toja-Silva F., Favier, J., Pinelli, A.: Radial basis function (RBF)-based interpolation and spreading for the immersed boundary method. Computers & Fluids, 105, 66–75 (2014)

    Article  MathSciNet  Google Scholar 

  19. Tritton, D.J.: Experiments on the flow past a circular cylinder at low Reynolds numbers. Journal of Fluid Mechanics, 6, 547–567 (1959)

    Article  MATH  Google Scholar 

  20. Uhlmann, M.: An immersed boundary method with direct forcing for the simulation of particulate flows. Journal of Computational Physics, 209, 448–476 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Vanella, M., Balaras, E.: A moving-least-squares reconstruction for embedded-boundary formulations. Journal of Computational Physics, 228, 6617–6628 (2009)

    Article  MATH  Google Scholar 

  22. Williamson, C.H.K.: Defining a universal and continuous Strouhal-Reynolds number relationship for the laminar vortex shedding of a circular cylinder. Physics of Fluids, 31, 2742–2744 (1988)

    Article  Google Scholar 

Download references

Acknowledgments

The first author acknowledges the financial support of the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdellatif Ouahsine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cai, SG., Ouahsine, A., Favier, J., Hoarau, Y. (2016). Improved Implicit Immersed Boundary Method via Operator Splitting. In: Ibrahimbegovic, A. (eds) Computational Methods for Solids and Fluids. Computational Methods in Applied Sciences, vol 41. Springer, Cham. https://doi.org/10.1007/978-3-319-27996-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27996-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27994-7

  • Online ISBN: 978-3-319-27996-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics