Skip to main content

Delta Opioid Receptor and Peptide: Hibernation for Stroke Therapy

  • Chapter
  • First Online:
Neural Functions of the Delta-Opioid Receptor

Abstract

In pursuit of neurological therapies, the opioid system, specifically delta opioids and delta opioid peptides, demonstrates promising potential for stroke, Parkinson’s Disease, and other degenerative neurological conditions. Recent studies present strong evidence in support of the therapeutic use of delta opioid receptors, and provide insight into the underlying mechanisms of action. Delta opioid receptors have been shown to confer protective effects by mediating ionic homeostasis and activating endogenous neuroprotective pathways. Additionally, delta opioid agonists such as (D-Ala 2, D-Leu 5) enkephalin (DADLE) have been shown to decrease apoptosis and promote neuronal survival. In its entirety, the delta opioid system represents a promising target for neural therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DADLE:

(D-Ala 2, D-Leu 5) enkephalin

DAT:

Dopamine transporter

DOR:

Delta (δ) opioid receptor

HIT:

Hibernation Induction Trigger

KOR:

Kappa (κ) opioid receptor

MAPK:

Mitogen-activated protein kinase

MCAO:

Middle Cerebral Artery Occlusion

METH:

Methamphetamine

MOR:

Mu (μ) opioid receptor

PKC:

Protein kinase c

References

  • Bickler PE (2004) Clinical perspectives: neuroprotection lessons from hypoxia-tolerant organisms. J Exp Biol 207:3243–3249

    Article  PubMed  CAS  Google Scholar 

  • Bofetiado DM, Mayfield KP, D’Alecy LG (1996) Alkaloid d agonist BW 373U86 increases hypoxia tolerance. Anesth Analg 82:1237–1241

    PubMed  CAS  Google Scholar 

  • Borlongan CV, Oeltgen PR, Su TP, Wang Y (1999a) Delta opioid peptide (DADLE) protects against ischemia reperfusion damage in the striatum and cerebral cortex. Soc Neurosci Abstr 24:979

    Google Scholar 

  • Borlongan CV, Wu JN, Su TP, Wang Y (1999b) Delta opioid peptide (DADLE) enhances survival of cultured fetal cells. In: Committee on problems of drug dependence 61st meeting, Abstract 13

    Google Scholar 

  • Borlongan CV, Su TP, Wang Y (2000) Treatment with delta opioid peptide enhances in vitro and in vivo survival of rat dopaminergic neurons. Neuroreport 11:923–992

    Article  PubMed  CAS  Google Scholar 

  • Borlongan CV, Zhou FC, Hayashi T, Su TP, Hoffer BJ, Wang Y (2001) Involvement of GDNF in neuronal protection against 6- OHDA-induced parkinsonism following intracerebral transplantation of fetal kidney tissues in adult rats. Neurobiol Dis 8:636–646

    Article  PubMed  CAS  Google Scholar 

  • Borlongan CV, Wang Y, Su TP (2004) Delta opioid peptide (D-Ala 2, D-Leu 5) enkephalin: linking hibernation and neuroprotection. Front Biosci 9(11):3392–3398

    Article  PubMed  CAS  Google Scholar 

  • Borlongan CV, Hayashi T, Oeltgen PR, Su TP, Wang Y (2009) Hibernation like state induced by an opioid peptide protects against experimental stroke. BMC Biol 7:31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boutin H, Dauphin F, MacKenzie ET, Jauzac P (1999) Differential time-course decreases in nonselective, mu-, delta-, and kappa-opioid receptors after focal cerebral ischemia in mice. Stroke 30:1271–1277

    Article  PubMed  CAS  Google Scholar 

  • Bruce DS, Cope GW, Elam TR, Ruit SK, Oeltgen PR, Su TP (1987) Opioids and hibernation. I. Effects of naloxone on bear HIT’s depression of guinea-pig ileum contractility and on induction of summer hibernation in the ground squirrel. Life Sci 41:2107–2113

    Article  PubMed  CAS  Google Scholar 

  • Chao D, Xia Y (2010) Ionic storm in hypoxic/ischemic stress: can opioid receptors subside it? Prog Neurobiol 90:439–470

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chao D, Qian H, Ghassemi F, Chen JS, Xia Y (2006) Transgenic over-expression of δ-opioid receptors protects the cortex from anoxic disruption of ionic homeostasis. Soc Neurosci Abstr Program No. 87.19/MM68.

