Skip to main content

Different Approaches for Anticancer/Antitumor Therapy

  • Chapter
  • First Online:
Bioengineering and Cancer Stem Cell Concept
  • 863 Accesses

Abstract

The review on classical antitumor therapy including the anticancer stem cell therapy novelties is presented with disadvantages and advantages. The concept of targeted tumor therapy has evolved during last years into the concept of targeted stem cell therapy. The difference between the two is that in the first case we are targeting the pool of tumor cells as well as normal cells while in the second case we should target just cancer stem cells (CSCs). The new theories on CSCs are comprehended in the light of new conceptual approaches. CSC markers are envisioned as a new category of biomarkers which would be guides toward precise distinction between tumor cells and CSCs. CSCs have the highest tumorigenic potential in the entire pool of tumor cells and due to that should be essential and primary target of the therapy. Thus, targeting of other less cancerogenic and normal cells would be omitted. CSCs due to that reside in tissues either as minimal residual disease or simply as a very low number of cloned cells. When reaching critical size or count, they cause tumor relapse.

The magnetotherapy as one of the novel approaches in targeted CSC therapy is described. It is concluded that further research is necessary in order to reach success in clinical arena by using novel approaches and targeting CSCs.

Extraordinary claims require extraordinary evidence.

Carl Sagan

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mavroudi M, Zarogoulidis P, Porpodis K, Kioumis I, Lampaki S, Yarmus L, Malecki R, Zarogoulidis K, Malecki M (2014) Stem cell’s guided therapy of cancer: new frontier in personalized and targeted therapy. J Cancer Res Ther (Manch) 2(1):22–23

    Article  Google Scholar 

  2. Tang C, Ang BT, Pervaiz S (2007) Cancer stem cell: target for anti-cancer therapy. FASEB J 21:3777–3785

    Article  Google Scholar 

  3. Soo ETL, Yip GWC, Lwin ZM, Kumar SD, Bay B (2008) Heat shock proteins as novel therapeutic targets in cancer. In Vivo 22:311–316

    Google Scholar 

  4. Wu H, Chang D, Huang C (2006) Targeted therapy for cancer. J Cancer Mol 2(2):57–66

    Google Scholar 

  5. Faivre S, Djelloul S, Raymond E (2006) New paradigms in anticancer therapy: targeting multiple signaling pathways with kinase inhibitors. Semin Oncol 33:407–420

    Article  Google Scholar 

  6. Gil J, Stembalska A, Pesz KA, Sasiadek MM (2008) Cancer stem cells: the theory and perspectives in cancer therapy. J Appl Genet 49(2):193–199

    Article  Google Scholar 

  7. Schumacher T, Bunse L, Pusch S, Sahm F, Wiestler B, Quandt J, Menn O, Osswald M, Oezen I, Ott M, Keil M, Balb J, Rauschenbach K, Grabowska AK, Vogler I, Diekmann J, Trautwein N, Eichmuller SB, Okun J, Stevanovic S, Riemer AB, Sahin U, Friese MA, Beckhove P, von Deimling A, Wick W, Platten M (2014) A vaccine-targeting mutant IDH1 induces antitumour immunity. Nature 512(7514):324–327

    Article  Google Scholar 

  8. Kleinsmith LJ (2006) Principles of cancer biology. Pearson Benjamin Cummings, San Francisco

    Google Scholar 

  9. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432(7015):396–401

    Article  Google Scholar 

  10. Garcia MA, Carrasco E, Ranirez A, Jimenez G, Lopez-Ruiz E, Peran M et al (2012) Apoptosis as a therapeutic target in cancer stem cells: novel strategies and future perspectives. In: Ntuli TM (ed) Apoptosis and medicine. Intech, New York (Chapter 5)

    Google Scholar 

  11. Dabelsteen E (1996) Cell surface carbohydrates as prognostic markers in human carcinomas. J Pathol 179:513–516

    Article  Google Scholar 

  12. Kure S, Matsuda Y, Hagio M, Ueda J, Naito Z, Ishiwate T (2012) Expression of cancer stem cell markers in pancreatic intraepithelial neoplasias and pancreatic ductal adenocarcinoma. Int J Oncol 41(4):1314–1324

