Skip to main content

Part of the book series: Interdisciplinary Applied Mathematics ((IAM,volume 30 ))

Abstract

The basic step in drug dissolution is the reaction of the solid drug with the fluid and/or the components of the dissolution medium. This reaction takes place at the solid–liquid interface and therefore dissolution kinetics are dependent on three factors, namely the flow rate of the dissolution medium toward the solid–liquid interface, the reaction rate at the interface, and the molecular diffusion of the dissolved drug molecules from the interface toward the bulk solution, Figure 5.1. As we stated in Section 2.4.2, a process (dissolution in our case) can be either diffusion or reaction-limited depending on which is the slower step. The relative importance of interfacial reaction and molecular diffusion (steps 2 and 3 in Figure 5.1, respectively) can vary depending on the hydrodynamic conditions prevailing in the microenvironment of the solid. This is so since both elementary steps 2 and 3 in Figure 5.1 are heavily dependent on the agitation conditions. For example, diffusion phenomena become negligible when externally applied intense agitation in in vitro dissolution systems gives rise to forced convection

The rate at which a solid substance dissolves in its own solution is proportional to the difference between the concentration of that solution and the concentration of the saturated solution.

Arthur A. Noyes and Willis R. Whitney

Massachusetts Institute of Technology, Boston

Journal of the American Chemical Society 19:930–934 (1897)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the pharmaceutical literature the exponential in the Weibull function is written as \(\exp \left (-\lambda t^{\mu }\right )\) and therefore \(\lambda\) has dimension timeμ. In the version used herein (equation 5.11), the dimension of \(\lambda\) is time−1.

Bibliography

  1. Kopelman, R.: Fractal reaction kinetics. Science 241, 1620–1626 (1988)

    Article  Google Scholar 

  2. Rinaki, E., Dokoumetzidis, A., Macheras, P.: The mean dissolution time depends on the dose/solubility ratio. Pharm. Res. 20(3), 406–408 (2003)

    Article  Google Scholar 

  3. Levich, V.: Physicochemical Hydrodynamics. Prentice Hall, Englewood Cliffs (1962)

    Google Scholar 

  4. Noyes, A., Whitney, W.: The rate of solution of solid substances in their own solutions. J. Am. Chem. Soc. 19, 930–934 (1897)

    Article  Google Scholar 

  5. Nernst, W., Brunner, E.: Theorie der Reaktionsgeschwindigkeit in heterogen Systemen. Z. Phys. Chem. 47, 52–110 (1904)

    Google Scholar 

  6. Hixson, A., Crowell, J.: Dependence of reaction velocity upon surface and agitation. I. Theoretical considerations. Ind. Eng. Chem. Res. 51, 923–931 (1931)

    Google Scholar 

  7. Avnir, D., Farin, D., Pfeifer, P.: Surface geometric irregularity of particulate materials. J. Colloid Interface Sci., 103, 112–123 (1985)

    Article  Google Scholar 

  8. Li, T., Park, K.: Fractal analysis of pharmaceutical particles by atomic force microscopy. Pharm. Res. 15(8), 1222–1232 (1998)

    Article  Google Scholar 

  9. Schroder, M., Kleinebudde, P.: Structure of disintegrating pellets with regard to fractal geometry. Pharm. Res. 12(11), 1694–1700 (1995)

    Article  Google Scholar 

  10. Fini, A., Holgado, M., Rodriguez, L., Cavallari, C.: Ultrasound-compacted indomethacin/polyvinylpyrrolidone systems: effect of compaction process on particle morphology and dissolution behavior. J. Pharm. Sci. 91(8), 1880–1890 (2002)

    Article  Google Scholar 

  11. Pettit, F., Bowie, J.: Protein surface roughness and small molecular binding sites. J. Mol. Biol. 285(4), 1377–1382 (1999)

    Article  Google Scholar 

  12. Farin, D., Avnir, D.: Use of fractal geometry to determine effects of surface morphology on drug dissolution. J. Pharm. Sci. 81(1), 54–57 (1992)

    Article  Google Scholar 

  13. Farin, D., Avnir, D.: The reaction dimension in catalysis on dispersed metals. J. Am. Chem. Soc. 110, 2039–2045 (1988)

    Article  Google Scholar 

  14. Valsami, G., Macheras, P.: Determination of fractal reaction dimension in dissolution studies. Eur. J. Pharm. Sci. 3(3), 163–169 (1995)

    Article  Google Scholar 

  15. Weibull, W.: A statistical distribution function of wide applicability. J. Appl. Mech. 18, 293–297 (1951)

    MATH  Google Scholar 

  16. Langenbucher, F.: Linearization of dissolution rate curves by the Weibull distribution. J. Pharm. Pharmacol. 24(12), 979–981 (1972)

    Article  Google Scholar 

  17. Djordjevic, A., Mendas, I.: Method for modelling in vitro dissolution profiles of drugs using gamma distribution. Eur. J. Pharm. Biopharm. 44(2), 215–217 (1997)

    Article  Google Scholar 

  18. Smoluchowski, M.: Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Loesungen. Z. Phys. Chem. 92, 129–168 (1917)

    Google Scholar 

  19. Elkoshi, Z.: On the variability of dissolution data. Pharm. Res. 14(10), 1355–1362 (1997)

    Article  Google Scholar 

  20. Dokoumetzidis, A., Macheras, P.: On the heterogeneity of drug dissolution and release. Pharm. Res. 17(2), 108–112 (2000)

    Article  Google Scholar 

  21. Lansky, P., Weiss, M.: Does the dose-solubility ratio affect the mean dissolution time of drugs? Pharm. Res. 16(9), 1470–1476 (1999)

    Article  Google Scholar 

  22. Dokoumetzidis, A., Macheras, P.: A population growth model of dissolution. Pharm. Res. 14(9), 1122–1126 (1997)

    Article  Google Scholar 

  23. Dokoumetzidis, A., Papadopoulou, V., Valsami, G., Macheras, P.: Development of a reaction-limited model of dissolution: application to official dissolution tests experiments. Int. J. Pharm. 355(1–2), 114–125 (2008)

    Article  Google Scholar 

  24. May, R.: Simple mathematical models with very complicated dynamics. Nature 261(5560), 459–467 (1976)

    Article  Google Scholar 

  25. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos, 3rd edn. Springer, New York (1990)

    Book  MATH  Google Scholar 

  26. Shah, V., Noory, A., Noory, C., McCullough, B., Clarke, S., Everett, R., Naviasky, H., Srinivasan, B., Fortman, D., Skelly, J.: In vitro dissolution of sparingly water-soluble drug dosage forms. Int. J. Pharm. 125, 99–106 (1995)

    Article  Google Scholar 

  27. Yamamoto, K., Nakano, M., Arita, T., Takayama, Y., Nakai, Y.: Dissolution behavior and bioavailability of phenytoin from a ground mixture with microcrystalline cellulose. J. Pharm. Sci. 65(10), 1484–1488 (1976)

    Article  Google Scholar 

  28. Suzuki, H., Sunada, H.: Influence of water-soluble polymers on the dissolution of nifedipine solid dispersions with combined carriers. Chem. Pharm. Bull. 46(3), 482–487 (1998)

    Article  Google Scholar 

  29. Valsami, G., Dokoumetzidis, A., Macheras, P.: Modeling of supersaturated dissolution data. Int. J. Pharm. 181(2), 153–157 (1999)

    Article  Google Scholar 

  30. Charkoftaki, G., Dokoumetzidis, A., Valsami, G., Macheras, P.: Supersaturated dissolution data and their interpretation: the TPGS-carbamazepine model case. J. Pharm. Pharmacol. 63(3), 352–361 (2011)

    Article  Google Scholar 

  31. Lansky, P., Weiss, M.: Modeling heterogeneity of particles and random effects in drug dissolution. Pharm. Res. 18(7), 1061–1067 (2001)

    Article  Google Scholar 

  32. Lansky, P., Weiss, M.: Classification of dissolution profiles in terms of fractional dissolution rate and a novel measure of heterogeneity. J. Pharm. Sci. 92(8), 1632–1647 (2003)

    Article  Google Scholar 

  33. Lansky, P., Lanska, V., Weiss, M.: A stochastic differential equation model for drug dissolution and its parameters. J. Control. Release 100(2), 267–274 (2004)

    Article  Google Scholar 

  34. Lansky, P., Weiss, M.: Role of heterogeneity in deterministic models of drug dissolution and their statistical characteristics. Biosystems 71(1–2), 123–131 (2003)

    Article  Google Scholar 

  35. Tsong, Y., Hammerstrom, T., Sathe, P., Shah, V.: Statistical assessment of mean differences between two dissolution data sets. Drug Inf. J. 30, 1105–1112 (1996)

    Google Scholar 

  36. Costa, P., Lobo, J.: Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci. 13, 123–133 (2001)

    Article  Google Scholar 

  37. CDER: Guidance for Industry. Dissolution testing of immediate release solid oral dosage forms. Technical Report, Center for Drug Evaluation and Research, Food and Drug Administration (1997)

    Google Scholar 

  38. CDER: Guidance for Industry. Waiver of in vivo bioavailability and bioequivalence studies for immediate release solid oral dosage forms based on a biopharmaceutics classification system. Technical Report, Center for Drug Evaluation and Research, Food and Drug Administration (2000)

    Google Scholar 

  39. CPMP: Note for guidance on the investigation of bioavailability and bioequivalence. Technical Report, Committee for Proprietary Medicinal Products, European Medicines Agency (2001)

    Google Scholar 

  40. Liu, J., Ma, M., Chow, S.: Statistical evaluation of similarity factor f2 as a criterion for assessment of similarity between dissolution profiles. Drug Inf. J. 31, 1255–1271 (1997)

    Google Scholar 

  41. Shah, V., Tsong, Y., Sathe, P., Liu, J.: In vitro dissolution profile comparison-statistics and analysis of the similarity factor, f2. Pharm. Res. 15(6), 889–896 (1998)

    Article  Google Scholar 

  42. Vertzoni, M., Symillides, M., Iliadis, A., Nicolaides, E., Reppas, C.: Comparison of simulated cumulative drug versus time data sets with indices. Eur. J. Pharm. Biopharm. 56(3), 421–428 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Macheras, P., Iliadis, A. (2016). Drug Dissolution. In: Modeling in Biopharmaceutics, Pharmacokinetics and Pharmacodynamics. Interdisciplinary Applied Mathematics, vol 30 . Springer, Cham. https://doi.org/10.1007/978-3-319-27598-7_5

Download citation

Publish with us

Policies and ethics