    Google Scholar 

  • Chao D, Bazzy-Asaad A, Balboni G, Xia Y (2007a) δ-, but not μ-, opioid receptor stabilizes K+ homeostasis by reducing Ca2+ influx in the cortex during acute hypoxia. J Cell Physiol 212(1):60–67, PubMed: 17373650

    Article  PubMed  CAS  Google Scholar 

  • Chao D, Donnelly DF, Feng Y, Bazzy-Asaad A, Xia Y (2007b) Cortical δ-opioid receptors potentiate K+ homeostasis during anoxia and oxygen-glucose deprivation. J Cereb Blood Flow Metab 27(2):356–368, PubMed: 16773140

    Article  PubMed  CAS  Google Scholar 

  • Chao D, Bazzy-Asaad A, Balboni G, Salvadori S, Xia Y (2008) Activation of DOR attenuates anoxic K+ derangement via inhibition of Na+ entry in mouse cortex. Cereb Cortex 18(9):2217–2227, PubMed: 18203692

    Article  PubMed  PubMed Central  Google Scholar 

  • Chao D, Balboni G, Lazarus LH, Salvadori S, Xia Y (2009) Na+ mechanism of δ-opioid receptor induced protection from anoxic K+ leakage in the cortex. Cell Mol Life Sci 66(6):1105–1115, PubMed: 19189047

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • D’Alecy LG (1994) Delta-1 opioid agonist acutely increases hypoxic tolerance. J Pharmacol Exp Ther 268:683–688

    PubMed  Google Scholar 

  • Dawe AR, Spurrier WA (1969) Hibernation induced in ground squirrels by blood transfusion. Science 163:298–299

    Article  PubMed  CAS  Google Scholar 

  • Feng Y, Chao D, He X, Yang Y, Kang X, Lazarus LH, Xia Y (2009) A novel insight into neuroprotection against hypoxic/ischemic stress. Sheng Li Xue Bao 61:585–592

    PubMed  CAS  Google Scholar 

  • Feng Y, He X, Yang Y, Chao D, Lazarus LH, Xia Y (2012) Current research on opioid receptor function. Curr Drug Targets 13:230–246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fox CM, Gash DM, Smoot MK, Cass WA (2001) Neuroprotective effects of GDNF against 6-OHDA in young and aged rats. Brain Res 896:56–63

    Article  PubMed  CAS  Google Scholar 

  • Frerichs KU, Hallenbeck JM (1998) Hibernation in ground squirrels induces state and species-specific tolerance to hypoxia and aglycemia: an in vitro study in hippocampal slices. J Cereb Blood Flow Metab 18:168–175

    Article  PubMed  CAS  Google Scholar 

  • Hansen AJ (1985) Effect of anoxia on ion distribution in the brain. Physiol Rev 65(1):101–148, PubMed: 3880896

    PubMed  CAS  Google Scholar 

  • Hayashi T, Tsao LI, Cadet JL, Su TP (1999) [D-Ala2, D-Leu5] enkephalin blocks the methamphetamine-induced c-fos mRNA increase in mouse striatum. Eur J Pharmacol 366:7–8

    Article  Google Scholar 

  • Hayashi T, Sakai K, Sasaki C, Itoyama Y, Abe K (2000) Loss of bag-1 immunoreactivity in rat brain after transient middle cerebral artery occlusion. Brain Res 852:496–500

    Article  PubMed  CAS  Google Scholar 

  • Hayashi T, Tsao LI, Su TP (2002) Antiapoptotic and cytotoxic properties of delta opioid peptide [D‐Ala2, D‐Leu5] enkephalin in PC12 cells. Synapse 43(1):86–94

    Article  PubMed  CAS  Google Scholar 

  • Hiller JM, Fan LQ (1996) Laminar distribution of the multiple opioid receptors in the human cerebral cortex. Neurochem Res 21:1333–1345

    Article  PubMed  CAS  Google Scholar 

  • Kang X, Chao D, Gu Q, Ding G, Wang Y, Balboni G, Lazarus LH, Xia Y (2009) δ-opioid receptors protect from anoxic disruption of Na+ homeostasis via Na+ channel regulation. Cell Mol Life Sci 66(21):3505–3516

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karki P, Seong C, Kim JE, Hur K, Shin SY, Lee JS, Cho B, Park IS (2007) Intracellular K+ inhibits apoptosis by suppressing the Apaf-1 apoptosome formation and subsequent downstream pathways but not cytochrome c release. Cell Death Differ 14(12):2068–2075, PubMed: 17885667

    Article  PubMed  CAS  Google Scholar 

  • Kearns CM, Cass WA, Smoot K, Kryscio R, Gash DM (1997) GDNF protection against 6-OHDA: time dependence and requirement for protein synthesis. J Neurosci 17:7111–7118

    PubMed  CAS  Google Scholar 

  • Kevelaitis E, Peynet J, Mouas C, Launay JM, Menasche P (1999) Opening of potassium channels: the common cardioprotective link between preconditioning and natural hibernation? Circulation 99:3079–3085

    Article  PubMed  CAS  Google Scholar 

  • Lim YJ, Zheng S, Zuo Z (2004) Morphine preconditions Purkinje cells against cell death under in vitro simulated ischemia-reperfusion conditions. Anesthesiology 100:562–568

    Article  PubMed  CAS  Google Scholar 

  • Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260:1130–1132

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Slevin JR, Lu C, Chan SL, Hansson M, Elmer E, Mattson MP (2003) Involvement of mitochondrial K+ release and cellular efflux in ischemic and apoptotic neuronal death. J Neurochem 86(4):966–979, PubMed: 12887694

    Article  PubMed  CAS  Google Scholar 

  • Ma MC, Qian H, Ghassemi F, Zhao P, Xia Y (2005) Oxygen sensitive δ-opioid receptor-regulated survival and death signals: novel insights into neuronal preconditioning and protection. J Biol Chem 280(16):16208–16218, PubMed: 15687501

    Article  PubMed  CAS  Google Scholar 

  • Mansour A, Khachaturian H, Lewis ME, Akil H, Watson SJ (1987) Autoradiographic differentiation of mu, delta and kappa opioid in the rat forebrain and midbrain. J Neurosci 7(8):2445–2464

    PubMed  CAS  Google Scholar 

  • Mayfield KP, Kozak W, Malvin GM, Porreca F (1996) Hypoxia decreases opioid delta receptor expression in mouse brain. Neuroscience 72:785–789, PubMed: 9157323

    Article  PubMed  CAS  Google Scholar 

  • Mongin AA (2007) Disruption of ionic and cell volume homeostasis in cerebral ischemia: the perfectstorm. Pathophysiology 14(3–4):183–193, PubMed: 17961999

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Narita M, Kuzumaki N, Miyatake M, Sato F, Wachi H, Seyama Y, Suzuki T (2006) Role of delta-opioid receptor function in neurogenesis and neuroprotection. J Neurochem 97:1494–1505

    Article  PubMed  CAS  Google Scholar 

  • Nistico R, Piccirilli S, Sebastianelli L, Nistico G, Bernardi G, Mercuri N (2007) The blockade of K+- ATP channels has neuroprotective effects in an in vitro model of brain ischemia. Int Rev Neurobiol 82:383–395, PubMed: 17678973

    Article  PubMed  CAS  Google Scholar 

  • Oeltgen PR, Welborn JR, Nuchols PA, Spurrier WA, Bruce DS, Su TP (1987) Opioids and hibernation. II. Effects of kappa opioid U69593 on induction of hibernation in summer-active ground squirrels by ‘hibernation induction trigger’ (HIT). Life Sci 41:2115–2120

    Article  PubMed  CAS  Google Scholar 

  • Oeltgen PR, Nilekani SP, Nuchols PA, Spurrier WA, Su TP (1988) Further studies on opioid and hibernation: Delta opioid receptor ligand selectively induced hibernation in summer-active ground squirrels. Life Sci 43:1565–1574

    Article  PubMed  CAS  Google Scholar 

  • Peart JN, Gross ER, Gross GJ (2005) Opioid-induced preconditioning: recent advances and future perspectives. Vascul Pharmacol 42(5):211–218

    Article  PubMed  CAS  Google Scholar 

  • Peng P-HH, Huang H-SS, Lee Y-JJ, Chen Y-SS, Ma M-C (2009) Novel role for the delta-opioid receptor in hypoxic preconditioning in rat retinas. J Neurochem 108:741–754

    Article  PubMed  CAS  Google Scholar 

  • Sick TJ, Rosenthal M, LaManna JC, Lutz PL (1983) Brain potassium ion homeostasis, anoxia, and metabolic inhibition in turtles and rats. Am J Physiol 243(3):R281–R288, PubMed: 6287869

    Google Scholar 

  • Sun K, Su DS, Wang XR (2009) Delta opioid agonist [D-Ala2, D-Leu5] enkephalin (DADLE) reduced oxygen-glucose deprivation caused neuronal injury through the MAPK pathway. Brain Res 1292:100–106

    Article  CAS  Google Scholar 

  • Sung JH, Chao DM, Xia Y (2008) Neuronal responses to hypoxia. In: Wang Y (ed) New frontiers in neurological research. Research Signpost, Kerala, pp 73–153

    Google Scholar 

  • Tsao LI, Ladenheim B, Andrews A, Chiueh CC, Cadet JL, Su TP (1998) Delta opioid peptide (D-Ala 2, D-Leu 5) enkephalin blocks the long-term loss of dopamine transporter induced by multiple administrations of methamphetamine: involvement of opioid receptors and reactive oxygen species. J Pharmacol Exp Ther 287:322–331

    PubMed  CAS  Google Scholar 

  • Tsao L, Cadet JL, Su TP (1999) Reversal by [D-Ala2, D-Leu5]enkephalin of the dopamine transporter loss caused by methamphetamine. Eur J Pharmacol 372:5–7

    Article  Google Scholar 

  • Wang Y, Lin SZ, Chiou AL, Williams LR, Hoffer BJ (1997) Glial cell line derived neurotrophic factor protects against ischemia-induced injury in the cerebral cortex. J Neurosci 17:4341–4348

    PubMed  CAS  Google Scholar 

  • Wang Y, Chang CF, Morales M, Chou J, Chen HL, Chiang YH, Lin SZ, Cadet JL, Deng X, Wang JY, Chen SY, Kaplan PL, Hoffer BJ (2001) Bone morphogenetic protein-6 reduces ischemia-induced brain damage in rats. Stroke 32:2170–2178

    Article  PubMed  CAS  Google Scholar 

  • Wei L, Yu SP, Gottron F, Snider BJ, Zipfei GJ, Choi DW (2003) Potassium channel blockers attenuate hypoxia- and ischemia-induced neuronal death in vitro and in vivo. Stroke 34(5):1281–1286, PubMed: 12677023

    Article  PubMed  CAS  Google Scholar 

  • Xia Y, Haddad GG (1991) Ontogeny and distribution of opioid receptors in the rat brainstem. Brain Res 549:181–193

    Article  PubMed  CAS  Google Scholar 

  • Xia Y, Haddad GG (2001) Major difference in the expression of δ- and μ-opioid receptors between turtle and rat brain. J Comp Neurol 436(2):202–210, PubMed: 11438924

    Article  PubMed  CAS  Google Scholar 

  • Xia Y, Jiang C, Haddad GG (1992) Oxidative and glycolytic pathways in rat (newborn, adult) and turtle: Role in anoxia. Am J Physiol 262(4 pt 2):R595–R603, PubMed: 1314516

    PubMed  CAS  Google Scholar 

  • Xiang H, Hochman DW, Saya H, Fujiwara T, Schwartzkroin PA, Morrison RS (1996) Evidence for p53-mediated modulation of neuronal viability. J Neurosci 16:6753–6765

    PubMed  CAS  Google Scholar 

  • Yu SP, Yeh CH, Sensi SL, Gwag BJ, Canzoniero LM, Farhangrazi ZS, Ying HS, Tian M, Dugan LL, Choi DW (1997) Mediation of neuronal apoptosis by enhancement of outward potassium current. Science 278(5335):114–117, PubMed: 9311914

    Article  PubMed  CAS  Google Scholar 

  • Zhang JH, Xia Y, Haddad GG (1999) Activation of δ-opioid receptors protects cortical neurons from glutamate excitotoxic injury. Soc Neurosci Abstr 28:736

    Google Scholar 

  • Zhang JH, Haddad GG, Xia Y (2000) δ-, but not μ- and κ-opioid receptor activation protects neocortical neurons from glutamate-induced excitotoxic injury. Brain Res 885(2):143–153, PubMed: 11102568

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Institutes of Health (1RO1NS071956-01A1) and the James and Easter King Biomedical Research Program (1KG01-33966).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cesar V. Borlongan Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Staples, M., Acosta, S., Tajiri, N., Pabon, M., Kaneko, Y., Borlongan, C.V. (2015). Delta Opioid Receptor and Peptide: Hibernation for Stroke Therapy. In: Xia, Y. (eds) Neural Functions of the Delta-Opioid Receptor. Springer, Cham. https://doi.org/10.1007/978-3-319-25495-1_10

Download citation

Publish with us

Policies and ethics