    Google Scholar 

  13. Jamieson KH (2008) Chronic myeloid leukemia stem cells. Am Soc Hematol:436–442

    Google Scholar 

  14. Wu JC (2014) Immunologic targeting of the cancer stem cells. Stem book, pp 1–37. www.stembook.org/node/529

  15. Jones RJ, Armstrong SA (2008) Cancer stem cells in hematopoietic malignancies. Biol Blood Marrow Transplant 14:12–16

    Article  Google Scholar 

  16. Walter RB, Appelbaum RA, Estey HE, Bernstein ID (2012) Acute myeloid leukemia stem cells and CD33-targeted immunotherapy. Blood 119:6198–6208

    Article  Google Scholar 

  17. Hudziak RM, Lewis GD, Winget M, Fendly BM, Shepard HM, Ullrich A (1989) p185HER2 monoclonal antibody has antiproliferative effects in vitro and sensitizes human breast tumor cells to tumor necrosis factor. Mol Cell Biol 9:1165–1172

    Article  Google Scholar 

  18. Horton SJ, Huntly BJ (2012) Recent advances in acute myeloid leukemia stem cell biology. Haematologica 97(7):966–974

    Article  Google Scholar 

  19. Carter P, Presta L, Gorman CM, Ridgway JB, Henner D, Wong WL, Rowland AM, Kotts C, Carver ME, Shepard HM (1992) Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc Natl Acad Sci U S A 89(10):4285–4289

    Article  Google Scholar 

  20. Martins AM, Vunjak-Novakovic G, Rl R (2014) The current status of iPs cells in cardiac research and their potential for tissue engineering and regenerative medicine. Stem Cell Rev Rep 10:177–190

    Article  Google Scholar 

  21. Press OW, Appelbaum F, Ledbetter JA, Martin PJ, Zarling J, Kidd P, Thomas ED (1987) Monoclonal antibody 1F5 (anti-CD20) serotherapy of human B cell lymphomas. Blood 69:584–591

    Google Scholar 

  22. Reff ME, Carner K, Chambers KS, Chinn PC, Leonard JE, Raab R, Newman RA, Hanna N, Anderson DR (1994) Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood 83:435–445

    Google Scholar 

  23. Maloney DG, Liles TM, Czerwinski DK, Waldichuk C, Rosenberg J, Grillo-Lopez A, Levy R (1994) Phase I clinical trial using escalating single-dose infusion of chimeric anti-CD20 monoclonal antibody (IDEC-C2B8) in patients with recurrent B-cell lymphoma. Blood 84:2457–2466

    Google Scholar 

  24. Czuczman MS, Grillo-Lopez AJ, White CA, Saleh M, Gordon L, LoBuglio AF, Jonas C, Klippenstein D, Dallaire B, Varns C (1999) Treatment of patients with low-grade B-cell lymphoma with the combination of chimeric anti-CD20 monoclonal antibody and CHOP chemotherapy. J Clin Oncol 17:268–276

    Article  Google Scholar 

  25. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177–182

    Article  Google Scholar 

  26. Naito K, Takeshita A, Shigeno K, Nakamura S, Fujisawa S, Shinjo K, Yoshida H, Ohnishi K, Mori M, Terakawa S, Ohno R (2000) Calicheamicin-conjugated humanized anti-CD33 monoclonal antibody (gemtuzumab zogamicin, CMA-676) shows cytocidal effect on CD33-positive leukemia cell lines, but is inactive on P-glycoprotein-expressing sublines. Leukemia 14:1436–1443

    Article  Google Scholar 

  27. Boghaert ER, Khandke K, Sridharan L, Armellino D, Dougher M, Dijoseph JF, Kunz A, Hamann PR, Sridharan A, Jones S, Discafani C, Damle NK (2006) Tumoricidal effect of calicheamicin immuno-conjugates using a passive targeting strategy. Int J Oncol 28:675–684

    Google Scholar 

  28. Genentech Inc. Herceptin® (trastuzumab) (1998, Sept) Investigator brochure. San Francisco

    Google Scholar 

  29. Lozanski G, Heerema NA, Flinn IW, Smith L, Harbison J, Webb J, Moran M, Lucas M, Lin T, Hackbarth ML, Proffitt JH, Lucas D, Grever MR, Byrd JC (2004) Alemtuzumab is an effective therapy for chronic lymphocytic leukemia with p53 mutations and deletions. Blood 103:3278–3281

    Article  Google Scholar 

  30. Kaufman DB, Leventhal JR, Gallon LG, Parker MA (2006) Alemtuzumab induction and prednisone-free maintenance immunotherapy in simultaneous pancreas-kidney transplantation comparison with rabbit anti-thymocyte globulin induction long term results. Am J Transplant 6:331–339

