Skip to main content

Epigenetic vs. Sequence-Dependent Control of Eukaryotic Replication Timing

  • Chapter
  • First Online:
The Initiation of DNA Replication in Eukaryotes

Abstract

Eukaryotic DNA replication follows a reproducible temporal pattern throughout S phase known as the replication timing (RT) program. RT is correlated with gene expression, chromatin structure, and 3D chromatin folding states; it helps to maintain genome integrity, correlates with mutation frequencies, and is altered in many diseases. However, the mechanisms regulating RT remain poorly defined. Studies over the last three decades have attempted to identify specific DNA sequences that regulate this program from yeasts to humans. Recent studies have implicated defined protein-binding motifs in yeasts. In mammals, there is indisputable evidence that epigenetic mechanisms regulate homologue-specific differences in RT, while artificial constructs have been shown to influence RT in a sequence-dependent manner and genomics approaches find compelling correlations of sequence variation to RT. However, the mechanisms linking these features to RT remain elusive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Küpper K, Kölbl A, Biener D, Dittrich S, von Hase J, Thormeyer T, et al. Radial chromatin positioning is shaped by local gene density, not by gene expression. Chromosoma. 2007;116:285–306.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Hiratani I, Ryba T, Itoh M, Yokochi T, Schwaiger M, Chang CW, et al. Global reorganization of replication domains during embryonic stem cell differentiation. PLoS Biol. 2008;6:2220–36.

    Article  CAS  Google Scholar 

  3. Renard-Guillet C, Kanoh Y, Shirahige K, Masai H. Temporal and spatial regulation of eukaryotic DNA replication: from regulated initiation to genome-scale timing program. Semin Cell Dev Biol. 2014;30:110–20.

    Article  CAS  PubMed  Google Scholar 

  4. Sima J, Gilbert DM. Complex correlations: replication timing and mutational landscapes during cancer and genome evolution. Curr Opin Genet Dev. 2014;25:93–100.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Yoshida K, Poveda A, Pasero P. Time to be versatile: regulation of the replication timing program in budding yeast. J Mol Biol. 2013;425:4696–705.

    Article  CAS  PubMed  Google Scholar 

  6. Pope BD, Gilbert DM. The replication domain model: regulating replicon firing in the context of large-scale chromosome architecture. J Mol Biol. 2013;425:4690–5.

    Article  CAS  PubMed  Google Scholar 

  7. Rhind N, Gilbert DM. DNA replication timing. Cold Spring Harb Perspect Biol. 2013;5.

    Google Scholar 

  8. Stinchcomb DT, Struhl K, Davis RW. Isolation and characterisation of a yeast chromosomal replicator. Nature. 1979;282:39–43.

    Article  CAS  PubMed  Google Scholar 

  9. Jacob F, Brenner S, Cuzin F. On the regulation of DNA replication in bacteria. Cold Spring Harb Symp [Internet]. 1963. http://symposium.cshlp.org/content/28/329.full.pdf\npapers2://publication/uuid/5D4D31D1-C062-4C84-AE47-1DA6A02A3001.

  10. Celniker SE, Sweder K, Srienc F, Bailey JE, Campbell JL. Deletion mutations affecting autonomously replicating sequence ARS1 of Saccharomyces cerevisiae. Mol Cell Biol. 1984;4:2455–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Theis JF, Yang C, Schaefer CB, Newlon CS. DNA sequence and functional analysis of homologous ARS elements of Saccharomyces cerevisiae and S. carlsbergensis. Genetics. 1999;152:943–52.

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Theis JF, Newlon CS. Two compound replication origins in Saccharomyces cerevisiae contain redundant origin recognition complex binding sites. Mol Cell Biol. 2001;21:2790–801.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Bogenschutz NL, Rodriguez J, Tsukiyama T. Initiation of DNA replication from non-canonical sites on an origin-depleted chromosome. PLoS One [Internet]. 2014;9(12):e114545. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4259332&tool=pmcentrez&rendertype=abstract. Accessed 14 Feb 2015.

  14. Hayashi M, Katou Y, Itoh T, Tazumi A, Yamada Y, Takahashi T, et al. Genome-wide localization of pre-RC sites and identification of replication origins in fission yeast. EMBO J. 2007;26:1327–39.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Heichinger C, Penkett CJ, Bähler J, Nurse P, Bahler J. Genome-wide characterization of fission yeast DNA replication origins. EMBO J. 2006;25:5171–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Hyrien O, Méchali M. Chromosomal replication initiates and terminates at random sequences but at regular intervals in the ribosomal DNA of Xenopus early embryos. EMBO J. 1993;12:4511–20.

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Sasaki T, Sawado T, Yamaguchi M, Shinomiya T. Specification of regions of DNA replication initiation during embryogenesis in the 65-kilobase DNApolα-dE2F locus of Drosophila melanogaster. Mol Cell Biol. 1999;19:547–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Walter J, Newport JW. Regulation of replicon size in Xenopus egg extracts. Science. 1997;275:993–5.

    Article  CAS  PubMed  Google Scholar 

  19. Harland RM, Laskey RA. Regulated replication of DNA microinjected into eggs of Xenopus laevis. Cell. 1980;21:761–71.

    Article  CAS  PubMed  Google Scholar 

  20. Harvey KJ, Newport J. CpG methylation of DNA restricts prereplication complex assembly in Xenopus egg extracts. Mol Cell Biol. 2003;23:6769–79.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Cox LS, Hupp T, Midgley CA, Lane DP. A direct effect of activated human p53 on nuclear DNA replication. EMBO J. 1995;14:2099–105.

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Ding Q, MacAlpine DM. Defining the replication program through the chromatin landscape. Crit Rev Biochem Mol Biol. 2011;46:165–79.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Heinzel SS, Krysan PJ, Tran CT, Calos MP. Autonomous DNA replication in human cells is affected by the size and the source of the DNA. Mol Cell Biol [Internet]. 1991;11(4):2263–72. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=359926&tool=pmcentrez&rendertype=abstract. Accessed 25 Feb 2015

  24. Ishimi Y, Matsumoto K, Ohba R. DNA replication from initiation zones of mammalian cells in a model system. Mol Cell Biol. 1994;14:6489–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Berberich S, Trivedi A, Daniel DC, Johnson EM, Leffak M. In vitro replication of plasmids containing human c-myc DNA. J Mol Biol. 1995;245:92–109.

    Article  CAS  PubMed  Google Scholar 

  26. McWhinney C, Leffak M. Autonomous replication of a DNA fragment containing the chromosomal replication origin of the human c-myc gene. Nucleic Acids Res. 1990;18:1233–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Krysan PJ, Calos MP. Replication initiates at multiple locations on an autonomously replicating plasmid in human cells. Mol Cell Biol. 1991;11:1464–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Giacca M, Zentilin L, Norio P, Diviacco S, Dimitrova D, Contreas G, et al. Fine mapping of a replication origin of human DNA. Proc Natl Acad Sci U S A. 1994;91:7119–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Gerbi S. Replication initiation point mapping. Methods [Internet]. 1997;13:271–80. http://linkinghub.elsevier.com/retrieve/pii/S1046-2023(97)90526-0.

    Article  CAS  Google Scholar 

  30. Bielinsky AK, Gerbi SA. Discrete start sites for DNA synthesis in the yeast ARS1 origin. Science [Internet]. 1998;279:95–8. http://www.sciencemag.org/cgi/doi/10.1126/science.279.5347.95, http://www.ncbi.nlm.nih.gov/pubmed/9417033.

    Google Scholar 

  31. Kunnev D, Freeland A, Qin M, Leach RW, Wang J, Shenoy RM, et al. Effect of minichromosome maintenance protein 2 deficiency on the locations of DNA replication origins. Genome Res [Internet]. 2015;25(4):558–69. http://www.ncbi.nlm.nih.gov/pubmed/25762552. Accessed 26 May

    Google Scholar 

  32. Mesner LD, Valsakumar V, Karnani N, Dutta A, Hamlin JL, Bekiranov S. Bubble-chip analysis of human origin distributions demonstrates on a genomic scale significant clustering into zones and significant association with transcription. Genome Res. 2011;21:377–89.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Besnard E, Babled A, Lapasset L, Milhavet O, Parrinello H, Dantec C, et al. Unraveling cell type-specific and reprogrammable human replication origin signatures associated with G-quadruplex consensus motifs. Nat Struct Mol Biol. 2012;19(8):837–44.

    Article  CAS  PubMed  Google Scholar 

  34. Valton AL, Hassan-Zadeh V, Lema I, Boggetto N, Alberti P, Saintomé C, et al. G4 motifs affect origin positioning and efficiency in two vertebrate replicators. EMBO J. 2014;33:732–46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Picard F, Cadoret JC, Audit B, Arneodo A, Alberti A, Battail C, et al. The spatiotemporal program of DNA replication is associated with specific combinations of chromatin marks in human cells. PLoS Genet. 2014;10.

    Google Scholar 

  36. Gindin Y, Valenzuela MS, Aladjem MI, Meltzer PS, Bilke S. A chromatin structure-based model accurately predicts DNA replication timing in human cells. Mol Syst Biol. 2014;10.

    Google Scholar 

  37. Gilbert DM. Evaluating genome-scale approaches to eukaryotic DNA replication. Nat Rev Genet. 2010;11:673–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Gilbert DM. Replication origins run (ultra) deep. Nat Struct Mol Biol [Internet]. Nature Publishing Group; 2012;19(8):740–2. http://www.nature.com/nsmb/journal/v19/n8/full/nsmb.2352.html#ref2. Accessed 5 Mar 2015.

    Google Scholar 

  39. Foulk MS, Urban JM, Casella C, Gerbi SA. Characterizing and controlling intrinsic biases of Lambda exonuclease in nascent strand sequencing reveals phasing between nucleosomes and G-quadruplex motifs around a subset of human replication origins. Genome Res [Internet]. 2015. http://www.ncbi.nlm.nih.gov/pubmed/25695952. Accessed 20 Feb 2015.

  40. Aladjem MI, Wahl GM. Mapping replication fork direction by leading strand analysis. Methods. 1997;13:281–92.

    Article  CAS  PubMed  Google Scholar 

  41. Cadoret J-C, Meisch F, Hassan-Zadeh V, Luyten I, Guillet C, Duret L, et al. Genome-wide studies highlight indirect links between human replication origins and gene regulation. Proc Natl Acad Sci U S A. 2008;105:15837–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Karnani N, Taylor CM, Malhotra A, Dutta A. Genomic study of replication initiation in human chromosomes reveals the influence of transcription regulation and chromatin structure on origin selection. Mol Biol Cell. 2010;21:393–404.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Xu J, Yanagisawa Y, Tsankov AM, Hart C, Aoki K, Kommajosyula N, et al. Genome-wide identification and characterization of replication origins by deep sequencing. Genome Biol. 2012;13:27.

