Skip to main content

Part of the book series: Interdisciplinary Applied Mathematics ((IAM,volume 30 ))

  • 2813 Accesses

Abstract

The term “release” encompasses several processes that contribute to the transfer of drug from the dosage form to the bathing solution (e.g., gastrointestinal fluids, dissolution medium).

An equation relating the rate of release of solid drugs suspended in ointment bases into perfect sinks is derived. … The amount of drug released … is proportional to the square root of time.

Takeru Higuchi School of Pharmacy, University of Wisconsin, Madison Journal of Pharmaceutical Sciences 50:874–875 (1961)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The terms “drug molecule” and “particle” will be used in this section interchangeably.

  2. 2.

    The classical kinetics solution is obtained by solving (4.13) in case of \(g\left (t\right ) = 1\).

Bibliography

  1. Kopelman, R.: Fractal reaction kinetics. Science 241, 1620–1626 (1988)

    Article  Google Scholar 

  2. Higuchi, T.: Rate of release of medicaments from ointment bases containing drugs in suspension. J. Pharm. Sci. 50, 874–875 (1961)

    Article  Google Scholar 

  3. Higuchi, T.: Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid satrices. J. Pharm. Sci. 52, 1145–1149 (1963)

    Google Scholar 

  4. Lapidus, H., Lordi, N.: Drug release from compressed hydrophilic matrices. J. Pharm. Sci. 57(8), 1292–1301 (1968)

    Article  Google Scholar 

  5. Siepmann, J., Peppas, N.: Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv. Drug Deliv. Rev. 48(2–3), 139–157 (2001)

    Article  Google Scholar 

  6. Crank, J.: The Mathematics of Diffusion, 2nd edn. Oxford University Press, Oxford (1975)

    MATH  Google Scholar 

  7. Wang, T., Kwei, T., Frisch, H.: Diffusion in glassy polymers. III. J. Polym. Sci. 7(12), 2019–2028 (1969)

    Google Scholar 

  8. Enscore, D., Hopfenberg, H., Stannett, V.: Effect of particle size on the mechanism controlling n-hexane sorption in glassy polystyrene microspheres. Polymer 18(8), 793–800 (1977)

    Article  Google Scholar 

  9. Frisch, H.: Sorption and transport in glassy polymers - a review. Polym. Eng. Sci. 20, 2–13 (1980)

    Article  Google Scholar 

  10. Peppas, N.: Analysis of Fickian and non-Fickian drug release from polymers. Pharm. Acta Helv. 60(4), 110–111 (1985)

    Google Scholar 

  11. Ritger, P., Peppas, N.: A simple equation for description of solute release I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J. Control. Release 5(1), 23–36 (1987)

    Google Scholar 

  12. Ritger, P., Peppas, N.: A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J. Control. Release 5(1), 37–42 (1987)

    Article  Google Scholar 

  13. Kosmidis, K., Rinaki, E., Argyrakis, P., Macheras, P.: Analysis of Case II drug transport with radial and axial release from cylinders. Int. J. Pharm. 254(2), 183–188 (2003)

    Article  Google Scholar 

  14. Peppas, N., Korsmeyer, R.: Dynamically swelling hydrogels in controlled applications. In: Peppas, N. (ed.) Hydrogels in Medicine and Pharmacy. Properties and Applications, vol. 3, pp. 109–136. CRC, Boca Raton (1987)

    Google Scholar 

  15. Rinaki, E., Valsami, G., Macheras, P.: The power law can describe the ‘entire’ drug release curve from HPMC-based matrix tablets: a hypothesis. Int. J. Pharm. 255(1–2), 199–207 (2003)

    Article  Google Scholar 

  16. Fu, J., Hagemeir, C., Moyer, D.: A unified mathematical model for diffusion from drug-polymer composite tablets. J. Biomed. Mater. Res. 10(5), 743–758 (1976)

    Article  Google Scholar 

  17. Gao, P., Fagerness, P.: Diffusion in HPMC gels. I. Determination of drug and water diffusivity by pulsed-field-gradient spin-echo NMR. Pharm. Res. 12(7), 955–964 (1995)

    Google Scholar 

  18. Gao, P., Nixon, P., Skoug, J.: Diffusion in HPMC gels. II. Prediction of drug release rates from hydrophilic matrix extended-release dosage forms. Pharm. Res. 12(7), 965–971 (1995)

    Google Scholar 

  19. Narasimhan, B., Peppas, N.: Disentanglement and reptation during dissolution of rubbery polymers. J. Polym. Sci. 34(5), 947–961 (1996)

    Article  Google Scholar 

  20. Narasimhan, B., Peppas, N.: Molecular analysis of drug delivery systems controlled by dissolution of the polymer carrier. J. Pharm. Sci. 86(3), 297–304 (1997)

    Article  Google Scholar 

  21. Siepmann, J., Kranz, H., Bodmeier, R., Peppas, N.: HPMC-matrices for controlled drug delivery: a new model combining diffusion, swelling, and dissolution mechanisms and predicting the release kinetics. Pharm. Res. 16(11), 1748–1756 (1999)

    Article  Google Scholar 

  22. Siepmann, J., Streubel, A., Peppas, N.: Understanding and predicting drug delivery from hydrophilic matrix tablets using the ‘sequential layer’ model. Pharm. Res. 19(3), 306–314 (2002)

    Article  Google Scholar 

  23. Kosmidis, K., Argyrakis, P., Macheras, P.: A reappraisal of drug release laws using Monte Carlo simulations: the prevalence of the Weibull function. Pharm. Res. 20(7), 988–995 (2003)

    Article  Google Scholar 

  24. Bonny, J., Leuenberger, H.: Matrix type controlled release systems: I. Effect of percolation on drug dissolution kinetics. Pharm. Acta Helv. 66(5–6), 160–164 (1991)

    Google Scholar 

  25. Bunde, A., Havlin, S., Nossal, R., Stanley, H., Weiss, G., On controlled diffusion-limited drug release from a leaky matrix. J. Chem. Phys. 83(11), 5909–5913 (1985)

    Article  Google Scholar 

  26. Pham, A., Lee, P.: Probing the mechanisms of drug release from hydroxypropylmethyl cellulose matrices. Pharm. Res. 11(10), 1379–1384 (1994)

    Article  Google Scholar 

  27. Bettini, R., Catellani, P., Santi, P., Massimo, G., Peppas, N., Colombo, P.: Translocation of drug particles in HPMC matrix gel layer: effect of drug solubility and influence on release rate. J. Control. Release 70(3), 383–391 (2001)

    Article  Google Scholar 

  28. Kosmidis, K., Argyrakis, P., Macheras, P.: Fractal kinetics in drug release from finite fractal matrices. J. Chem. Phys. 119(12), 6373–6377 (2003)

    Article  Google Scholar 

  29. Weiss, G.: Aspects and Applications of the Random Walk. Random Materials and Processes. North-Holland, Amsterdam (1994)

    MATH  Google Scholar 

  30. Papadopoulou, V., Kosmidis, K., Vlachou, M., Macheras, P.: On the use of the Weibull function for the discernment of drug release mechanisms. Int. J. Pharm. 309(1–2), 44–50 (2006)

    Article  Google Scholar 

  31. Rinaki, E., Dokoumetzidis, A., Macheras, P.: The mean dissolution time depends on the dose/solubility ratio. Pharm. Res. 20(3), 406–408 (2003)

    Article  Google Scholar 

  32. Siepmann, J., Faisant, N., Benoit, J.: A new mathematical model quantifying drug release from bioerodible microparticles using Monte Carlo simulations. Pharm. Res. 19(12), 1885–1893 (2002)

    Article  Google Scholar 

  33. Siepmann, J., Faisant, N., Akiki, J., Richard, J., Benoit, J.: Effect of the size of biodegradable microparticles on drug release: experiment and theory. J. Control. Release 96(1), 123–134 (2004)

    Article  Google Scholar 

  34. Mazer, N.: Pharmacokinetic and pharmacodynamic aspects of polypeptide delivery. J. Control. Release 11(1–3), 343–356 (1990)

    Article  Google Scholar 

  35. Heller, J.: Modulated release from drug delivery devices. Crit. Rev. Ther. Drug Carrier Syst. 10(3), 253–305 (1993)

    Google Scholar 

  36. Siegel, R., Ziaie, B.: Biosensing and drug delivery at the microscale. Adv. Drug Deliv. Rev. 56(2), 121–123 (2004)

    Article  Google Scholar 

  37. Misra, G., Siegel, R.: Ionizable drugs and pH oscillators: buffering effects. J. Pharm. Sci. 91(9), 2003–2015 (2002)

    Article  Google Scholar 

  38. Leroux, J., Siegel, R.: Autonomous gel/enzyme oscillator fueled by glucose: preliminary evidence for oscillations. Chaos 9(2), 267–275 (1999)

    Article  Google Scholar 

  39. Giannos, S., Dinh, S., Berner, B.: Temporally controlled drug delivery systems: coupling of pH oscillators with membrane diffusion. J. Pharm. Sci. 84(5), 539–543 (1995)

    Article  Google Scholar 

  40. Misra, G., Siegel, R.: Multipulse drug permeation across a membrane driven by a chemical pH-oscillator. J. Control. Release 79(1–3), 293–297 (2002)

    Article  Google Scholar 

  41. Misra, G., Siegel, R.: New mode of drug delivery: long term autonomous rhythmic hormone release across a hydrogel membrane. J. Control. Release 81(1–2), 1–6 (2002)

    Article  Google Scholar 

  42. Li, B., Siegel, R.: Global analysis of a model pulsing drug delivery oscillator based on chemomechanical feedback with hysteresis. Chaos 10(3), 682–690 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Macheras, P., Iliadis, A. (2016). Drug Release. In: Modeling in Biopharmaceutics, Pharmacokinetics and Pharmacodynamics. Interdisciplinary Applied Mathematics, vol 30 . Springer, Cham. https://doi.org/10.1007/978-3-319-27598-7_4

Download citation

Publish with us

Policies and ethics