    Article  Google Scholar 

  31. Lundin J, Osterborg A, Brittinger G, Crowther D, Dombret H, Engert A, Epenetos A, Gisselbrecht C, Huhn D, Jaeger U, Thomas J, Marcus R, Nissen N, Poynton C, Rankin E, Stahel R, Uppenkamp M, Willemze R, Mellstedt H (1998) CAMPATH-1H monoclonal antibody in therapy for previously treated low-grade non-Hodgkin’s lymphomas: a phase II multicenter study. European Study Group of CAMPATH-1H Treatment in Low-Grade Non-Hodgkin’s Lymphoma. J Clin Oncol 16:3257–3263

    Article  Google Scholar 

  32. Chinn PC, Leonard JE, Rosenberg J, Hanna N, Anderson DR (1999) Preclinical evaluation of 90Y-labeled anti-CD20 monoclonal antibody for treatment of non-Hodgkin’s lymphoma. Int J Oncol 15:1017–1025

    Google Scholar 

  33. Cheson BD (2003) Radioimmunotherapy of non-Hodgkin lymphomas. Blood 101:391–398

    Article  Google Scholar 

  34. Nademanee A, Forman S, Molina A, Fung H, Smith D, Dagis A, Kwok C, Yamauchi D, Anderson AL, Falk P, Krishnan A, Kirschbaum M, Kogut N, Nakamura R, O’Donnell M, Parker P, Popplewell L, Pullarkat V, Rodriguez R, Sahebi F, Smith E, Snyder D, Stein A, Spielberger R, Zain J, White C, Raubitschek A (2005) A phase 1/2 trial of high-dose yttrium-90-ibritumomab tiuxetan in combination with high-dose etoposide and cyclophosphamide followed by autologous stem cell transplantation in patients with poor-risk or relapsed non-Hodgkin lymphoma. Blood 106:2896–2902

    Article  Google Scholar 

  35. Kaminski MS, Zasadny KR, Francis IR, Fenner MC, Ross CW, Milik AW, Estes J, Tuck M, Regan D, Fisher S, Glenn SD, Wahl RL (1996) Iodine-131-anti-B1 radioimmunotherapy for B-cell lymphoma. J Clin Oncol 14:1974–1981

    Article  Google Scholar 

  36. Vose JM, Wahl RL, Saleh M, Rohatiner AZ, Knox SJ, Radford JA, Zelenetz AD, Tidmarsh GF, Stagg RJ, Kaminski MS (2000) Multicenter phase II study of iodine-131 tositumomab for chemotherapy relapsed/refractory low-grade and transformed low-grade B-cell non-Hodgkin’s lymphomas. J Clin Oncol 18:1316–1323

    Article  Google Scholar 

  37. Liu SY, Eary JF, Petersdorf SH, Martin PJ, Maloney DG, Appelbaum FR, Matthews DC, Bush SA, Durack LD, Fisher DR, Gooley TA, Bernstein ID, Press OW (1998) Follow-up of relapsed B-cell lymphoma patients treated with iodine-131-labeled anti-CD20 antibody and autologous stem cell rescue. J Clin Oncol 16:3270–3278

    Article  Google Scholar 

  38. Huang SM, Bock JM, Harari PM (1999) Epidermal growth factor receptor blockade with C225 modulates proliferation, apoptosis, and radiosensitivity in squamous cell carcinomas of the head and neck. Cancer Res 59:1935–1940

    Google Scholar 

  39. Baselga J, Pfister D, Cooper MR, Cohen R, Burtness B, Bos M, D’Andrea G, Seidman A, Norton L, Gunnett K, Falcey J, Anderson V, Waksal H, Mendelsohn J (2000) Phase I studies of anti-epidermal growth factor receptor chimeric antibody C225 alone and in combination with cisplatin. J Clin Oncol 18:904–914

    Article  Google Scholar 

  40. Jimeno A, Rubio-Viqueira B, Amador ML, Oppenheimer D, Bouraoud N, Kulesza P, Sebastiani V, Maitra A, Hidalgo M (2005) Epidermal growth factor receptor dynamics influences response to epidermal growth factor receptor targeted agents. Cancer Res 65:3003–3010

    Google Scholar 

  41. Willett CG, Boucher Y, di Tomaso E, Duda DG, Munn LL, Tong RT, Chung DC, Sahani DV, Kalva SP, Kozin SV, Mino M, Cohen KS, Scadden DT, Hartford AC, Fischman AJ, Clark JW, Ryan DP, Zhu AX, Blaszkowsky LS, Chen HX, Shellito PC, Lauwers GY, Jain RK (2004) Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 10:145–147