    Article  CAS  Google Scholar 

  44. Patel P, Arcangioli B, Baker S. DNA replication origins fire stochastically in fission yeast. Mol Biol Cell [Internet]. 2006;17:308–16. http://www.ncbi.nlm.nih.gov/pubmed/16251353, http://www.molbiolcell.org/cgi/content/abstract/17/1/308.

    Article  CAS  Google Scholar 

  45. Dijkwel PA, Wang S, Hamlin JL. Initiation sites are distributed at frequent intervals in the Chinese hamster dihydrofolate reductase origin of replication but are used with very different efficiencies. Mol Cell Biol. 2002;22:3053–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Guan Z, Hughes CM, Kosiyatrakul S, Norio P, Sen R, Fiering S, et al. Decreased replication origin activity in temporal transition regions. J Cell Biol. 2009;187:623–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Kaykov A, Nurse P. The spatial and temporal organization of origin firing during the S-phase of fission yeast. Genome Res [Internet]. 2015. http://www.ncbi.nlm.nih.gov/pubmed/25650245. Accessed 6 Feb 2015.

  48. Wu PYJ, Nurse P. Establishing the program of origin firing during S phase in fission yeast. Cell. 2009;136:852–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Cayrou C, Coulombe P, Vigneron A, Stanojcic S, Ganier O, Peiffer I, et al. Genome-scale analysis of metazoan replication origins reveals their organization in specific but flexible sites defined by conserved features. Genome Res. 2011;21:1438–49.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Remus D, Beuron F, Tolun G, Griffith JD, Morris EP, Diffley JFX. Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing. Cell. 2009;139:719–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Bell SP, Dutta A. DNA replication in eukaryotic cells. Annu Rev Biochem. 2002;71:333–74.

    Article  CAS  PubMed  Google Scholar 

  52. Sheu Y-J, Stillman B. The Dbf4-Cdc7 kinase promotes S phase by alleviating an inhibitory activity in Mcm4. Nature. 2010;463:113–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Heller RC, Kang S, Lam WM, Chen S, Chan CS, Bell SP. Eukaryotic origin-dependent DNA replication in vitro reveals sequential action of DDK and S-CDK kinases. Cell. 2011;146:80–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Yeeles JTP, Deegan TD, Janska A, Early A, Diffley JFX. Regulated eukaryotic DNA replication origin firing with purified proteins. Nature [Internet]. Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2015. doi:10.1038/nature14285. Accessed 6 Mar 2015.

    Google Scholar 

  55. Moyer SE, Lewis PW, Botchan MR. Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. Proc Natl Acad Sci U S A. 2006;103:10236–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Ilves I, Petojevic T, Pesavento JJ, Botchan MR. Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. Mol Cell. 2010;37:247–58.

    Article  CAS  PubMed  Google Scholar 

  57. Labib K. How do Cdc7 and cyclin-dependent kinases trigger the initiation of chromosome replication in eukaryotic cells? Genes Dev. 2010;24(12):1208–19.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Sanuki Y, Kubota Y, Kanemaki MT, Takahashi TS, Mimura S, Takisawa H. RecQ4 promotes the conversion of the pre-initiation complex at a site-specific origin for DNA unwinding in Xenopus egg extracts. Cell Cycle [Internet]. 2015. http://www.ncbi.nlm.nih.gov/pubmed/25602506. Accessed 25 Feb 2015.

  59. Remus D, Diffley JF. Eukaryotic DNA replication control: lock and load, then fire. Curr Opin Cell Biol. 2009;21(6):771–7.

    Article  CAS  PubMed  Google Scholar 

  60. Ge XQ, Jackson DA, Blow JJ. Dormant origins licensed by excess Mcm2-7 are required for human cells to survive replicative stress. Genes Dev. 2007;21:3331–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Blow JJ, Ge XQ, Jackson DA. How dormant origins promote complete genome replication. Trends Biochem Sci. 2011;36:405–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Woodward AM, Göhler T, Luciani MG, Oehlmann M, Ge X, Gartner A, et al. Excess Mcm2-7 license dormant origins of replication that can be used under conditions of replicative stress. J Cell Biol. 2006;173:673–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. McIntosh D, Blow JJ. Dormant origins, the licensing checkpoint, and the response to replicative stresses. Cold Spring Harb Perspect Biol. 2012;4.

    Google Scholar 

  64. Ibarra A, Schwob E, Méndez J. Excess MCM proteins protect human cells from replicative stress by licensing backup origins of replication. Proc Natl Acad Sci U S A. 2008;105:8956–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Goldar A, Labit H, Marheineke K, Hyrien O. A dynamic stochastic model for DNA replication initiation in early embryos. PLoS One. 2008;3.

    Google Scholar 

  66. Méchali M. Eukaryotic DNA, replication origins: many choices for appropriate answers. Nat Rev Mol Cell Biol. 2010;11:728–38.

    Article  PubMed  CAS  Google Scholar 

  67. Cvetic C, Walter JC. Eukaryotic origins of DNA replication: could you please be more specific? Sem Cell Dev Biol. 2005;16:343–53.

    Article  CAS  Google Scholar 

  68. Ferguson BM, Fangman WL. A position effect on the time of replication origin activation in yeast. Cell. 1992;68:333–9.

    Article  CAS  PubMed  Google Scholar 

  69. Chaudari A, Huberman J. Identification of two telomere-proximal fission yeast DNA replication origins constrained by nearby cis-acting sequences to replicate in late S phase. F1000Research [Internet]. 2012;1:58. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3790605&tool=pmcentrez&rendertype=abstract.

  70. Ebrahimi H, Robertson ED, Taddei A, Gasser SM, Donaldson AD, Hiraga S. Early initiation of a replication origin tethered at the nuclear periphery. J Cell Sci. 2010;123:1015–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Friedman KL, Diller JD, Ferguson BM, Nyland SVM, Brewer BJ, Fangman WL. Multiple determinants controlling activation of yeast replication origins late in S phase. Genes Dev. 1996;10:1595–607.

    Article  CAS  PubMed  Google Scholar 

  72. Yompakdee C, Huberman JA. Enforcement of late replication origin firing by clusters of short G-rich DNA sequences. J Biol Chem. 2004;279:42337–44.

    Article  CAS  PubMed  Google Scholar 

  73. Pohl TJ, Brewer BJ, Raghuraman MK. Functional centromeres determine the activation time of pericentric origins of DNA replication in Saccharomyces cerevisiae. PLoS Genet. 2012;8.

    Google Scholar 

  74. Knott SRV, Peace JM, Ostrow AZ, Gan Y, Rex AE, Viggiani CJ, et al. Forkhead transcription factors establish origin timing and long-range clustering in S. cerevisiae. Cell. 2012;148:99–111.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Pohl TJ, Kolor K, Fangman WL, Brewer BJ, Raghuraman MK. A DNA sequence element that advances replication origin activation time in Saccharomyces cerevisiae. G3 (Bethesda) [Internet]. 2013;3:1955–63. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3815058&tool=pmcentrez&rendertype=abstract.

  76. Natsume T, Müller CA, Katou Y, Retkute R, Gierliński M, Araki H, et al. Kinetochores coordinate pericentromeric cohesion and early DNA replication by Cdc7-Dbf4 kinase recruitment. Mol Cell. 2013;50:661–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Hayashi MT, Takahashi TS, Nakagawa T, Nakayama J, Masukata H. The heterochromatin protein Swi6/HP1 activates replication origins at the pericentromeric region and silent mating-type locus. Nat Cell Biol [Internet]. 2009;11(3):357–62. http://www.ncbi.nlm.nih.gov/pubmed/19182789. Accessed 25 Feb 2015.

    Google Scholar 

  78. Di Rienzi SC, Lindstrom KC, Mann T, Noble WS, Raghuraman MK, Brewer BJ. Maintaining replication origins in the face of genomic change. Genome Res. 2012;22:1940–52.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  79. Ryba T, Hiratani I, Lu J, Itoh M, Kulik M, Zhang J, et al. Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types. Genome Res. 2010;20:761–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Yue F, Cheng Y, Breschi A, Vierstra J, Wu W, Ryba T, et al. A comparative encyclopedia of DNA elements in the mouse genome. Nature [Internet]. 2014;515(7527):355–64. http://www.ncbi.nlm.nih.gov/pubmed/25409824. Accessed 19 Nov 2014.

  81. Kitsberg D, Selig S, Keshet I, Cedar H. Replication structure of the human beta-globin gene domain. Nature. 1993;366:588–90.

    Article  CAS  PubMed  Google Scholar 

  82. Aladjem MI, Rodewald LW, Lin CM, Bowman S, Cimbora DM, Brody LL, et al. Replication initiation patterns in the beta-globin loci of totipotent and differentiated murine cells: evidence for multiple initiation regions. Mol Cell Biol [Internet]. 2002;22(2):442–52. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=139749&tool=pmcentrez&rendertype=abstract. Accessed 1 Mar 2015.

  83. Gilbert DM, Takebayashi SI, Ryba T, Lu J, Pope BD, Wilson KA, et al. Space and time in the nucleus developmental control of replication timing and chromosome architecture. Cold Spring Harb Symp Quant Biol. 2010;75:143–53.

    Article  CAS  PubMed  Google Scholar 

  84. Labit H, Perewoska I, Germe T, Hyrien O, Marheineke K. DNA replication timing is deterministic at the level of chromosomal domains but stochastic at the level of replicons in Xenopus egg extracts. Nucleic Acids Res. 2008;36:5623–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Jackson DA, Pombo A. Replicon clusters are stable units of chromosome structure: evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells. J Cell Biol. 1998;140:1285–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Sadoni N, Cardoso MC, Stelzer EHK, Leonhardt H, Zink D. Stable chromosomal units determine the spatial and temporal organization of DNA replication. J Cell Sci. 2004;117:5353–65.

    Article  CAS  PubMed  Google Scholar 

  87. Gilbert DM. Replication origin plasticity, Taylor-made: inhibition vs recruitment of origins under conditions of replication stress. Chromosoma. 2007;116:341–7.

    Article  PubMed  Google Scholar 

  88. Gillespie PJ, Blow JJ. Clusters, factories and domains: the complex structure of S-phase comes into focus. Cell Cycle. 2010;9:3218–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Thomson AM, Gillespie PJ, Blow JJ. Replication factory activation can be decoupled from the replication timing program by modulating Cdk levels. J Cell Biol. 2010;188:209–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Ge XQ, Blow JJ. Chk1 inhibits replication factory activation but allows dormant origin firing in existing factories. J Cell Biol. 2010;191:1285–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Pope BD, Ryba T, Dileep V, Yue F, Wu W, Denas O, et al. Topologically associating domains are stable units of replication-timing regulation. Nature [Internet]. 2014;515(7527):402–5. http://www.ncbi.nlm.nih.gov/pubmed/25409831. Accessed 19 Nov 2014.

    Google Scholar 

  92. TAYLOR JH. Asynchronous duplication of chromosomes in cultured cells of Chinese hamster. J Biophys Biochem Cytol. 1960;7:455–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Lyon MF. Lyonisation of the X chromosome. Lancet [Internet]. 1963;2(7317):1120–1. http://www.ncbi.nlm.nih.gov/pubmed/14063435. Accessed 1 Nov 2015.

    Google Scholar 

  94. Kitsberg D, Selig S, Brandeis M, Simon I, Keshet I, Driscoll DJ, et al. Allele-specific replication timing of imprinted gene regions. Nature. 1993;364:459–63.

    Article  CAS  PubMed  Google Scholar 

  95. Simon I, Tenzen T, Reubinoff BE, Hillman D, McCarrey JR, Cedar H. Asynchronous replication of imprinted genes is established in the gametes and maintained during development. Nature. 1999;401:929–32.

    Article  CAS  PubMed  Google Scholar 

  96. Li J, Santoro R, Koberna K, Grummt I. The chromatin remodeling complex NoRC controls replication timing of rRNA genes. EMBO J. 2005;24:120–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  97. Mostoslavsky R, Singh N, Tenzen T, Goldmit M, Gabay C, Elizur S, et al. Asynchronous replication and allelic exclusion in the immune system. Nature. 2001;414:221–5.

    Article  CAS  PubMed  Google Scholar 

  98. Farago M, Rosenbluh C, Tevlin M, Fraenkel S, Schlesinger S, Masika H, et al. Clonal allelic predetermination of immunoglobulin-κ rearrangement. Nature. 2012;490:561–5.

    Article  CAS  PubMed  Google Scholar 

  99. Schlesinger S, Selig S, Bergman Y, Cedar H. Allelic inactivation of rDNA loci. Genes Dev. 2009;23:2437–47.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Bierhoff H, Schmitz K, Maass F, Ye J, Grummt I. Noncoding transcripts in sense and antisense orientation regulate the epigenetic state of ribosomal RNA genes. Cold Spring Harb Symp Quant Biol. 2010;75:357–64.

    Article  CAS  PubMed  Google Scholar 

  101. Diaz-Perez S V, Ferguson DO, Wang C, Csankovszki G, Wang C, Tsai S-C, et al. A deletion at the mouse Xist gene exposes trans-effects that alter the heterochromatin of the inactive X chromosome and the replication time and DNA stability of both X chromosomes. Genetics [Internet]. 2006;174(3):1115–33. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1667074&tool=pmcentrez&rendertype=abstract. Accessed 1 Mar 2015.

  102. Diaz-Perez S, Ouyang Y, Perez V, Cisneros R, Regelson M, Marahrens Y. The element(s) at the nontranscribed Xist locus of the active X chromosome controls chromosomal replication timing in the mouse. Genetics. 2005;171:663–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Kota SK, Llères D, Bouschet T, Hirasawa R, Marchand A, Begon-Pescia C, et al. ICR noncoding RNA expression controls imprinting and DNA replication at the Dlk1-Dio3 domain. Dev Cell [Internet]. 2014;31(1):19–33. http://www.ncbi.nlm.nih.gov/pubmed/25263792. Accessed 1 Mar 2015.

    Google Scholar 

  104. Rand E, Ben-Porath I, Keshet I, Cedar H. CTCF elements direct allele-specific undermethylation at the imprinted H19 locus. Curr Biol. 2004;14:1007–12.

    Article  CAS  PubMed  Google Scholar 

  105. Bergström R, Whitehead J, Kurukuti S, Ohlsson R. CTCF regulates asynchronous replication of the imprinted H19/Igf2 domain. Cell Cycle. 2007;6:450–4.

    Article  PubMed  Google Scholar 

  106. Koren A, McCarroll SA. Random replication of the inactive X chromosome. Genome Res. 2014;24:64–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Dimitriadou E, Van der Aa N, Cheng J, Voet T, Vermeesch JR. Single cell segmental aneuploidy detection is compromised by S phase. Mol Cytogenet [Internet]. 2014;7:46. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4114140&tool=pmcentrez&rendertype=abstract.

  108. Wu R, Singh PB, Gilbert DM. Uncoupling global and fine-tuning replication timing determinants for mouse pericentric heterochromatin. J Cell Biol. 2006;174:185–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  109. Casas-Delucchi CS, Brero A, Rahn H-P, Solovei I, Wutz A, Cremer T, et al. Histone acetylation controls the inactive X chromosome replication dynamics. Nat Commun. 2011;2:222.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  110. Koren A. DNA replication timing: coordinating genome stability with genome regulation on the X chromosome and beyond. Bioessays [Internet]. 2014;36(10):997–1004. http://www.ncbi.nlm.nih.gov/pubmed/25138663. Accessed 12 Jan 2015.

    Google Scholar 

  111. Dimitrova DS, Gilbert DM. The spatial position and replication timing of chromosomal domains are both established in early G1 phase. Mol Cell. 1999;4:983–93.

    Article  CAS  PubMed  Google Scholar 

  112. Lu J, Li F, Murphy CS, Davidson MW, Gilbert DM. G2 phase chromatin lacks determinants of replication timing. J Cell Biol. 2010;189:967–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  113. Gómez M, Brockdorff N. Heterochromatin on the inactive X chromosome delays replication timing without affecting origin usage. Proc Natl Acad Sci U S A. 2004;101:6923–8.

    Article  PubMed Central  PubMed  Google Scholar 

  114. Cohen SM, Brylawski BP, Cordeiro-Stone M, Kaufman DG. Same origins of DNA replication function on the active and inactive human X chromosomes. J Cell Biochem. 2003;88:923–31.

    Article  CAS  PubMed  Google Scholar 

  115. Nora EP, Lajoie BR, Schulz EG, Giorgetti L, Okamoto I, Servant N, et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature. 2012;485:381–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  116. Hiratani I, Gilbert DM. Autosomal lyonization of replication domains during early mammalian development. Adv Exp Med Biol. 2010;695:41–58.

    Article  CAS  PubMed  Google Scholar 

  117. Simon I, Tenzen T, Mostoslavsky R, Fibach E, Lande L, Milot E, et al. Developmental regulation of DNA replication timing at the human beta globin locus. EMBO J. 2001;20:6150–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  118. Goren A, Tabib A, Hecht M, Cedar H. DNA replication timing of the human beta-globin domain is controlled by histone modification at the origin. Genes Dev. 2008;22:1319–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  119. Hassan-Zadeh V, Chilaka S, Cadoret JC, Ma MKW, Boggetto N, West AG, et al. USF binding sequences from the HS4 insulator element impose early replication timing on a vertebrate replicator. PLoS Biol. 2012;10.

    Google Scholar 

  120. Donley N, Smith L, Thayer MJ. ASAR15, a cis-acting locus that controls chromosome-wide replication timing and stability of human chromosome 15. PLoS Genet [Internet]. 2015;11(1):e1004923. http://journals.plos.org/plosgenetics/article?id = 10.1371/journal.pgen.1004923. Accessed 18 Jan 2015.

    Google Scholar 

  121. Donley N, Stoffregen EP, Smith L, Montagna C, Thayer MJ. Asynchronous replication, mono-allelic expression, and long range cis-effects of ASAR6. PLoS Genet. 2013;9.

    Google Scholar 

  122. Stoffregen EP, Donley N, Stauffer D, Smith L, Thayer MJ. An autosomal locus that controls chromosomewide replication timing and mono-allelic expression. Hum Mol Genet. 2011;20:2366–78.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  123. Thayer MJ. Mammalian chromosomes contain cis-acting elements that control replication timing, mitotic condensation, and stability of entire chromosomes. Bioessays. 2012;34:760–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  124. Pope BD, Chandra T, Buckley Q, Hoare M, Ryba T, Wiseman FK, et al. Replication-timing boundaries facilitate cell-type and species-specific regulation of a rearranged human chromosome in mouse. Hum Mol Genet. 2012;21:4162–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  125. Mukhopadhyay R, Lajugie J, Fourel N, Selzer A, Schizas M, Bartholdy B, et al. Allele-specific genome-wide profiling in human primary erythroblasts reveal replication program organization. PLoS Genet. 2014;10.

    Google Scholar 

  126. Koren A, Handsaker RE, Kamitaki N, Karlić R, Ghosh S, Polak P, et al. Genetic variation in human DNA replication timing. Cell [Internet]. 2014;159(5):1015–26. http://www.ncbi.nlm.nih.gov/pubmed/25416942. Accessed 17 Nov 2014.

    Google Scholar 

  127. Hause RJ, Shendure J. Genetic variation meets replication origins. Cell [Internet]. Elsevier; 2014;159(5):973–4. http://www.ncbi.nlm.nih.gov/pubmed/25416936. Accessed 20 Nov 2014.

    Google Scholar 

  128. Bartholdy B, Mukhopadhyay R, Lajugie J, Aladjem MI, Bouhassira EE. Allele-specific analysis of DNA replication origins in mammalian cells. Nat Commun [Internet]. 2015;6:7051. http://www.ncbi.nlm.nih.gov/pubmed/25987481. Accessed 20 May 2015.

  129. Gerhardt J, Zaninovic N, Zhan Q, Madireddy A, Nolin SL, Ersalesi N, et al. Cis-acting DNA sequence at a replication origin promotes repeat expansion to fragile X full mutation. J Cell Biol [Internet]. 2014;206(5):599–607. http://jcb.rupress.org/content/206/5/599.abstract. Accessed 12 Mar 2015.

    Google Scholar 

  130. Hansen RS, Canfield TK, Lamb MM, Gartler SM, Laird CD. Association of fragile X syndrome with delayed replication of the FMR1 gene. Cell. 1993;73:1403–9.

    Article  CAS  PubMed  Google Scholar 

  131. Tazumi A, Fukuura M, Nakato R, Kishimoto A, Takenaka T, Ogawa S, et al. Telomere-binding protein Taz1 controls global replication timing through its localization near late replication origins in fission yeast. Genes Dev. 2012;26:2050–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  132. Cosgrove AJ, Nieduszynski CA, Donaldson AD. Ku complex controls the replication time of DNA in telomere regions. Genes Dev. 2002;16:2485–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  133. Hayano M, Kanoh Y, Matsumoto S, Renard-Guillet C, Shirahige K, Masai H. Rif1 is a global regulator of timing of replication origin firing in fission yeast. Genes Dev. 2012;26:137–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  134. Kanoh J, Ishikawa F. spRap1 and spRif1, recruited to telomeres by Taz1, are essential for telomere function in fission yeast. Curr Biol. 2001;11:1624–30.

    Article  CAS  PubMed  Google Scholar 

  135. Mattarocci S, Shyian M, Lemmens L, Damay P, Altintas DM, Shi T, et al. Rif1 Controls DNA replication timing in yeast through the PP1 Phosphatase Glc7. Cell Rep. 2014;7:62–9.

    Article  CAS  PubMed  Google Scholar 

  136. Davé A, Cooley C, Garg M, Bianchi A. Protein phosphatase 1 recruitment by Rif1 regulates DNA replication origin firing by counteracting DDK activity. Cell Rep. 2014;7:53–61.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  137. Hiraga SI, Alvino GM, Chang F, Lian HY, Sridhar A, Kubota T, et al. Rif1 controls DNA replication by directing protein phosphatase 1 to reverse Cdc7-mediated phosphorylation of the MCM complex. Genes Dev. 2014;28:372–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  138. Peace JM, Ter-Zakarian A, Aparicio OM. Rif1 regulates initiation timing of late replication origins throughout the S. cerevisiae genome. PLoS One. 2014;9(5):98501.

    Article  CAS  Google Scholar 

  139. Lian H-Y, Robertson ED, Hiraga S, Alvino GM, Collingwood D, McCune HJ, et al. The effect of Ku on telomere replication time is mediated by telomere length but is independent of histone tail acetylation. Mol Biol Cell. 2011;22:1753–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  140. Stevenson JB, Gottschling DE. Telomeric chromatin modulates replication timing near chromosome ends. Genes Dev. 1999;13:146–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  141. Aparicio JG, Viggiani CJ, Gibson DG, Aparicio OM. The Rpd3-Sin3 histone deacetylase regulates replication timing and enables intra-S origin control in Saccharomyces cerevisiae. Mol Cell Biol. 2004;24:4769–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  142. Knott SRV, Viggiani CJ, Tavaré S, Aparicio OM. Genome-wide replication profiles indicate an expansive role for Rpd3L in regulating replication initiation timing or efficiency, and reveal genomic loci of Rpd3 function in Saccharomyces cerevisiae. Genes Dev. 2009;23:1077–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  143. Taddei A, Gasser SM. Structure and function in the budding yeast nucleus. Genetics. 2012;192:107–29.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  144. Yokochi T, Poduch K, Ryba T, Lu J, Hiratani I, Tachibana M, et al. G9a selectively represses a class of late-replicating genes at the nuclear periphery. Proc Natl Acad Sci U S A. 2009;106:19363–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  145. Jørgensen HF, Azuara V, Amoils S, Spivakov M, Terry A, Nesterova T, et al. The impact of chromatin modifiers on the timing of locus replication in mouse embryonic stem cells. Genome Biol. 2007;8:R169.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  146. Takebayashi S-I, Lei I, Ryba T, Sasaki T, Dileep V, Battaglia D, et al. Murine esBAF chromatin remodeling complex subunits BAF250a and Brg1 are necessary to maintain and reprogram pluripotency-specific replication timing of select replication domains. Epigenetics Chromatin [Internet]. 2013;6:42. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3895691&tool=pmcentrez&rendertype=abstract.

  147. Yamazaki S, Ishii A, Kanoh Y, Oda M, Nishito Y, Masai H. Rif1 regulates the replication timing domains on the human genome. EMBO J. 2012;31:3667–77.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  148. Cornacchia D, Dileep V, Quivy J-P, Foti R, Tili F, Santarella-Mellwig R, et al. Mouse Rif1 is a key regulator of the replication-timing programme in mammalian cells. EMBO J. 2012;31:3678–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  149. Sreesankar E, Senthilkumar R, Bharathi V, Mishra RK, Mishra K. Functional diversification of yeast telomere associated protein, Rif1, in higher eukaryotes. BMC Genomics. 2012;13:255.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  150. Moorhead GBG, Trinkle-Mulcahy L, Nimick M, De Wever V, Campbell DG, Gourlay R, et al. Displacement affinity chromatography of protein phosphatase one (PP1) complexes. BMC Biochem. 2008;9:28.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  151. Yoshida K, Bacal J, Desmarais D, Padioleau I, Tsaponina O, Chabes A, et al. The histone deacetylases Sir2 and Rpd3 Act on ribosomal DNA to control the replication program in budding yeast. Mol Cell. 2014;54:691–7.

    Article  CAS  PubMed  Google Scholar 

  152. Hiratani I, Leskovar A, Gilbert DM. Differentiation-induced replication-timing changes are restricted to AT-rich/long interspersed nuclear element (LINE)-rich isochores. Proc Natl Acad Sci U S A [Internet]. 2004;101(48):16861–6. http://www.pnas.org/content/101/48/16861. Accessed 27 May 2015.

    Google Scholar 

  153. Hiratani I, Ryba T, Itoh M, Rathjen J, Kulik M, Papp B, et al. Genome-wide dynamics of replication timing revealed by in vitro models of mouse embryogenesis. Genome Res. 2010;20:155–69.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  154. Hansen RS, Thomas S, Sandstrom R, Canfield TK, Thurman RE, Weaver M, et al. Sequencing newly replicated DNA reveals widespread plasticity in human replication timing. Proc Natl Acad Sci U S A. 2010;107:139–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  155. Takebayashi S-i, Dileep V, Ryba T, Dennis JH, Gilbert DM. Chromatin-interaction compartment switch at developmentally regulated chromosomal domains reveals an unusual principle of chromatin folding. Proc Natl Acad Sci. 2012;109:12574–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  156. Takebayashi S, Ryba T, Gilbert DM. Developmental control of replication timing defines a new breed of chromosomal domains with a novel mechanism of chromatin unfolding. Nucleus [Internet]. 2012;3:500–7. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3515532&tool=pmcentrez&rendertype=abstract.

    Article  Google Scholar 

  157. Dileep V, Ay F, Sima J, Vera DL, Noble WS, Gilbert DM. Topologically-associating domains and their long-range contacts are established during early G1 coincident with the establishment of the replication timing program. Genome Res [Internet]. 2015. http://www.ncbi.nlm.nih.gov/pubmed/25995270. Accessed 25 May 2015.

  158. Koryakov DE, Pokholkova GV, Maksimov DA, Belyakin SN, Belyaeva ES, Zhimulev IF. Induced transcription results in local changes in chromatin structure, replication timing, and DNA polytenization in a site of intercalary heterochromatin. Chromosoma. 2012;121:573–83.

    Article  CAS  PubMed  Google Scholar 

  159. Therizols P, Illingworth RS, Courilleau C, Boyle S, Wood AJ, Bickmore WA. Chromatin decondensation is sufficient to alter nuclear organization in embryonic stem cells. Science [Internet]. 2014;346(6214):1238–42. http://www.ncbi.nlm.nih.gov/pubmed/25477464. Accessed 5 Dec 2014.

    Google Scholar 

  160. Rivera-Mulia J, Buckley Q, Sasaki T, Zimmerman J, Didier R, Nazor K et al. Dynamic changes in replication timing and gene expression during lineage specification of human pluripotent stem cells. Genome Research. 2015;25(8):1091–1103.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  161. Newlon CS, Lipchitz LR, Collins I, Deshpande A, Devenish RJ, Green RP, et al. Analysis of a circular derivative of Saccharomyces cerevisiae chromosome III: a physical map and identification and location of ARS elements. Genetics. 1991;129:343–57.

    PubMed Central  CAS  PubMed  Google Scholar 

  162. Brewer BJ, Fangman WL. Mapping replication origins in yeast chromosomes. Bioessays. 1991;13:317–22.

    Article  CAS  PubMed  Google Scholar 

  163. Czajkowsky DM, Liu J, Hamlin JL, Shao Z. DNA combing reveals intrinsic temporal disorder in the replication of yeast chromosome VI. J Mol Biol. 2008;375:12–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  164. Patel PK, Kommajosyula N, Rosebrock A, Bensimon A, Leatherwood J, Bechhoefer J, et al. The Hsk1(Cdc7) replication kinase regulates origin efficiency. Mol Biol Cell. 2008;19:5550–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  165. Mantiero D, Mackenzie A, Donaldson A, Zegerman P. Limiting replication initiation factors execute the temporal programme of origin firing in budding yeast. EMBO J. 2011;30:4805–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  166. Tanaka S, Nakato R, Katou Y, Shirahige K, Araki H. Origin association of Sld3, Sld7, and Cdc45 proteins is a key step for determination of origin-firing timing. Curr Biol. 2011;21:2055–63.

    Article  CAS  PubMed  Google Scholar 

  167. Shaw A, Olivares-Chauvet P, Maya-Mendoza A, Jackson DA. S-phase progression in mammalian cells: modelling the influence of nuclear organization. Chromosome Res. 2010;18:163–78.

    Article  CAS  PubMed  Google Scholar 

  168. Audit B, Zaghloul L, Vaillant C, Chevereau G, d’Aubenton-Carafa Y, Thermes C, et al. Open chromatin encoded in DNA sequence is the signature of “master” replication origins in human cells. Nucleic Acids Res. 2009;37:6064–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  169. Guilbaud G, Rappailles A, Baker A, Chen CL, Arneodo A, Goldar A, et al. Evidence for sequential and increasing activation of replication origins along replication timing gradients in the human genome. PLoS Comput Biol. 2011;7.

    Google Scholar 

  170. Nagano T, Lubling Y, Stevens TJ, Schoenfelder S, Yaffe E, Dean W, et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature [Internet]. 2013;502:59–64. http://www.ncbi.nlm.nih.gov/pubmed/24067610\nfile:///Users/Daniel/Documents/Mendeley Desktop/Nagano et al/Nagano et al._2013_Single-cell Hi-C reveals cell-to-cell variability in chromosome structure._Nature.pdf.

  171. Méchali M, Yoshida K, Coulombe P, Pasero P. Genetic and epigenetic determinants of DNA replication origins, position and activation. Curr Opin Genet Dev. 2013;23:124–31.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge J.C. Rivera Mulia for critical reading of the manuscript. Work in the Gilbert lab is supported by Grants GM083337 and GM085354.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Gilbert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Klein, K.N., Gilbert, D.M. (2016). Epigenetic vs. Sequence-Dependent Control of Eukaryotic Replication Timing. In: Kaplan, D. (eds) The Initiation of DNA Replication in Eukaryotes. Springer, Cham. https://doi.org/10.1007/978-3-319-24696-3_3

Download citation

Publish with us

Policies and ethics