Skip to main content

Part of the book series: Interdisciplinary Applied Mathematics ((IAM,volume 30 ))

  • 2881 Accesses

Abstract

The understanding and the prediction of oral drug absorption are of great interest for pharmaceutical drug development. Obviously, the establishment of a comprehensive framework in which the physicochemical properties of drug candidates are quantitatively related to the extent of oral drug absorption will accelerate the screening of candidates in the discovery/preclinical development phase. Besides, such a framework will certainly help regulatory agencies in developing scientifically based guidelines in accord with a drug’s physicochemical properties for various aspects of oral drug absorption , e.g., dissolution , in vitro–in vivo correlations , biowaivers of bioequivalence studies.

The right drug for the right indication in the right dosage to the right patient.

Anonymous

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Bassingthwaighte, J., Liebovitch, L., West, B.: Fractal Physiology. Methods in Physiology Series. Oxford University Press, New York (1994)

    Book  Google Scholar 

  2. Kopelman, R.: Fractal reaction kinetics. Science 241, 1620–1626 (1988)

    Article  Google Scholar 

  3. Dressman, J., Fleisher, D.: Mixing tank model for predicting dissolution rate control of oral absorption. J. Pharm. Sci. 75(2), 109–116 (1986)

    Article  Google Scholar 

  4. Sinko, P., Leesman, G.D., Amidon, G.L.: Predicting fraction dose absorbed in humans using a macroscopic mass balance approach. Pharm. Res. 8(8), 979–988 (1991)

    Article  Google Scholar 

  5. Oh, D., Curl, R., Amidon, G.: Estimating the fraction dose absorbed from suspensions of poorly soluble compounds in humans: a mathematical model. Pharm. Res. 10(2), 264–270 (1993)

    Article  Google Scholar 

  6. Rinaki, E., Dokoumetzidis, A., Macheras, P.: The mean dissolution time depends on the dose/solubility ratio. Pharm. Res. 20(3), 406–408 (2003)

    Article  Google Scholar 

  7. Jacobs, M.: Some aspects of cell permeability to weak electrolytes. Cold Spring Harb. Symp. Quant. Biol. 8, 30–39 (1940)

    Article  Google Scholar 

  8. Shore, P., Brodie, B., Hogben, C.: The gastric secretion of drugs: a pH partition hypothesis. J. Pharmacol. Exp. Ther. 119(3), 361–369 (1957)

    Google Scholar 

  9. Schanker, L.: On the mechanism of absorption of drugs from the gastrointestinal tract. J. Med. Pharm. Chem. 2, 343–359 (1960)

    Article  Google Scholar 

  10. Suzuki, A., Higuchi, W., Ho, N.: Theoretical model studies of drug absorption and transport in the gastrointestinal tract. I. J. Pharm. Sci. 59(5), 644–651 (1970)

    Article  Google Scholar 

  11. Winne, D.: Shift of pH-absorption curves. J. Pharmacokinet. Biopharm. 5(1), 53–94 (1977)

    Article  Google Scholar 

  12. Amidon, G., Lennernas, H., Shah, V., Crison, J.: A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res. 12(3), 413–420 (1995)

    Article  Google Scholar 

  13. Testa, B., Carrupt, P., Gaillard, P., Billois, F., Weber, P.: Lipophilicity in molecular modeling. Pharm. Res. 13(3), 335–343 (1996)

    Article  Google Scholar 

  14. VanDeWaterbeemd, H., Testa, B.: The parametrization of lipophilicity and other structural properties in drug design. In: Testa, B. (ed.) Advances in Drug Research, vol. 16, pp. 87–227. Academic, London (1988)

    Google Scholar 

  15. Dressman, J., Amidon, G., Fleisher, D.: Absorption potential: estimating the fraction absorbed for orally administered compounds. J. Pharm. Sci. 74(5), 588–589 (1985)

    Article  Google Scholar 

  16. Boxenbaum, H.: Absorption potential and its variants. Pharm. Res. 16(12), 1893 (1999)

    Article  Google Scholar 

  17. Macheras, P., Symillides, M.: Toward a quantitative approach for the prediction of the fraction of dose absorbed using the absorption potential concept. Biopharm. Drug Dispos. 10(1), 43–53 (1989)