    Article  Google Scholar 

  42. Ferrara N, Hillan KJ, Gerber HP, Novotny W (2004) Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 3:391–400

    Article  Google Scholar 

  43. Sonpavde G (2004) Bevacizumab in colorectal cancer. N Engl J Med 351:1690–1691

    Article  Google Scholar 

  44. Kabbinavar FF, Schulz J, McCleod M, Patel T, Hamm JT, Hecht JR, Mass R, Perrou B, Nelson B, Novotny WF (2005) Addition of bevacizumab to bolus fluorouracil and leucovorin in first-line metastatic colorectal cancer: results of a randomized phase II trial. J Clin Oncol 23:3697–3705

    Article  Google Scholar 

  45. Mayfield J, Pavlovic M (2014) A concept of cancer stem cells: the current understanding and a look ahead. ART 41(1–2):49–60

    Google Scholar 

  46. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737

    Article  Google Scholar 

  47. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100:3983–3988

    Article  Google Scholar 

  48. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65:10946–10951

    Article  Google Scholar 

  49. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF, Simeone DM (2007) Identification of pancreatic cancer stem cells. Cancer Res 67:1030–1037

    Article  Google Scholar 

  50. O’Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–110

    Article  Google Scholar 

  51. Patrawala L, Calhoun T, Schneider-Broussard R, Li H, Bhatia B, Tang S, Reilly JG, Chandra D, Zhou J, Claypool K, Coghlan L, Tang DG (2006) Highly purified CD44 prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 25:1696–1708

    Article  Google Scholar 

  52. Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, Weissman IL, Clarke MF, Ailles LE (2007) Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A 104:973–978

    Article  Google Scholar 

  53. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445:111–115

    Article  Google Scholar 

  54. Gaitanis A, Staal S (2010) Liposomal doxorubicin and nab-paclitaxel: nanoparticle cancer chemotherapy in current clinical use. Methods Mol Biol 624:385–392

    Article  Google Scholar 

  55. Graishar WJ, Tjulndin S, Davidson N, Shaw H, Desai N, Bhar P et al (2005) Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J Clin Oncol 23(31):7794–7803

    Article  Google Scholar 

  56. Farokhzad OC, Jon S, Khademhosseini A, Tran TNT, LaVan DA, Langer R (2004) Nanoparticle-aptamer bioconjugates a new approach for targeting prostate cancer cells. Cancer Res 64(21):7668–7672

    Article  Google Scholar 

  57. Kirson ED, Gurvich Z, Schneiderman R, Dekel E, Itzhaki A, Wasserman Y et al (2004) Disruption of cancer cell replication by alternating electric fields. Cancer Res 64(9):3288–3295

    Article  Google Scholar 

  58. Stupp R, Wong ET, Kanner AA, Steinberg D, Engelhard H, Heidecke V et al (2012) NovoTTF-100A versus physician’s choice chemotherapy in recurrent glioblastoma: a randomised phase III trial of a novel treatment modality. Eur J Cancer 48(14):2192–2202

    Article  Google Scholar 

  59. Dylla SJ, In-Kyung P, Gurney AL (2009) Emerging technology platforms for stem cells. Wiley, Hoboken

    Google Scholar 

  60. Pavlovic M, Balint B (2013) Stem cells and tissue engineering. Springer, New York

    Book  Google Scholar 

  61. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111

    Article  Google Scholar 

  62. Fang D, Nguyen TK, Leishear K, Finko R, Kulp AN, Hotz S, Van Belle PA, Xu X, Elder DE, Herlyn M (2005) A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 65:9328–9337

    Article  Google Scholar 

  63. Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW, Hoey T, Gurney A, Huang EH, Simeone DM, Shelton AA, Parmiani G, Castelli C, Clarke MF (2007) Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A 104:10158–10163

    Article  Google Scholar 

  64. Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, Crowley D, Bronson RT, Jacks T (2005) Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121:823–835

    Article  Google Scholar 

  65. Gibbs CP, Kukekov VG, Reith JD, Tchigrinova O, Suslov ON, Scott EW, Ghivizzani SC, Ignatova TN, Steindler DA (2005) Stem-like cells in bone sarcomas: implications for tumorigenesis. Neoplasia 7:967–976

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Pavlovic, M., Balint, B. (2015). Different Approaches for Anticancer/Antitumor Therapy. In: Bioengineering and Cancer Stem Cell Concept. Springer, Cham. https://doi.org/10.1007/978-3-319-25670-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25670-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25668-9

  • Online ISBN: 978-3-319-25670-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics