Skip to main content

Multiscale Analysis as a Central Component of Urban Physics Modeling

  • Chapter
  • First Online:
Computational Methods for Solids and Fluids

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 41))

  • 1538 Accesses

Abstract

Urban physics is seeking its place between two better structured scales, that of environmental physics and that of building physics. The intermediate level of the city and the urban district is particularly difficult to appreciate, because it involves huge geometries that must however be precisely detailed and finely meshed. It has become very important to simulate on this scale, principally energy exchanges, because the urban environment, with its rapid worldwide growth, has become a complex dynamic interface for both top-down problems (generation of urban microclimates) and bottom-up ones (influence of urban morphology on the final consumption of the entire city), and even properly multiscale applications (involvement of cities in global warming). This paper provides a starting point (the shortwave radiative exchange), a process of cross-validation between measurements and simulations (with emphasis on the contribution of satellite imagery) and three main objectives: energy balance, urban planning and participation to global climate models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allix O Gosselet P Kerfriden P Saavedra K (2012) Virtual Delamination Testing through Non-Linear Multi-Scale Computational Methods: Some Recent Progress. CMC: Computers, Materials, & Continua, 2012, 32 (2), pp. 107–132.

    Google Scholar 

  2. Arvo JR (1993) Linear Operators and Integral Equations in Global Illumination. In: Global Illumination, SIGGRAPH ‘93 Course Notes, vol 42, August.

    Google Scholar 

  3. Ashdown I (2002) Radiative Transfer Networks Revisited. Journal of the illuminating Engineering Society pages 38–51 Vol. 31, Issue 2.

    Google Scholar 

  4. Beckers B (2009) Geometrical interpretation of sky light in architecture projects. In: Actes de la Conférence Internationale Scientifique pour le BATiment CISBAT, September EPFL, Lausanne, Suisse.

    Google Scholar 

  5. Beckers B (2011a) Impact of Solar Energy on Cities Sustainability, in Architecture & Sustainable Development. In: Bodart M & Evrard A (ed) Proc. 27th Int. Conf. on Passive and Low Energy Architecture (PLEA 2011), Louvain-la-Neuve, Belgium.

    Google Scholar 

  6. Beckers B (2011b) Urban outlines 2D abstraction for flexible and comprehensive analysis of thermal exchanges, Conférence Internationale Scientifique pour le BATiment CISBAT 2011, EPFL, September 2011, Lausanne, Suisse.

    Google Scholar 

  7. Beckers B (2012) Worldwide aspects of solar radiation impact. In: Solar Energy at Urban Scale, chap. 5, Ed. B. Beckers, John Wiley and Sons Inc.

    Google Scholar 

  8. Beckers B (2013) Taking Advantage of Low Radiative Coupling in 3D Urban Models. In: Eurographics Workshop on Urban Data Modelling and Visualisation, Girona.

    Google Scholar 

  9. Beckers B Masset L (2006) Heliodon 2 Documentation and Software, www.heliodon.net.

  10. Beckers B Beckers P (2008) Optimization of daylight in architectural and urban projects. In: 2th International Conference on Multidisciplinary Design Optimization and Applications, ASMDO, Gijon, Spain.

    Google Scholar 

  11. Beckers B Rodriguez D (2009) Helping architects to design their personal daylight. In: WSEAS Transactions on Environment and Development, Issue 7, Volume 5, pp 467–477.

    Google Scholar 

  12. Beckers B Rodríguez D Antaluca E Batoz JL (2010) About solar energy simulation in the urban framework: The model of Compiègne. In: 3\(^{\rm rd}\) International Congress Bauhaus SOLAR, 5 pages, November 10 & 11, 2010, Erfurt, Germany.

    Google Scholar 

  13. Beckers B Masset L Beckers P (2011) The universal projection for computing data carried on the hemisphere, Computer-Aided Design, Volume 43, Issue 2, Pages 219–226, February 2011.

    Article  Google Scholar 

  14. Beckers B Beckers P (2012a) A general rule for disk and hemisphere partition into equal-area cells, Computational Geometry - Theory and Applications, Volume 45, Issue 7, Pages 275–283.

    Article  MathSciNet  MATH  Google Scholar 

  15. Beckers B Beckers P (2012b) Radiative Simulation Methods, in Solar Energy at Urban Scale, chap. 10, Ed. B. Beckers, John Wiley and Sons Inc, pp 205–236.

    Google Scholar 

  16. Beckers B Beckers P (2014a) Super Element Technique for Solar Energy Optimization at Urban Level. In: Proceedings of OPT-i An International Conference on Engineering and Applied Sciences Optimization M. Papadrakakis, M.G. Karlaftis, N.D. Lagaros (eds.) Kos Island, Greece, 4–6 June.

    Google Scholar 

  17. Beckers B Beckers P (2014b) Reconciliation of Geometry and Perception in Radiation Physics John Wiley and Sons Inc, 192 pages.

    Google Scholar 

  18. Beckers B Beckers P (2014c) Sky vault partition for computing daylight availability and shortwave energy budget on an urban scale. In: Lighting Research and Technology, vol. 46 n\(^{\circ }\). 6, Pages 716–728, December.

    Google Scholar 

  19. Besuievsky G Patow G (2011) A procedural modeling approach for automatic generation of LoD building models. In: Proceedings CISBAT 2011, Lausanne, Switzerland pp. 993–998.

    Google Scholar 

  20. Besuievsky G Barroso S Beckers B Patow G (2014) A Configurable LoD for Procedural Urban Models intended for Daylight Simulation. Eurographics Workshop on Urban Data Modelling and Visualization, Strasbourg, France.

    Google Scholar 

  21. Bouyer J Inard C Musy M (2011) Microclimatic coupling as a solution to improve building energy simulation in an urban context, Energy and Buildings Volume 43, Issue 7, July, Pages 1549–1559.

    Google Scholar 

  22. Boyer H Lucas F Miranville F Bastide A Morau D (2006) Simulations de dispositifs du type Mur Trombe avec CODYRUN ESIM 2006, May 2006, Toronto, Canada. pp. 81–233.

    Google Scholar 

  23. Bruse M Fleer H (1998) Simulating surface-plant-air interactions inside urban environments with a three dimensional numerical model. Environmental Modelling & Software 13 373–384.

    Article  Google Scholar 

  24. Bueno B Roth M Norford L Li R (2014) Computationally efficient prediction of canopy level urban air temperature at the neighbourhood scale. In: Urban Climate 9, 35–53.

    Article  Google Scholar 

  25. Capeluto G (2012) Dense Cities in Temperate Climates: Solar and Daylight Rights. In: Solar Energy at Urban Scale, chap. 13, Ed. B. Beckers, John Wiley and Sons Inc.

    Google Scholar 

  26. Cohen MF Wallace JR (1993) Radiosity and Realistic Image Synthesis, Academic Press.

    Google Scholar 

  27. Collin O (2008) Facteur de ciel : un paramètre d’évaluation des masques en architecture Master Thesis University of Liège Belgium.

    Google Scholar 

  28. Compagnon R (2004) Solar and daylight availability in the urban fabric, Energy and Buildings 36 321–328.

    Article  Google Scholar 

  29. Eigenbrod VF Bell A Davies HN (2011) The impact of projected increases in urbanization on ecosystem services”, Proceedings of the Royal Society B. 278:3201–3208.

    Article  Google Scholar 

  30. Erell E Pearlmutter D Williamson T (2011) Urban Microclimate - Designing the Spaces Between Buildings, Routledge.

    Google Scholar 

  31. Fernández E Besuievsky G (2015) Inverse opening design with anisotropic lighting incidence. Comput. Graph., vol. 47, pp. 113–122.