    Article  Google Scholar 

  18. Balon, K., Riebesehl, B., Muller, B.: Drug liposome partitioning as a tool for the prediction of human passive intestinal absorption. Pharm. Res. 16(6), 882–888 (1999)

    Article  Google Scholar 

  19. Sanghvi, T., Ni, N., Yalkowsky, S.: A simple modified absorption potential. Pharm. Res. 18(12), 1794–1796 (2001)

    Article  Google Scholar 

  20. Sanghvi, T., Ni, N., Mayersohn, M., Yalkowsky, S.: Predicting passive intestinal absorption using a single parameter. Quant. Struct. Act. Relat. Comb. Sci. 22(2), 247–257 (2003)

    Google Scholar 

  21. Johnson, K., Swindell, A.: Guidance in the setting of drug particle size specifications to minimize variability in absorption. Pharm. Res. 13(12), 1795–1798 (1996)

    Article  Google Scholar 

  22. Komiya, I., Park, J., Kamani, A., Ho, N., Higuchi, W.: Quantitative mechanistic studies in simultaneous fluid flow and intestinal absorption using steroids as model solutes. Int. J. Pharm. 4(3), 249–262 (1980)

    Article  Google Scholar 

  23. Ho, N., Raub, T., Burton, P., Barsuhn, C., Adson, A., Audus, K., Borchardt, R.: Quantitative approaches to delineate transport mechanisms in cell culture monolayers. In: Amidon, G., Lee, P. (eds.) Transport Processes in Pharmaceutical Systems, pp. 219–316. Marcel Dekker, New York (2000)

    Google Scholar 

  24. Irvine, J., Takahashi, L., Lockhart, K., Cheong, J., Tolan, J., Selick, H., Grove, J.: MDCK (Madin-Darby canine kidney) cells: a tool for membrane permeability screening. J. Pharm. Sci. 88(1), 28–33 (1999)

    Article  Google Scholar 

  25. Zhu, C., Jiang, L., Chen, T., Hwang, K.: A comparative study of artificial membrane permeability assay for high throughput profiling of drug absorption potential. Eur. J. Med. Chem. 37(5), 399–407 (2002)

    Article  Google Scholar 

  26. Bergstrom, C., Strafford, M., Lazorova, L., Avdeef, A., Luthman, K., Artursson, P.: Absorption classification of oral drugs based on molecular surface properties. J. Med. Chem. 46(4), 558–570 (2003)

    Article  Google Scholar 

  27. Sun, D., Lennernas, H., Welage, L., Barnett, J., Landowski, C., Foster, D., Fleisher, D., Lee, K., Amidon, G.: Comparison of human duodenum and Caco-2 gene expression profiles for 12,000 gene sequences tags and correlation with permeability of 26 drugs. Pharm. Res. 19(10), 1400–1416 (2002)

    Article  Google Scholar 

  28. Dressman, J., Fleisher, D., Amidon, G.: Physicochemical model for dose-dependent drug absorption. J. Pharm. Sci. 73(9), 1274–1279 (1984)

    Article  Google Scholar 

  29. Macheras, P., Reppas, C., Dressman, J.: Estimate of volume/flow ratio of gastrointestinal fluids in humans using pharmacokinetic data. Pharm. Res. 7(5), 518–522 (1990)

    Article  Google Scholar 

  30. Yu, L., Crison, J., Amidon, G.: Compartmental transit and dispersion model analysis of small intestinal transit flow in humans. Int. J. Pharm. 140, 111–118 (1996)

    Article  Google Scholar 

  31. Yu, L., Amidon, G.: Characterization of small intestinal transit time distribution in humans. Int. J. Pharm. 171(2), 157–163 (1998)

    Article  Google Scholar 

  32. Yu, L., Amidon, G.: Saturable small intestinal drug absorption in humans: modeling and interpretation of cefatrizine data. Eur. J. Pharm. Biopharm. 45(2), 199–203 (1998)

    Article  Google Scholar 

  33. Agoram, B., Woltosz, W., Bolger, M.: Predicting the impact of physiological and biochemical processes on oral drug bioavailability. Adv. Drug Deliv. Rev. 50(S1), S41–67 (2001)

    Article  Google Scholar 

  34. Ni, P., Ho, N., Fox, J., Leuenberger, H., Higuchi, W.: Theoretical model studies of intestinal drug absorption V. Non-steady-state fluid flow and absorption. Int. J. Pharm. 5(1), 33–47 (1980)

    Google Scholar 

  35. Ho, N., Park, J., Ni, P., Higuchi, W.: Advancing quantitative and mechanistic approaches in interfacing gastrointestinal drug absorption studies in animals and humans. In: Crouthamel, W., Sarapu, A. (eds.) Animal Models for Oral Drug Delivery. In Situ and In Vivo Approaches, pp. 27–106. American Pharmaceutical Association, Washington (1983)

    Google Scholar 

  36. Unice, K., Logan, B.: The insignificant role of hydrodynamic dispersion on bacterial transport. J. Environ. Eng. 126(6), 491–500 (2000)

    Article  Google Scholar 

  37. Willmann, S., Schmitt, W., Keldenich, J., Dressman, J.: A physiologic model for simulating gastrointestinal flow and drug absorption in rats. Pharm. Res. 20(11), 1766–1771 (2003)

    Article  Google Scholar 

  38. Willmann, S., Schmitt, W., Keldenich, J., Lippert, J., Dressman, J.: A physiological model for the estimation of the fraction dose absorbed in humans. J. Med. Chem. 47(16), 4022–4031 (2004)

    Article  Google Scholar 

  39. Dokoumetzidis, A., Macheras, P.: A dispersion-convection model for the study of the gastrointestinal drug absorption. AAPS PharmSci 5(4), R6086 (2003)

    Google Scholar 

  40. Agutter, P., Malone, P., Wheatley, D.: Intracellular transport mechanisms: a critique of diffusion theory. J. Theor. Biol. 176(2), 261–272 (1995)

    Article  Google Scholar 

  41. Wheatley, D.: Difusion theory in biology: its validity and relevance. J. Biol. Educ. 27, 181–188 (1993)

    Article  Google Scholar 

  42. Macheras, P., Argyrakis, P.: Gastrointestinal drug absorption: is it time to consider heterogeneity as well as homogeneity? Pharm. Res. 14, 842–847 (1997)

    Article  Google Scholar 

  43. Davenport, H.: Physiology of the Digestive Tract, 5th edn. Year Book Medical, Chicago (1982)

    Google Scholar 

  44. Davis, S., Hardy, J., Fara, J.: Transit of pharmaceutical dosage forms through the small intestine. Gut 27(8), 886–892 (1986)

    Article  Google Scholar 

  45. Digenis, G., Sandefer, E.: Gamma scintigraphy and neutron activation techniques in the in vivo assessment of orally administered dosage forms. Crit. Rev. Ther. Drug Carrier Syst. 7(4), 309–345 (1991)

    Google Scholar 

  46. Davis, S., Stockwell, A., Taylor, M., Hardy, J., Whalley, D., Wilson, C., Bechgaard, H., Christensen, F.: The effect of density on the gastric emptying of single- and multiple-unit dosage forms. Pharm. Res. 3(4), 208–213 (1986)

    Article  Google Scholar 

  47. Wilding, I., Hardy, J., Maccari, M., Ravelli, V., Davis, S.: Scintigraphic and pharmacokinetic assessment of a multiparticulate sustained release formulation of diltiazem. Int. J. Pharm. 76(1–2), 133–143 (1991)

    Article  Google Scholar 

  48. Spiller, R., Brown, M., Phillips, S.: Emptying of the terminal ileum in intact humans. Influence of meal residue and ileal motility. Gastroenterology 92(3), 724–729 (1987)

    Google Scholar 

  49. Krevsky, B., Malmud, L., D’Ercole, F., Maurer, A., Fisher, R.: Colonic transit scintigraphy. A physiologic approach to the quantitative measurement of colonic transit in humans. Gastroenterology 91(5), 1102–1112 (1986)

    Google Scholar 

  50. Adkin, D., Davis, S., Sparrow, R., Wilding, I.: Colonic transit of different sized tablets in healthy subjects. J. Control. Release 23(2), 147–156 (1993)

    Article  Google Scholar 

  51. Scher, H., Shlesinger, M., Bendler, J.: Time-scale invariance in transport and relaxation. Phys. Today 44(1), 26–34 (1991)

    Article  Google Scholar 

  52. Katori, N., Aoyagi, N., Terao, T.: Estimation of agitation intensity in the GI tract in humans and dogs based on in vitro/in vivo correlation. Pharm. Res. 12(2), 237–243 (1995)

    Article  Google Scholar 

  53. Shameem, M., Katori, N., Aoyagi, N., Kojima, S.: Oral solid controlled release dosage forms: role of GI-mechanical destructive forces and colonic release in drug absorption under fasted and fed conditions in humans. Pharm. Res. 12(7), 1049–1054 (1995)

    Article  Google Scholar 

  54. Boxenbaum, H., Jodhka, G., Ferguson, A., Riegelman, S., MacGregor, T.: The influence of bacterial gut hydrolysis on the fate of orally administered isonicotinuric acid in man. J. Pharmacokinet. Biopharm. 2(3), 211–237 (1974)

    Article  Google Scholar 

  55. Sawamoto, T., Haruta, S., Kurosaki, Y., Higaki, K., Kimura, T.: Prediction of the plasma concentration profiles of orally administered drugs in rats on the basis of gastrointestinal transit kinetics and absorbability. J. Pharm. Pharmacol. 49(4), 450–457 (1997)

    Article  Google Scholar 

  56. Nittmann, J., Daccord, G., Stanley, H.: Fractal growth of viscous fingers: a quantitative characterization of a fluid instability phenomenon. Nature 314, 141–144 (1985)

    Article  Google Scholar 

  57. VanDamme, H.: Flow and interfacial instabilities in Newtonian and colloidal fluids (or the birth, life and death of a fractal). In: Avnir, D. (ed.) The Fractal Approach to Heterogeneous Chemistry, pp. 199–226. Wiley, Chishester (1989)

    Google Scholar 

  58. Bhaskar, K., Garik, P., Turner, B., Bradley, J., Bansil, R., Stanley, H., LaMont, J.: Viscous fingering of HCl through gastric mucin. Nature 360(6403), 458–461 (1992)

    Article  Google Scholar 

  59. Holm, L., Flemstrom, G.: Microscopy of acid transport at the gastric surface in vivo. J. Intern. Med. Suppl. 732, 91–95 (1990)

    Article  Google Scholar 

  60. Daccord, G., Lenormand, R.: Fractal patterns from chemical dissolution. Nature 325, 41–43 (1987)

    Article  Google Scholar 

  61. Daccord, G., Chemical dissolution of a porous medium by a reactive fluid. Phys. Rev. Lett. 58(5), 479–482 (1987)

    Article  Google Scholar 

  62. Veng-Pedersen, P., Modi, N.: Optimal extravascular dosing intervals. J. Pharmacokinet. Biopharm. 19(4), 405–412 (1991)

    Article  Google Scholar 

  63. Verotta, D.: Two constrained deconvolution methods using spline functions. J. Pharmacokinet. Biopharm. 21(5), 609–636 (1993)

    Article  Google Scholar 

  64. Cutler, D.: Numerical deconvolution by least squares: Use of prescribed input functions. J. Pharmacokinet. Biopharm. 6(3), 227–241 (1978)

    Article  Google Scholar 

  65. Cutler, D.: Numerical deconvolution by least squares: use of polynomials to represent the input function. J. Pharmacokinet. Biopharm. 6(3), 243–263 (1978)

    Article  Google Scholar 

  66. Veng-Pedersen, P.: An algorithm and computer program for deconvolution in linear pharmacokinetics. J. Pharmacokinet. Biopharm. 8(5), 463–481 (1980)

    Article  Google Scholar 

  67. Higaki, K., Yamashita, S., Amidon, G.: Time-dependent oral absorption models. J. Pharmacokinet. Pharmacodyn. 28(2), 109–128 (2001)

    Article  Google Scholar 

  68. Macheras, P., Argyrakis, P., Polymilis, C.: Fractal geometry, fractal kinetics and chaos en route to biopharmaceutical sciences. Eur. J. Drug Metab. Pharmacokinet. 21(2), 77–86 (1996)

    Article  Google Scholar 

  69. Tsang, Y., Pop, R., Gordon, P., Hems, J., Spino, M.: High variability in drug pharmacokinetics complicates determination of bioequivalence: experience with verapamil. Pharm. Res. 13(6), 846–850 (1996)

    Article  Google Scholar 

  70. Tozer, T., Bois, F., Hauck, W., Chen, M., Williams, R.: Absorption rate vs. exposure: which is more useful for bioequivalence testing? Pharm. Res. 13(3), 453–456 (1996)

    Google Scholar 

  71. Kalampokis, A., Argyrakis, P., Macheras, P.: Heterogeneous tube model for the study of small intestinal transit flow. Pharm. Res. 16(1), 87–91 (1999)

    Article  Google Scholar 

  72. Kalampokis, A., Argyrakis, P., Macheras, P.: A heterogeneous tube model of intestinal drug absorption based on probabilistic concepts. Pharm. Res. 16(11), 1764–1769 (1999)

    Article  Google Scholar 

  73. Lipinski, C., Lombardo, F., Dominy, B., Feeney, P.: Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 46(1–3), 3–26 (2001)

    Article  Google Scholar 

  74. Stenberg, P., Bergstrom, C., Luthman, K., Artursson, P.: Theoretical predictions of drug absorption in drug discovery and development. Clin. Pharmacokinet. 41(11), 877–899 (2002)

    Article  Google Scholar 

  75. Zhao, Y., Le, J., Abraham, M., Hersey, A., Eddershaw, P., Luscombe, C., Butina, D., Beck, G., Sherborne, B., Cooper, I., Platts, J.: Evaluation of human intestinal absorption data and subsequent derivation of a quantitative structure-activity relationship (QSAR) with the Abraham descriptors. J. Pharm. Sci. 90(6), 749–784 (2001)

    Article  Google Scholar 

  76. Zhao, Y., Abraham, M., Le, J., Hersey, A., Luscombe, C., Beck, G., Sherborne, B., Cooper, I.: Rate-limited steps of human oral absorption and QSAR studies. Pharm. Res. 19(10), 1446–1457 (2002)

    Article  Google Scholar 

  77. Turner, J., Maddalena, D., Agatonovic-Kustrin, S.: Bioavailability prediction based on molecular structure for a diverse series of drugs. Pharm. Res. 21(1), 68–82 (2004)

    Article  Google Scholar 

  78. CDER: Guidance for Industry. Waiver of in vivo bioavailability studies for immediate release solid oral dosageforms based on a biopharmaceutics classification system. Technical Report, Center for Drug Evaluation and Research, Food and Drug Administration (2000)

    Google Scholar 

  79. Rinaki, E., Valsami, G., Macheras, P.: Quantitative biopharmaceutics classification system: the central role of dose/solubility ratio. Pharm. Res. 20(12), 1917–1925 (2003)

    Article  Google Scholar 

  80. Yu, L., Amidon, G., Polli, J., Zhao, H., Mehta, M., Conner, D., Shah, V., Lesko, L., Chen, M., Lee, V., Hussain, A.: Biopharmaceutics classification system: the scientific basis for biowaiver extensions. Pharm. Res. 19(7), 921–925 (2002)

    Article  Google Scholar 

  81. Polli, J., Yu, L., Cook, J., Amidon, G., Borchardt, R., Burnside, B., Burton, P., Chen, M., Conner, D., Faustino, P., Hawi, A., Hussain, A., Joshi, H., Kwei, G., Lee, V., Lesko, L., Lipper, R., Loper, A., Nerurkar, S., Polli, J., Sanvordeker, D., Taneja, R., Uppoor, R., Vattikonda, C., Wilding, I., Zhang, G.: Summary workshop report: biopharmaceutics classification system - Implementation challenges and extension opportunities. J. Pharm. Sci. 93(6), 1375–1381 (2004)

    Article  Google Scholar 

  82. Yazdanian, M., Briggs, K., Jankovsky, C., Hawi, A.: The ‘high solubility’ definition of the current FDA Guidance on Biopharmaceutical Classification System may be too strict for acidic drugs. Pharm. Res. 21(2), 293–299 (2004)

    Article  Google Scholar 

  83. Yu, L., Carlin, A., Amidon, G., Hussain, A.: Feasibility studies of utilizing disk intrinsic dissolution rate to classify drugs. Int. J. Pharm. 270(1–2), 221–227 (2004)

    Article  Google Scholar 

  84. Ginski, M., Taneja, R., Polli, J.: Prediction of dissolution-absorption relationships from a continuous dissolution/Caco-2 system. AAPS PharmSci 1(2), E3 (1999)

    Article  Google Scholar 

  85. Rinaki, E., Dokoumetzidis, A., Valsami, G., Macheras, P.: Identification of biowaivers among Class II drugs: theoretical justification and practical examples. Pharm. Res. 21(9), 1567–1572 (2004)

    Article  Google Scholar 

  86. Davies, N., Anderson, K.: Clinical pharmacokinetics of diclofenac. Therapeutic insights and pitfalls. Clin. Pharmacokinet. 33(3), 184–213 (1997)

    Google Scholar 

  87. Blume, H., Schug, B.: The biopharmaceutics classification system (BCS): class III drugs - better candidates for BA/BE waiver? Eur. J. Pharm. Sci. 9(2), 117–121 (1999)

    Article  Google Scholar 

  88. CHMP: Guideline on the investigation of bioequivalence. Technical Report, Committee for Medicinal Products for Human Use, European Medicines Agency (2010)

    Google Scholar 

  89. Reppas, C., Vertzoni, M.: Biorelevant in-vitro performance testing of orally administered dosage forms. J. Pharm. Pharmacol. 64(7), 919–930 (2012)

    Article  Google Scholar 

  90. Daousani, C., Macheras, P.: Scientific considerations concerning the EMA change in the definition of “dose” of the BCS-based biowaiver guideline and implications for bioequivalence. Int. J. Pharm. 478(2), 606–609 (2015)

    Article  Google Scholar 

  91. Macheras, P., Karalis, V., Valsami, G.: Keeping a critical eye on the science and the regulation of oral drug absorption: a review. J. Pharm. Sci. 102(9), 3018–3036 (2013)

    Article  Google Scholar 

  92. Papadopoulou, V., Valsami, G., Dokoumetzidis, A., Macheras, P.: Biopharmaceutics classification systems for new molecular entities (BCS-NMEs) and marketed drugs (BCS-MD): theoretical basis and practical examples. Int. J. Pharm. 361(1–2), 70–77 (2008)

    Article  Google Scholar 

  93. Charkoftaki, G., Dokoumetzidis, A., Valsami, G., Macheras, P.: Elucidating the role of dose in the biopharmaceutics classification of drugs: the concepts of critical dose, effective in vivo solubility, and dose-dependent BCS. Pharm. Res. 29(11), 3188–3198 (2012)

    Article  Google Scholar 

  94. WHO: Proposal to waive in vivo bioequivalence requirements for WHO model list of essential medicines immediate-release, solid oral dosage forms. Technical Report, World Health Organization (2006)

    Google Scholar 

  95. Sediq, A., Kubbinga, M., Langguth, P., Dressman, J.: The impact of the EMA change in definition of “dose” on the BCS dose-solubility ratio: a review of the biowaiver monographs. J. Pharm. Sci. 103(1), 65–70 (2014)

    Article  Google Scholar 

  96. Bergstrom, C., Andersson, S., Fagerberg, J., Ragnarsson, G., Lindahl, A.: Is the full potential of the biopharmaceutics classification system reached? Eur. J. Pharm. Sci. 57, 224–231 (2014)

    Article  Google Scholar 

  97. Macheras, P., Karalis, V.: A non-binary biopharmaceutical classification of drugs: the ABGamma system. Int. J. Pharm. 464(1–2), 85–90 (2014)

    Article  Google Scholar 

  98. Wu, C., Benet, L.: Predicting drug disposition via application of BCS: transport/ absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm. Res. 22(1), 11–23 (2005)

    Article  Google Scholar 

  99. Dokoumetzidis, A., Macheras, P.: The changing face of the rate concept in biopharmaceutical sciences: from classical to fractal and finally to fractional. Pharm. Res. 28(5), 1229–1232 (2011)

    Article  Google Scholar 

  100. Benet, L., Larregieu, C.: The FDA should eliminate the ambiguities in the current BCS biowaiver guidance and make public the drugs for which BCS biowaivers have been granted. Clin. Pharmacol. Ther. 88(3), 405–407 (2010)

    Article  Google Scholar 

  101. Custodio, J., Wu, C., Benet, L.: Predicting drug disposition, absorption/elimination/transporter interplay and the role of food on drug absorption. Adv. Drug Deliv. Rev. 60(6), 717–733 (2008)

    Article  Google Scholar 

  102. Benet, L.: Predicting drug disposition via application of a biopharmaceutics drug disposition classification system. Basic Clin. Pharmacol. Toxicol. 106(3), 162–167 (2010)

    Article  Google Scholar 

  103. Khandelwal, A., Bahadduri, P., Chang, C., Polli, J., Swaan, P., Ekins, S.: Computational models to assign biopharmaceutics drug disposition classification from molecular structure. Pharm. Res. 24(12), 2249–2262 (2007)

    Article  Google Scholar 

  104. Benet, L., Amidon, G., Barends, D., Lennernas, H., Polli, J., Shah, V., Stavchansky, S., Yu, L.: The use of BDDCS in classifying the permeability of marketed drugs. Pharm. Res. 25(3), 483–488 (2008)

    Article  Google Scholar 

  105. Benet, L., Broccatelli, F., Oprea, T.: BDDCS applied to over 900 drugs. AAPS J. 13(4), 519–547 (2011)

    Article  Google Scholar 

  106. Broccatelli, F., Cruciani, G., Benet, L., Oprea, T.: BDDCS class prediction for new molecular entities. Mol. Pharm. 9(3), 570–580 (2012)

    Article  Google Scholar 

  107. Benet, L.: The role of BCS (biopharmaceutics classification system) and BDDCS (biopharmaceutics drug disposition classification system) in drug development. J. Pharm. Sci. 102(1), 34–42 (2013)

    Article  Google Scholar 

  108. Larregieu, C., Benet, L.: Distinguishing between the permeability relationships with absorption and metabolism to improve BCS and BDDCS predictions in early drug discovery. Mol. Pharm. 11(4), 1335–1344 (2014)

    Article  Google Scholar 

  109. Zheng, Y., Benet, L., Okochi, H., Chen, X.: pH dependent but not P-gp dependent bidirectional transport study of S-propranolol: the importance of passive diffusion. Pharm. Res. 32(8), 2516–2526 (2015)

    Google Scholar 

  110. VanRossum, J., DeBie, J.: Chaos and illusion. Trends Pharmacol. Sci. 12(10), 379–383 (1991)

    Article  Google Scholar 

  111. Dokoumetzidis, A., Macheras, P.: Investigation of absorption kinetics by the phase plane method. Pharm. Res. 15(8), 1262–1269 (1998)

    Article  Google Scholar 

  112. Dokoumetzidis, A., Iliadis, A., Macheras, P.: An alternative method for the estimation of the terminal slope when a few data points are available. J. Pharm. Sci. 88(5), 557–560 (1999)

    Article  Google Scholar 

  113. Tothfalusi, L., Endrenyi, L., Midha, K.: Scaling or wider bioequivalence limits for highly variable drugs and for the special case of C(max). Int. J. Clin. Pharmacol. Ther. 41(5), 217–225 (2003)

    Article  Google Scholar 

  114. Karalis, V., Symillides, M., Macheras, P.: Novel scaled average bioequivalence limits based on GMR and variability considerations. Pharm. Res. 21(10), 1933–1942 (2004)

    Article  Google Scholar 

  115. Wang, Z., Zhenya, H., Chen, J.: Chaotic behavior of gastric migrating myoelectrical complex. IEEE Trans. Biomed. Eng. 51(8), 1401–1406 (2004)

    Article  Google Scholar 

  116. Marathe, P., Sandefer, E., Kollia, G., Greene, D., Barbhaiya, R., Lipper, R., Page, R., Doll, W., Ryo, U., Digenis, G.: In vivo evaluation of the absorption and gastrointestinal transit of avitriptan in fed and fasted subjects using gamma scintigraphy. J. Pharmacokinet. Biopharm. 26(1), 1–29 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Macheras, P., Iliadis, A. (2016). Oral Drug Absorption. In: Modeling in Biopharmaceutics, Pharmacokinetics and Pharmacodynamics. Interdisciplinary Applied Mathematics, vol 30 . Springer, Cham. https://doi.org/10.1007/978-3-319-27598-7_6

Download citation

Publish with us

Policies and ethics