Skip to main content

Regulation of Membrane Transporters by Delta-Opioid Receptors

  • Chapter
  • First Online:
Neural Functions of the Delta-Opioid Receptor

Abstract

Neuronal excitability and synaptic transmissions are critical for both pain sensation and drug addiction. While the Na+, K+ ATPase contributes to maintaining the excitability of neurons, communications between neurons are mainly achieved by synaptic transmission via either glutamate or γ-aminobutyric acid (GABA), two main neurotransmitters that mediate excitatory postsynaptic potential (EPSP) and inhibitory postsynaptic potential (IPSP), respectively. Neurotransmitter transporters control the dwell time and concentration of the respective transmitters in the synaptic cleft; therefore, regulate dynamics of EPSP and IPSP. Opioid receptors are well known modulators in pain sensation and drug addiction, and are located abundantly in synaptic clefts as well. However, little is known whether and how opioid receptors interact regulatorily with Na+, K+ ATPase or neurotransmitter transporters. Here we review recent findings, which build the missing link between delta-opioid receptor (DOR) and glutamate/GABA transporters, and Na+, K+ ATPase. First, we show that excitatory amino-acid carrier 1 (EAAC1), a glutamate transporter, co-localizes with DOR; co-expression of DOR inhibits EAAC1 activity, and this inhibition is relieved by DOR activation. Second, we show that, similar to EAAC1, the activity of the major GABA transporter GAT1 is inhibited by DOR co-expression; but unlike EAAC1, activation of DOR further inhibits GAT1 activity. Third, similar to the findings with EAAC1 and GAT1, Na+, K+ pump activity is inhibited by co-expression with DOR, whereas DOR activation has no significant effect on Na+, K+ pump activity. On the other hand, pump stimulation reduces DOR sensitivity for the agonist. These studies provide novel regulatory roles of DOR in synaptic proteins that are essential in excitability, synaptic transmission, and synaptic plasticity, and shed light on how interactions between neurotransmitter transporters/Na+, K+ pumps and DOR may regulate analgesia and addictive drug use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CNS:

Central nervous system

DAMGO:

[D Ala2,N-Me-Phe4,Gly5-ol]-enkephalin

DOR:

δ-Opioid receptor (delta-opioid receptor)

DPDPE:

[D-Pen2,5]-enkephalin

EAAC1:

Excitatory amino acid carrier 1

EPSP:

Excitatory postsynaptic potential

GABA:

Gamma-amino-butyric acid

GAT:

GABA transporter

IPSP:

Inhibitory postsynaptic potential

KOR:

κ-Opioid receptor

MOR:

μ-Opioid receptor

References

  • Boehm S, Huck S (1997) Recepptors controlling transmitter release from sympathetic neurons in vitro. Prog Neurobiol 51:225–242

    Article  PubMed  CAS  Google Scholar 

  • Borden LA (1996) GABA transporter heterogeneity—pharmacology and cellular localization. Neurochem Int 29:335–356

    Article  PubMed  CAS  Google Scholar 

  • Brenner GM, Stevens CW (2012) Opioid analgesics and antagonists. In: Brenner GM and Stevens CW (eds) Pharmacology. Elsevier Saunders, Philadelphia

    Google Scholar 

  • Cai YQ, Cai GQ, Liu GX, Cai Q, Shi JH, Shi J, Ma SK, Sun X, Sheng ZJ, Mei ZT, Cui D, Guo L, Wang Z, Fei J (2006) Mice with genetically altered GABA transporter subtype I (GAT1) expression show altered behavioral responses to ethanol. J Neurosci Res 84:255–267

    Article  PubMed  CAS  Google Scholar 

  • Cheng RS, Pomeranz B (1979) Electroacupuncture analgesia could be mediated by at least two pain-relieving mechanisms; endorphin and non-endorphin systems. Life Sci 25:1957–1962

    Article  PubMed  CAS  Google Scholar 

  • Czaplinski M, Abad C, Eblen-Zajjur A (2005) Normal expression and inflammation-induced changes of Na and Na/K ATPase activity in spinal dorsal horn of the rat. Neurosci Lett 374:147–151

    Article  PubMed  CAS  Google Scholar 

  • Deng HP, Yang ZJ, Li YT, Bao GB, Friedrich T, Gu QB, Schwarz W (2009) Interaction of Na+, K+-ATPase and co-expression of δ-opioid receptor. Neurosci Res 65:222–227

    Article  PubMed  CAS  Google Scholar 

  • Dhawan BN, Cesselin F, Raghubir R, Reisine T, Bradley PB, Portoghese PS, Hamon M (1996) International Union of Pharmacology. XII. Classification of opioid receptors. Pharmacol Rev 48:567–592

    PubMed  CAS  Google Scholar 

  • Feng Y, He XZ, Yang YL, Chen JS, Yin KS, Xia Y (2011) Effect of delta-opioid receptor over-expression on cortical expression of GABAA Receptor α1-subunit in hypoxia. Chin J Physiol 54:118–123

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Han J-S (2004) Acupuncture and endorphins. Neurosci Lett 361:258–261

    Article  PubMed  CAS  Google Scholar 

  • Han Z, Jiang YH, Wan Y, Wang Y, Chang JK, Han JS (1999) Endomorphin-1 mediates 2 Hz but not 100 Hz electroacupuncture analgesia in the rat. Neurosci Lett 274:75–78

    Article  PubMed  CAS  Google Scholar 

  • Harrison LM, Kastin AJ, Zadina JE (1998) Opiate tolerance and dependence: receptors, G-proteins, and antiopiates. Peptides 19:1603–1630

    Article  PubMed  CAS  Google Scholar 

  • He Y, Janssen WG, Rothstein JD, Morrison JH (2000) Differential synaptic localization of the glutamate transporter EAAC1 and glutamate receptor subunit GluR2 in the rat hippocampus. J Comp Neurol 418:255–269

    Article  PubMed  CAS  Google Scholar 

  • Hu JH, Yang N, Ma YH, Zhou XG, Jiang J, Duan SH, Mei ZT, Fei J, Guo LH (2003) Hyperalgesic effects of gamma-aminobutyric acid transporter I in mice. J Neurosci Res 73:565–572

    Article  PubMed  CAS  Google Scholar 

  • Hughes J, Smith TW, Kosterlitz HW, Fothergill LA, Morgan BA, Morris HR (1975) Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature 258:577–580

    Article  PubMed  CAS  Google Scholar 

  • Ikeda K, Kobayashi T, Kumanishi T, Yano R, Sora I, Niki H (2002) Molecular mechanisms of analgesia induced by opioids and ethanol: is the GIRK channel one of the keys? Neurosci Res 44:121–131

    Article  PubMed  CAS  Google Scholar 

  • Jensen K, Chiu CS, Sokolova I, Lester HA, Mody I (2003) GABA transporter-1 (Gat1)-deficient mice: Differential tonic activation of GabaA versus GABAB receptors in the hippocampus. J Neurophysiol 90:2690–2701

    Article  PubMed  CAS  Google Scholar 

  • Knapp RJ, Malatynska E, Fang L, Li X, Abin E, Guyen M, Antoro G, Arga EV, Ruby VJ, Oeske WR, Amamura HI (1994) Identification of a human delta opioid receptor: cloning and expression. Life Sci 54:L463–L469

    Article  Google Scholar 

  • Knapp RJ, Malatynska E, Collins N, Fang L, Wang JY, Hruby VJ, Roeske WR, Yamamura HI (1995) Molecular biology and pharmacology of cloned opioid receptors. FASEB J 9:516–525

    PubMed  CAS  Google Scholar 

  • Koyyalagunta D, Waldman SD (2010) Opioid analgesics. In: Waldman SD (ed) Pain managemen. Elsevier, Philadelphia, pp 891–912

    Google Scholar 

  • LaCroix-Fralish ML, Mo G, Smith SB, Sotocinal SG, Ritchie J, Austin JS, Melmed K, Schorscher-Petcu A, Laferriere AC, Lee TH, Romanovsky D, Liao G, Behlke MA, Clark DJ, Peltz G, Seguela P, Dobretsov M, Mogil JS (2009) The beta3 subunit of the Na+, K+-ATPase mediates variable nociceptive sensitivity in the formalin test. Pain 144:294–302

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Levenson J, Weeber E, Selcher JC, Kategaya LS, Sweatt JD, Eskin A (2002) Long-term potentiation and contextual fear conditioning increase neuronal glutamate uptake. Nat Neurosci 5:155–161

    Article  PubMed  CAS  Google Scholar 

  • Liang JF, Chao DM, Sandhu HK, Yu YB, Zhang L, Balbon G, Dong H, Kim DH, Xia Y (2014) δ-Opioid receptors up-regulate excitatory amino acid transporters in mouse astrocytes. Br J Pharmacol 171:5417–5430

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mayer DJ, Price DD, Rafii A (1977) Antagonism of acupuncture analgesia in man by the narcotic antagonist naloxone. Brain Res 121:368–372

    Article  PubMed  CAS  Google Scholar 

  • McNicol ED, Midbari A, Eisenberg E (2013) Opioids for neuropathic pain. Cochrane Database Syst Rev 8, CD006146

    PubMed  Google Scholar 

  • Miller RJ (1998) Presynaptic receptors. Annu Rec Pharmacol Toxicol 38:201–227

    Article  CAS  Google Scholar 

  • Nestler EJ (2001) Molecular basis of long-term plasticity underlying addiction. Nat Rev Neurosci 2:119–128

    Article  PubMed  CAS  Google Scholar 

  • Nestler EJ, Aghajanian GK (1997) Molecular and cellular basis of addiction. Science 278:58–63

    Article  PubMed  CAS  Google Scholar 

  • North RA, Williams JT, Surprenant A, Christie MJ (1987) Mu and delta receptors belong to a family of receptors that are coupled to potassium channels. Proc Natl Acad Sci U S A 84:5487–5491

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Piros ET, Charles RC, Song L, Evans CJ, Hales TG (2000) Cloned delta-opioid receptors in GH(3) cells inhibit spontaneous Ca(2+) oscillations and prolactin release through K(IR) channel activation. J Neurophysiol 83:2691–2698

    PubMed  CAS  Google Scholar 

  • Pu L, Xu NJ, Xia P, Gu QB, Ren SL, Fucke T, Pei G, Schwarz, W (2012). Inhibition of activity of GABA transporter GAT1 by delta-opioid receptor. eCAM ID818451-12 pages.

    Google Scholar 

  • Roques BP, Fournie-Zaluski MC, Wurm M (2012) Inhibiting the breakdown of endogenous opioids and cannabinoids to alleviate pain. Nat Rev Drug Discov 11:292–310

    Article  PubMed  CAS  Google Scholar 

  • Rothstein JD, Martin L, Levey AI, Dykes-Hoberg M, Jin L, Wu D, Nash N, Kuncl RW (1994) Localization of neuronal and glial glutamate transporters. Neuron 13:713–725

    Article  PubMed  CAS  Google Scholar 

  • Schwarz W, Gu QB (2012) Cellular mechanisms in acupuncture points and affected sites. In: Xia Y, Ding GH, Wu G-C (eds) Current research in acupuncture. Springer, New York, pp 37–51

    Google Scholar 

  • Simantov R, Snyder SH (1976) Morphine-like peptides in mammalian brain: isolation, structure elucidation, and interactions with the opiate receptor. Proc Natl Acad Sci U S A 73:2515–2519

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Su YF, McNutt RW, Chang KJ (1998) Delta-opioid ligands reverse alfentanil-induced respiratory depression but not antinociception. J Pharmacol Exp Ther 287:815–823

    PubMed  CAS  Google Scholar 

  • Terenius L, Wahlström A (1974) Inhibitors of narcotic receptor binding in brain extracts and cerebrospinal fluid. Acta Pharmacol 35:55

    Google Scholar 

  • Terenius L, Wahlström A (1975) Search for an endogenous ligand for the opiate receptor. Acta Physiol Scand 94:74–81

    Article  PubMed  CAS  Google Scholar 

  • Waldhoer M, Bartlett SE, Whistler JL (2004) Opioid receptors. Annu Rev Biochem 73:953–990

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Pickel VM (2001) Preferential cytoplasmic localization of δ-opioid receptors in rat striatal patches: Comparison with plasmalemmal μ-opioid receptors. J Neurosci 21:3242–3250

    PubMed  CAS  Google Scholar 

  • Weber W-M (1999) Ion currents of Xenopus laevis oocytes: state of the art. Biochem Biophys Acta 1421:213–233

    Article  PubMed  CAS  Google Scholar 

  • Werz MA, Macdonald RL (1983) Opioid peptides with differential affinity for mu and delta receptors decrease sensory neuron calcium-dependent action potentials. J Pharmacol Exp Ther 227:394–402

    PubMed  CAS  Google Scholar 

  • Whistler JL, Chuang HH, Chu P, Jan LY, von Zastrow M (1999) Functional dissociation of mu opioid receptor signaling and endocytosis: implications for the biology of opiate tolerance and addiction. Neuron 23:737–746

    Article  PubMed  CAS  Google Scholar 

  • Xia P, Pei G, Schwarz W (2006) Regulation of the glutamate transporter EAAC1 by expression and activation of δ-opioid receptor. Eur J Neurosci 24:87–93

    Article  PubMed  CAS  Google Scholar 

  • Xu YF, Cai YQ, Cai GQ, Jiang J, Sheng ZJ, Wang ZG, Fei J (2008) Hypoalgesia in mice lacking GABA transporter subtype 1. J Neurosci Res 86:465–470

    Article  PubMed  CAS  Google Scholar 

  • Yaksh TL, Luo ZD (2011) Anatomy of the pain processing system. In: Waldman SD (ed) Pain management, 2nd edn. Elsevier, Philadelphia

    Google Scholar 

  • Yang ZJ, Bao GB, Deng HP, Du HM, Gu QB, Pei G, Pu L, Schwarz W, Xia P (2008) Interaction of δ-opioid receptor with membrane transporters: possible mechanism in pain suppression by acupuncture. J Acupunct Tuina Sci 6:298–300

    Article  Google Scholar 

  • Zeng W, Dohi S, Shimonaka H, Asano T (1999) Spinal antinociceptive action of Na++K++ pump inhibitor ouabain and its interaction with morphine and lidocaine in rats. Anesthesiology 90:500–508

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Pan ZZ (2010) Synaptic mechanism for functional synergism between delta- and mu-opioid receptors. J Neurosci 30:4735–4745

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

This project was supported in part by the National Basic Research Program of China (973 program) and on the basis of an agreement between Max-Planck Society and Chinese Academy of Sciences. We also acknowledge the support from Green Valley Holding Co, Shanghai and from National Natural Science Foundation of China (Youth Program No. 81403489 to Y. Xu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Schwarz Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pu, L., Xu, Y., Schwarz, W. (2015). Regulation of Membrane Transporters by Delta-Opioid Receptors. In: Xia, Y. (eds) Neural Functions of the Delta-Opioid Receptor. Springer, Cham. https://doi.org/10.1007/978-3-319-25495-1_7

Download citation

Publish with us

Policies and ethics