    Article  Google Scholar 

  32. Foley JD van Dam A Feiner SK Hughes JF (1990) Computer Graphics, principles and practice, Addison-Wesley publishing Company, Second Edition.

    Google Scholar 

  33. Fraeijs de Veubeke B Hogge M (1972) Dual analysis for heat conduction problems by finite elements. In: International Journal for Numerical Methods in Engineering, Volume 5, Issue 1, pages 65–82, September/October.

    Google Scholar 

  34. Gebhart B (1961) Heat Transfer McGraw-Hill Book Company.

    Google Scholar 

  35. Heckbert PS Winget JM (1991) Finite Element Methods for Global Illumination. In: Technical report CSD-91-643, UC Berkeley, January 8.

    Google Scholar 

  36. Herold M Gardner ME Noronha V Roberts DA (2003) - Spectrometry and Hyperspectral Remote Sensing of Urban Road Infrastructure, Online Journal of Space Communication Issue 3.

    Google Scholar 

  37. Herold M Roberts DA Gardner ME Dennison PE (2004) Spectrometry for urban area remote sensing – Development and analysis of a spectral library from 350 to 2400 nm, Remote Sensing of Environment 91 304–319.

    Article  Google Scholar 

  38. Hou G Wang J Layton A (2012) Numerical Methods for Fluid-Structure Interaction - A Review Commun. Comput. Phys. Vol. 12, No. 2, pp. 337–377 August.

    Google Scholar 

  39. Howell JR (1997) The Monte Carlo Method in Radiative Heat Transfer Journal of Heat Transfer August 1998 Vol 120 547–560.

    Google Scholar 

  40. Howell JR Siegel R Menguc MP (2011) Thermal Radiation Heat Transfer”, 5th ed., Taylor and Francis CRC, New York.

    Google Scholar 

  41. Jouzel J Debroise A (2014) Le défi climatique, Dunod.

    Google Scholar 

  42. Kajiya JT (1986) The Rendering Equation, ACM Siggraph Dallas August 18–22 Vol. 20, N. 4.

    Google Scholar 

  43. Kämpf JH Robinson D (2009) A hybrid CMA-ES and HDE optimization algorithm with application to solar energy potential, in Applied Soft Computing, vol. 9, p. 738–745.

    Google Scholar 

  44. Ladevèze P Loiseau O Dureisseix D (2001) A micro-macro and parallel computational strategy for highly heterogeneous structures. Int. Journal for Numerical Methods in Engineering, 52:121–138.

    Article  Google Scholar 

  45. Lambert JH (1760) Photometria sive de mensura et gradibus luminis, colorum et umbrae German translation by E. Anding in Ostwald’s Klassiker der Exakten Wissenschaften, Vol. 31–33, Leipzig, 1892. Cited by Peter Schröder & Pat Hanrahan, “A Closed Form Expression for the Form Factor between Two Polygons”, Research Report CS-TR-404-93, January 1993.

    Google Scholar 

  46. Lenik K Wójcicka-Migasiuk D (2010) FEM applications to the analysis of passive solar wall elements. Journal of Achievements in Materials and Manufacturing Engineering Volume 43 Issue 1: 333–340 November.

    Google Scholar 

  47. Lewis RW Morgan K Thomas HR Seetharamu KN (1996) The Finite Element Method in Heat Transfer Analysis”, John Wiley & Sons.

    Google Scholar 

  48. Mardaljevic J Janes GM (2012) Multiscale Daylight Modeling for Urban Environments. In: Solar Energy at Urban Scale, chap. 8, Ed. B. Beckers, John Wiley and Sons Inc.

    Google Scholar 

  49. Martilli A Roulet YA Junier M Kirchner F Rotach MW Clappier A (2003) On the impact of urban surface exchange parameterisations on air quality simulations: the Athens case Atmospheric Environment 37 4217–4231.

    Article  Google Scholar 

  50. Meyer RX (1999) Elements of space technology for aerospace engineers Chap. 7, “Spacecraft thermal design”, Academic Press.

    Google Scholar 

  51. Monteith JL Unsworth MH (2007) Principles of Environmental Physics, 3\(^{\text{ rd }}\) edition, Elsevier, 2007.

    Google Scholar 

  52. Moonen P Defraeye T Dorer V Blocken B Carmeliet J (2012) Urban Physics: Effect of the micro-climate on comfort, health and energy demand Frontiers of Architectural Research 1, 197–228.

    Google Scholar 

  53. Musy M (2012) Evapotranspiration. In: Solar Energy at Urban Scale, chap. 7, Ed. B. Beckers, John Wiley and Sons Inc.

    Google Scholar 

  54. Nabil A Mardaljevic J (2005) Useful daylight illuminance: a new paradigm for assessing daylight in buildings. Light. Res. Technol., vol. 37, no. 1, pp. 41–59, January.

    Google Scholar 

  55. Nahon R Vermeulen T Beckers B (2013) an Adaptive 3D Model for Solar Optimization at the Urban Scale. In: IET/IEEE Second International Conference on Smart and Sustainable City, August 19–20 Shanghai, China.

    Google Scholar 

  56. Neumann L Tobler RF (1994) New Efficient Algorithms with Positive Definite Radiosity Matrix. In: Proceedings of the Fifth Eurographics Workshop on Rendering, Darmstadt, Germany, June.

    Google Scholar 

  57. Nievergelt Y (1997) Making Any Radiosity Matrix Symmetric Positive Definite, Journal of the Illuminating Engineering Society, Vol. 26, No. 1, pp. 165–171, Winter.

    Google Scholar 

  58. Nusselt W (1928) Graphische bestimmung des winkelverhaltnisses bei der wärmestrahlung”, Zeitschrift des Vereines Deutscher Ingenieure, 72(20):673.

    Google Scholar 

  59. Oke TR (1978) Boundary layer climates, Methuen & Co., Ltd.

    Book  Google Scholar 

  60. Oke TR (1981) Canyon geometry and the nocturnal urban heat island: comparison of scale model and field observations. J Climatology 1:237–254.

    Article  Google Scholar 

  61. Olgyay V Olgyay A (1963) Design With Climate: Bioclimatic Approach to Architectural Regionalism Princeton University Press.

    Google Scholar 

  62. Panczak T Ring S Welch M (1997) A CAD-based Tool for FDM and FEM Radiation and Conduction Modeling SAE 1998 Transactions - Journal of Aerospace - V 107–1.

    Google Scholar 

  63. Pirard T (2012) The Odyssey of Remote Sensing from Space: Half a Century of Satellites for Earth Observations. In: Solar Energy at Urban Scale, chap. 1, Ed. B. Beckers, John Wiley and Sons Inc.

    Google Scholar 

  64. Planas P Flett DC (1998) ESARAD: From R&D to Industrial Utilisation”, ESA bulletin 93 - February.

    Google Scholar 

  65. Ramallo-González AP Eames ME Coley DA (2013) Lumped parameter models for building thermal modelling: An analytic approach to simplifying complex multi-layered constructions, Energy and Buildings 60 174–184.

    Article  Google Scholar 

  66. Rasheed A Robinson D Clappier A Naranayan C Lakehal D (2011) Representing complex urban geometries in mesoscale modeling. In: International Journal of Climatology, 31: 289–301.

    Article  Google Scholar 

  67. Reinhart CF Wienold J (2011) The Daylighting Dashboard - A Simulation-Based Design analysis for Daylit Spaces. In: Building and Environment Volume 46 Issue 2 pages 386–396.

    Article  Google Scholar 

  68. Robinson D Haldi F Kämpf JH Leroux P Perez D Rasheed A Wilke U (2009) CitySim: Comprehensive Micro-simulation of Resource Flows for Sustainable Urban Planning. In Eleventh International IBPSA Conference Glasgow, Scotland, July 27–30.

    Google Scholar 

  69. Saadatian O Sopian K Lim CH Asim N Sulaiman MY (2012) Trombe walls: A review of opportunities and challenges in research and development Renewable and Sustainable Energy Reviews 16 (2012) 6340–6351.

    Article  Google Scholar 

  70. Seto KC Güneralp B Hutyra LR (2012) Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. In: Proceedings of the National Academy of Sciences of USA, 109(40): 16083–16088.

    Article  Google Scholar 

  71. Sillion FX Puech C (1994) Radiosity and Global Illumination, Morgan Kaufmann Publishers Inc.

    Google Scholar 

  72. Soffer BH Lynch DK (1999) Some paradoxes, errors, and resolutions concerning the spectral optimization of human vision Am. J. Phys. 67 (11), November.

    Google Scholar 

  73. Tregenza PR (1987) Subdivision of the sky hemisphere for luminance measurements, Lighting Research and Technology 19 (1), pp. 13–14.

    Article  Google Scholar 

  74. UN-Habitat (2011) Cities and Climate Change: Global Report on Human Settlements.

    Google Scholar 

  75. van de Geijn R (2011) Notes on Cholesky Factorization. In: Report TX 78712 University of Texas at Austin.

    Google Scholar 

  76. van Eekelen T (2012) Radiation Modeling Using the Finite Element Method. In Solar Energy at Urban Scale, chapter 11, Ed. B. Beckers, John Wiley and Sons Inc.

    Google Scholar 

  77. van Loon R Anderson PD van de Vosse FN Sherwin SJ (2007) Comparison of various fluid-structure interaction methods for deformable bodies Computers & Structures Volume 85, Issues 11–14, June-July Pages 833–843.

    Google Scholar 

  78. Vermeulen T Kämpf JH Beckers B (2013) Urban Form Optimization for the Energy Performance of Buildings Using Citysim. In CISBAT 2013, Sept. 4–6, Lausanne, Switzerland pp. 915–920.

    Google Scholar 

  79. Vermeulen T Knopf-Lenoir C Villon P Beckers B (2015) Urban layout optimization framework to maximize direct solar irradiation. In: Computers, Environment and Urban Systems, 51, p. 1–12.

    Article  Google Scholar 

  80. Vollmer M Möllmann KP (2010) Infrared Thermal Imaging: Fundamentals, Research and Applications. Wiley-VCH, 612 pages.

    Google Scholar 

  81. Wang X Cen S Li C (2013) Generalized Neumann Expansion and Its Application in Stochastic Finite Element Methods, Mathematical Problems in Engineering Volume 2013, Article ID 325025, 13 pages Hindawi Publishing Corporation.

    Google Scholar 

  82. Ward GJ (1994) The RADIANCE Lighting Simulation and Rendering System”, SIGGRAPH ’94 Proceedings of the 21st annual conference on Computer graphics and interactive techniques.

    Google Scholar 

  83. Zhai ZJ Chen QY (2006) Sensitivity analysis and application guides for integrated building energy and CFD simulation. Energy and Buildings 38 1060–1068.

    Article  Google Scholar 

  84. Zhang GJ Cai M Hu A (2013) Energy consumption and the unexplained winter warming over northern Asia and North America. In: Nature Climate Change, 3, 466–470.

    Article  Google Scholar 

  85. Zhu D Li B Liang P (2015) On the Matrix Inversion Approximation Based on Neumann Series in Massive MIMO Systems. In: arXiv:1503.05241v1 [cs.IT] 17 Mar 2015 accepted to conference; Proc. IEEE ICC 201.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoit Beckers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Beckers, B. (2016). Multiscale Analysis as a Central Component of Urban Physics Modeling. In: Ibrahimbegovic, A. (eds) Computational Methods for Solids and Fluids. Computational Methods in Applied Sciences, vol 41. Springer, Cham. https://doi.org/10.1007/978-3-319-27996-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27996-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27994-7

  • Online ISBN: 978-3-319-27996-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics