Skip to main content

Reliability Calculus on Crack Propagation Problem with a Markov Renewal Process

  • Chapter
  • First Online:
Computational Methods for Solids and Fluids

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 41))

Abstract

This chapter concerns a stochastic differential system that describes the evolution of a degradation mechanism, the fatigue crack propagation. A Markov process will be considered as the perturbing process of the system that models the crack evolution. With the help of Markov renewal theory, we study the reliability of a structure and propose for it a new analytical solution. The method we propose reduces the complexity of the reliability calculus compared with the previous resolution method. As numerical applications, we tested our method on a numerical example and on an experimental data set, which gave results in good agreement with a Monte Carlo estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.C. Paris and F. Erdogan. A critical analysis of crack propagation laws. J. Fluids Eng., 85:528–533, 1963.

    Google Scholar 

  2. D. A. Virkler, B. M. Hillberry, and P. K. Goel. The statistical nature of fatigue crack propagation. Technical report, School of Mechanical Engineering Purdue University West Lafayette, Indiana, 1978.

    Google Scholar 

  3. B. Øksendal. Stochastic Differential Equations: An Introduction with Applications. Hochschultext/Universitext. U.S. Government Printing Office, 2003. ISBN 9783540047582.

    Book  Google Scholar 

  4. Y.K. Lin and J.N. Yang. A stochastic theory of fatigue crack propagation. AIAA J., 23:117–124, 1985. ISSN 0001-1452; 1533-385X/e.

    Google Scholar 

  5. Kazimierz Sobczyk, editor. Stochastic approach to fatigue: experiments, modelling and reliability estimation. Wien: Springer-Verlag, 1993. ISBN 3-211-82452-9/pbk.

    MATH  Google Scholar 

  6. N.N. Bogolyubov and Mitropolskii. Asymptotic Methods in the Theory of Non-linear Oscillations Gordon and Breach, 1961.

    Google Scholar 

  7. N. Limnios and G. Oprişan. Semi-Markov processes and reliability. Statistics for Industry and Technology. Birkhäuser Boston, Inc., Boston, MA, 2001, reprint Springer Science and Business Media, 2012. ISBN 0-8176-4196-3.

    Google Scholar 

  8. R.A. Howard. Dynamic probabilistic systems: volume i: markov models. Series in decision and control. John Wiley And Sons, Incorporated, 1971.

    Google Scholar 

  9. V.S. Koroliuk and N. Limnios. Stochastic Systems in Merging Phase Space, World Scientific, N.Y., 2005. ISBN 9789812703125.

    Google Scholar 

  10. M. H. A. Davis. Piecewise-deterministic Markov processes: a general class of nondiffusion stochastic models. J. Roy. Statist. Soc. Ser. B, 46(3):353–388, 1984. ISSN 0035-9246. With discussion.

    Google Scholar 

  11. M. H. A. Davis. Markov models and optimization, volume 49 of Monographs on Statistics and Applied Probability. Chapman & Hall, London, 1993. ISBN 0-412-31410-X.

    Google Scholar 

  12. Martin Jacobsen. Point process theory and applications. Probability and its Applications. Birkhäuser Boston, Inc., Boston, MA, 2006. ISBN 978-0-8176-4215-0; 0-8176-4215-3. Marked point and piecewise deterministic processes.

    MATH  Google Scholar 

  13. B.Ã. de Saporta, F.Ã. Dufour, and H. Zhang. Numerical Methods for Simulation and Optimization of Piecewise Deterministic Markov Processes. Wiley, 2015. ISBN 9781848218390.

    Google Scholar 

  14. M. A. H. Dempster. Optimal control of piecewise deterministic Markov processes. In Applied stochastic analysis (London, 1989), volume 5 of Stochastics Monogr., pages 303–325. Gordon and Breach, New York, 1991.

    Google Scholar 

  15. M. A. H. Dempster and J. J. Ye. Necessary and sufficient optimality conditions for control of piecewise deterministic Markov processes. Stochastics Stochastics Rep., 40(3–4):125–145, 1992. ISSN 1045-1129.

    Google Scholar 

  16. D. Vermes. Optimal control of piecewise deterministic Markov process. Stochastics, 14(3):165–207, 1985. ISSN 0090-9491.

    Google Scholar 

  17. U. S. Gugerli. Optimal stopping of a piecewise-deterministic Markov process. Stochastics, 19(4):221–236, 1986. ISSN 0090-9491.

    Google Scholar 

  18. Oswaldo Luiz do Valle Costa and François Dufour. Continuous average control of piecewise deterministic Markov processes. Springer Briefs in Mathematics. Springer, New York, 2013. ISBN 978-1-4614-6982-7; 978-1-4614-6983-4.

    Google Scholar 

  19. O. L. V. Costa and F. Dufour. Stability and ergodicity of piecewise deterministic Markov processes. SIAM J. Control Optim., 47(2):1053–1077, 2008. ISSN 0363-0129.

    Google Scholar 

  20. R. Azais. Estimation Non Paramétrique pour les Processus Markoviens Déterministes par Morceaux. PhD thesis, Université Bordeaux 1, 2013.

    Google Scholar 

  21. Martin G. Riedler. Almost sure convergence of numerical approximations for piecewise deterministic Markov processes. J. Comput. Appl. Math., 239:50–71, 2013. ISSN 0377-0427.

    Google Scholar 

  22. Ronald Pyke. Markov renewal processes: definitions and preliminary properties. The Annals of Mathematical Statistics, pages 1231–1242, 1961.

    Google Scholar 

  23. Erhan Cinlar. Markov renewal theory. Advances in Applied Probability, 1(2):123–187, 1969.

    Article  MathSciNet  MATH  Google Scholar 

  24. V. M. Shurenkov. On the theory of markov renewal. Theory Probab.Appl., 29(2):247–265, 1984.

    Article  MathSciNet  Google Scholar 

  25. J. Chiquet, N. Limnios and M. Eid. Piecewise deterministic markov processes applied to fatigue crack growth modelling. Journal of Statistical Planning and Inference, 139(5):1657–1667, 2009. ISSN 0378-3758. Special Issue on Degradation, Damage, Fatigue and Accelerated Life Models in Reliability Testing.

    Google Scholar 

  26. Julien Chiquet and Nikolaos Limnios. Dynamical systems with semi-Markovian perturbations and their use in structural reliability. In Stochastic reliability and maintenance modeling, volume 9 of Springer Ser. Reliab. Eng., pages 191–218. Springer, London, 2013.

    Google Scholar 

  27. R.E. Barlow and F. Proschan. Statistical theory of reliability and life testing: probability models. International series in decision processes. Holt, Rinehart and Winston, 1975. a. ISBN 9780030858536.

    Google Scholar 

  28. Richard E. Barlow and Frank Proschan. Mathematical theory of reliability, b. Wiley, N.Y., 1965.

    Google Scholar 

  29. B.V. Gnedenko, Y.K. Belyayev, and A.D. Solovyev. Mathematical Methods of Reliability Theory. Academic Press, 1969, N.Y. (translated from Russian,1965).

    Google Scholar 

  30. B. Gnedenko, I.V. Pavlov, I.A. Ushakov, I.A. Ushakov, and S. Chakravarty. Statistical Reliability Engineering. A Wiley Interscience publication, 1999. a. ISBN 9780471123569.

    Google Scholar 

  31. B. Gnedenko, I.A. Ushakov, and J. Falk. Probabilistic Reliability Engineering. Wiley-Interscience publication, 1995. b. ISBN 9780471305026.

    Google Scholar 

  32. B.V. Gnedenko, Y.K. Belyayev, A.D. Solovyev, Z.W. Birnbaum, and E. Lukacs. Mathematical Methods of Reliability Theory. Probability and mathematical statistics. c. ISBN 9781483263519. Elsevier Science, 2014.

    Google Scholar 

  33. T. Bedford. Advances in Mathematical Modeling for Reliability. ISBN 9781586038656. IOS Press, 2008.

    Google Scholar 

  34. T. Nakagawa. Stochastic Processes: with Applications to Reliability Theory. Springer Series in Reliability Engineering, 2011. ISBN 9780857292742.

    Google Scholar 

  35. T. Aven and U. Jensen. Stochastic Models in Reliability. Applications of mathematics. Springer, 1999. ISBN 9780387986333.

    Book  MATH  Google Scholar 

  36. A. Birolini. On the Use of Stochastic Processes in Modeling Reliability Problems. Lecture Notes in Economics and Mathematical Systems. Springer Berlin Heidelberg, 2012. ISBN 9783642465536.

    Google Scholar 

  37. A. Birolini. Reliability engineering : Theory and practice (7th ed.). Springer Berlin Heidelberg, 2014. ISBN 9783642395345.

    Book  Google Scholar 

  38. J. Janssen and R. Manca. Semi-Markov Risk Models for Finance, Insurance and Reliability. Springer US, 2007. ISBN 9780387707303.

    MATH  Google Scholar 

  39. Nikolaos Limnios and Gheorghe Oprisan. Semi-Markov processes and reliability. Springer Science & Business Media, 2012.

    Google Scholar 

  40. Nikolaos Limnios. Reliability measures of semi-Markov systems with general state space. Methodol. Comput. Appl. Probab., 14(4):895–917, 2012. ISSN 1387-5841.

    Google Scholar 

  41. Huilong Zhang, K. Gonzalez, François Dufour, and Yves Dutuit. Piecewise deterministic Markov processes and dynamic reliability. Proceedings of the Institution of Mechanical Engineers Part O Journal of Risk and Reliability, 222(04): 545–551, 2008.

    Google Scholar 

  42. Sophie Mercier and Michel Roussignol. Sensitivity estimates in dynamic reliability. In Advances in mathematical modeling for reliability, pages 208–216. IOS, Amsterdam, 2008.

    Google Scholar 

  43. G. Becker, L. Camarinopoulos, and D. Kabranis. Dynamic reliability under random shocks. Reliability Engineering and System Safety, 77(3):239–251, 2002.

    Article  Google Scholar 

  44. C. Cocozza-Thivent, R. Eymard, and S. Mercier. A finite-volume scheme for dynamic reliability models. IMA Journal of Numerical Analysis, 26(3):446–471, 2006a.

    Article  MathSciNet  MATH  Google Scholar 

  45. C. Cocozza-Thivent, R. Eymard, S. Mercier, and M. Roussignol. Characterization of the marginal distributions of markov processes used in dynamic reliability. Journal of Applied Mathematics and Stochastic Analysis, 2006, 2006b.

    Google Scholar 

  46. Julien Chiquet and Nikolaos Limnios. A method to compute the transition function of a piecewise deterministic Markov process with application to reliability. Statist. Probab. Lett., 78(12):1397–1403, 2008. ISSN 0167-7152.

    Google Scholar 

  47. J. Chiquet. Modélisation et estimation des processus de dégradation avec application en fiabilité des structures. PhD thesis, Université de Technologie de Compiègne, 2007.

    Google Scholar 

  48. R. Bellman. Stability Theory of Differential Equations. Dover Books on Mathematics, 2013. ISBN 9780486150130.

    Google Scholar 

  49. M.W. Hirsch, S. Smale, and R.L. Devaney. Differential Equations, Dynamical Systems, and an Introduction to Chaos. Elsevier Science, 2012. ISBN 9780123820112.

    Google Scholar 

  50. J. Hadamard. Lectures on Cauchy’s Problem in Linear Partial Differential Equations. Dover Publications, 2014. ISBN 9780486781488.

    Google Scholar 

  51. Bernard Lapeyre, Étienne Pardoux, and Rémi Sentis. Méthodes de Monte-Carlo pour les équations de transport et de diffusion, volume 29 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer-Verlag, Berlin, 1998. ISBN 3-540-63393-6.

    Google Scholar 

  52. Sonia Malefaki, Nikolaos Limnios, and Pierre Dersin. Reliability of maintained systems under a semi-markov setting. Reliability Engineering & System Safety, 131:282–290, 2014.

    Article  Google Scholar 

  53. Sophie Mercier and Michel Roussignol. Asymptotic failure rate of a markov deteriorating system with preventive maintenance. J. Appl. Probab., 40(1):1–19, 03 2003.

    Google Scholar 

  54. Franciszek Grabski. The reliability of an object with semi-Markov failure rate. Appl. Math. Comput., 135(1):1–16, 2003. ISSN 0096-3003.

    Google Scholar 

  55. I. Kopocińska and B. Kopociński. On system reliability under random load of elements. Zastos. Mat., 17(1):5–14, 1980/81. ISSN 0044-1899.

    Google Scholar 

  56. H. Kebir. Approches déterministe et probabiliste de la prévision de la durée de vie de structures aéronautiques à l‘ aide de la méthode des équations intégrales duales. PhD thesis, Université de Technologie de Compiègne, 2011.

    Google Scholar 

  57. H. Kebir, J. M. Roelandt and J. Gaudin. Monte-carlo simulations of life expectancy using the dual boundary element method. Engineering Fracture Mechanics, 68(12):1371–1384, 2001. ISSN 0013-7944.

    Google Scholar 

  58. V. V. Anisimov. Switching Processes in Queueing Models. Wiley, 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos Limnios .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Papamichail, C.A., Bouzebda, S., Limnios, N. (2016). Reliability Calculus on Crack Propagation Problem with a Markov Renewal Process. In: Ibrahimbegovic, A. (eds) Computational Methods for Solids and Fluids. Computational Methods in Applied Sciences, vol 41. Springer, Cham. https://doi.org/10.1007/978-3-319-27996-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27996-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27994-7

  • Online ISBN: 978-3-319-27996-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics