Skip to main content

Protein Phosphatases and DNA Replication Initiation

  • Chapter
  • First Online:
The Initiation of DNA Replication in Eukaryotes

Abstract

Eukaryotic DNA replication is controlled by regulated cycles of protein phosphorylation. While the controls over these cycles of kinase activity have been the subject of intense investigation, controls over the removal of phosphorylation, carried out by protein phosphatases, are potentially of equal importance for regulating DNA replication but have in comparison been largely neglected. In this chapter we will first present a brief overview of the families of phosphatases occurring in eukaryotic cells, with emphasis on the PP1 and PP2A subtypes that have been implicated in direct control of replication origin initiation. We will then review our current knowledge of how these phosphatases interact with established control pathways to impact on replication initiation, outlining how PP1 activity is required to prevent premature origin initiation, and its potential involvement in dephosphorylating ORC to enable pre-replication complex formation. Possible pathways for the involvement of PP2A in promoting replication initiation will also be introduced, highlighting the gaps in our understanding and areas of ongoing investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gray KA, Yates B, Seal RL, Wright MW, Bruford EA. Genenames.org: the HGNC resources in 2015. Nucleic Acids Res. 2015;43(Database issue):D1079–85.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Moorhead GB, Trinkle-Mulcahy L, Ulke-Lemee A. Emerging roles of nuclear protein phosphatases. Nat Rev Mol Cell Biol. 2007;8(3):234–44.

    Article  PubMed  CAS  Google Scholar 

  3. Bollen M, Peti W, Ragusa MJ, Beullens M. The extended PP1 toolkit: designed to create specificity. Trends Biochem Sci. 2010;35(8):450–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Moorhead GBG, De Wever V, Templeton G, Kerk D. Evolution of protein phosphatases in plants and animals. Biochem J. 2009;417:401–9.

    Article  PubMed  CAS  Google Scholar 

  5. Das AK, Helps NR, Cohen PT, Barford D. Crystal structure of the protein serine/threonine phosphatase 2C at 2.0 A resolution. EMBO J. 1996;15(24):6798–809.

    PubMed Central  PubMed  CAS  Google Scholar 

  6. Egloff MP, Cohen PT, Reinemer P, Barford D. Crystal structure of the catalytic subunit of human protein phosphatase 1 and its complex with tungstate. J Mol Biol. 1995;254(5):942–59.

    Article  PubMed  CAS  Google Scholar 

  7. Brautigan DL. Protein Ser/Thr phosphatases—the ugly ducklings of cell signalling. FEBS J. 2013;280(2):324–45.

    Article  PubMed  CAS  Google Scholar 

  8. Barker HM, Craig SP, Spurr NK, Cohen PT. Sequence of human protein serine/threonine phosphatase 1 gamma and localization of the gene (PPP1CC) encoding it to chromosome bands 12q24.1-q24.2. Biochim Biophys Acta. 1993;1178(2):228–33.

    Article  PubMed  CAS  Google Scholar 

  9. Durfee T, Becherer K, Chen PL, Yeh SH, Yang Y, Kilburn AE, et al. The retinoblastoma protein associates with the protein phosphatase type 1 catalytic subunit. Genes Dev. 1993;7(4):555–69.

    Article  PubMed  CAS  Google Scholar 

  10. Yoshida K, Watanabe M, Kato H, Dutta A, Sugano S. BH-protocadherin-c, a member of the cadherin superfamily, interacts with protein phosphatase 1 alpha through its intracellular domain. FEBS Lett. 1999;460(1):93–8.

    Article  PubMed  CAS  Google Scholar 

  11. Tran HT, Ulke A, Morrice N, Johannes CJ, Moorhead GB. Proteomic characterization of protein phosphatase complexes of the mammalian nucleus. Mol Cell Proteomics. 2004;3(3):257–65.

    Article  PubMed  CAS  Google Scholar 

  12. Heroes E, Lesage B, Gornemann J, Beullens M, Van Meervelt L, Bollen M. The PP1 binding code: a molecular-lego strategy that governs specificity. FEBS J. 2013;280(2):584–95.

    Article  PubMed  CAS  Google Scholar 

  13. Trinkle-Mulcahy L, Andersen J, Lam YW, Moorhead G, Mann M, Lamond AI. Repo-Man recruits PP1 gamma to chromatin and is essential for cell viability. J Cell Biol. 2006;172(5):679–92.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Trinkle-Mulcahy L, Andrews PD, Wickramasinghe S, Sleeman J, Prescott A, Lam YW, et al. Time-lapse imaging reveals dynamic relocalization of PP1gamma throughout the mammalian cell cycle. Mol Biol Cell. 2003;14(1):107–17.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Virshup DM, Shenolikar S. From promiscuity to precision: protein phosphatases get a makeover. Mol Cell. 2009;33(5):537–45.

    Article  PubMed  CAS  Google Scholar 

  16. Hendrickx A, Beullens M, Ceulemans H, Den Abt T, Van Eynde A, Nicolaescu E, et al. Docking motif-guided mapping of the interactome of protein phosphatase-1. Chem Biol. 2009;16(4):365–71.

    Article  PubMed  CAS  Google Scholar 

  17. Egloff MP, Johnson DF, Moorhead G, Cohen PT, Cohen P, Barford D. Structural basis for the recognition of regulatory subunits by the catalytic subunit of protein phosphatase 1. EMBO J. 1997;16(8):1876–87.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Hurley TD, Yang J, Zhang L, Goodwin KD, Zou Q, Cortese M, et al. Structural basis for regulation of protein phosphatase 1 by inhibitor-2. J Biol Chem. 2007;282(39):28874–83.

    Article  PubMed  CAS  Google Scholar 

  19. Roy J, Cyert MS. Cracking the phosphatase code: docking interactions determine substrate specificity. Sci Signal. 2009;2(100):9.

    Article  Google Scholar 

  20. Pinsky BA, Kotwaliwale CV, Tatsutani SY, Breed CA, Biggins S. Glc7/protein phosphatase 1 regulatory subunits can oppose the Ipl1/aurora protein kinase by redistributing Glc7. Mol Cell Biol. 2006;26(7):2648–60.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Janssens V, Longin S, Goris J. PP2A holoenzyme assembly: in cauda venenum (the sting is in the tail). Trends Biochem Sci. 2008;33(3):113–21.

    Article  PubMed  CAS  Google Scholar 

  22. Xing Y, Li Z, Chen Y, Stock JB, Jeffrey PD, Shi Y. Structural mechanism of demethylation and inactivation of protein phosphatase 2A. Cell. 2008;133(1):154–63.

    Article  PubMed  CAS  Google Scholar 

  23. Margolis SS, Perry JA, Forester CM, Nutt LK, Guo Y, Jardim MJ, et al. Role for the PP2A/B56delta phosphatase in regulating 14-3-3 release from Cdc25 to control mitosis. Cell. 2006;127(4):759–73.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Hunt T. On the regulation of protein phosphatase 2A and its role in controlling entry into and exit from mitosis. Adv Biol Regul. 2013;53(2):173–8.

    Article  PubMed  CAS  Google Scholar 

  25. Grallert A, Boke E, Hagting A, Hodgson B, Connolly Y, Griffiths JR, et al. A PP1-PP2A phosphatase relay controls mitotic progression. Nature. 2015;517(7532):94–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Yu J, Zhao Y, Li Z, Galas S, Goldberg ML. Greatwall kinase participates in the Cdc2 autoregulatory loop in Xenopus egg extracts. Mol Cell. 2006;22(1):83–91.

    Article  PubMed  CAS  Google Scholar 

  27. Mochida S, Maslen SL, Skehel M, Hunt T. Greatwall phosphorylates an inhibitor of protein phosphatase 2A that is essential for mitosis. Science (New York, NY). 2010;330(6011):1670–3.

    Article  CAS  Google Scholar 

  28. Porter IM, Schleicher K, Porter M, Swedlow JR. Bod1 regulates protein phosphatase 2A at mitotic kinetochores. Nat Commun. 2013;4:2677.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Labib K. How do Cdc7 and cyclin-dependent kinases trigger the initiation of chromosome replication in eukaryotic cells? Genes Dev. 2010;24(12):1208–19.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Zegerman P. Evolutionary conservation of the CDK targets in eukaryotic DNA replication initiation. Chromosoma. 2015.

    Google Scholar 

  31. Heller RC, Kang S, Lam WM, Chen S, Chan CS, Bell SP. Eukaryotic origin-dependent DNA replication in vitro reveals sequential action of DDK and S-CDK kinases. Cell. 2011;146(1):80–91.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Yabuuchi H, Yamada Y, Uchida T, Sunathvanichkul T, Nakagawa T, Masukata H. Ordered assembly of Sld3, GINS and Cdc45 is distinctly regulated by DDK and CDK for activation of replication origins. EMBO J. 2006;25(19):4663–74.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Hiraga S, Alvino GM, Chang F, Lian HY, Sridhar A, Kubota T, et al. Rif1 controls DNA replication by directing protein phosphatase 1 to reverse Cdc7-mediated phosphorylation of the MCM complex. Genes Dev. 2014;28(4):372–83.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Dave A, Cooley C, Garg M, Bianchi A. Protein phosphatase 1 recruitment by Rif1 regulates DNA replication origin firing by counteracting DDK activity. Cell Rep. 2014;7(1):53–61.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Sridhar A, Kedziora S, Donaldson AD. At short telomeres Tel1 directs early replication and phosphorylates Rif1. PLoS Genet. 2014;10(10), e1004691.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Mattarocci S, Shyian M, Lemmens L, Damay P, Altintas DM, Shi T, et al. Rif1 controls DNA replication timing in yeast through the PP1 phosphatase Glc7. Cell Rep. 2014;7(1):62–9.

    Article  PubMed  CAS  Google Scholar 

  37. Hayano M, Kanoh Y, Matsumoto S, Renard-Guillet C, Shirahige K, Masai H. Rif1 is a global regulator of timing of replication origin firing in fission yeast. Genes Dev. 2012;26(2):137–50.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Mantiero D, Mackenzie A, Donaldson A, Zegerman P. Limiting replication initiation factors execute the temporal programme of origin firing in budding yeast. EMBO J. 2011;30(23):4805–14.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Lian HY, Robertson ED, Hiraga S, Alvino GM, Collingwood D, McCune HJ, et al. The effect of Ku on telomere replication time is mediated by telomere length but is independent of histone tail acetylation. Mol Biol Cell. 2011;22(10):1753–65.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Peace JM, Ter-Zakarian A, Aparicio OM. Rif1 regulates initiation timing of late replication origins throughout the S. cerevisiae genome. PLoS One. 2014;9(5), e98501.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Cornacchia D, Dileep V, Quivy JP, Foti R, Tili F, Santarella-Mellwig R, et al. Mouse Rif1 is a key regulator of the replication-timing programme in mammalian cells. EMBO J. 2012;31(18):3678–90.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Yamazaki S, Ishii A, Kanoh Y, Oda M, Nishito Y, Masai H. Rif1 regulates the replication timing domains on the human genome. EMBO J. 2012;31(18):3667–77.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Sreesankar E, Senthilkumar R, Bharathi V, Mishra RK, Mishra K. Functional diversification of yeast telomere associated protein, Rif1, in higher eukaryotes. BMC Genomics. 2012;13:255.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  44. Poh WT, Chadha GS, Gillespie PJ, Kaldis P, Blow JJ. Xenopus Cdc7 executes its essential function early in S phase and is counteracted by checkpoint-regulated protein phosphatase 1. Open Biol. 2014;4(1):130138.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Esteves SL, Domingues SC, da Cruz e Silva SC, Fardilha M, da Cruz e Silva EF. Protein phosphatase 1alpha interacting proteins in the human brain. J Integr Biol. 2012;16(1-2):3–17.

    CAS  Google Scholar 

  46. Marcand S, Gilson E, Shore D. A protein-counting mechanism for telomere length regulation in yeast. Science (New York, NY). 1997;275(5302):986–90.

    Article  CAS  Google Scholar 

  47. Lue NF. Closing the feedback loop: how cells “count” telomere-bound proteins. Mol Cell. 2009;33(4):413–4.

    Article  PubMed  CAS  Google Scholar 

  48. Hardy CF, Sussel L, Shore D. A RAP1-interacting protein involved in transcriptional silencing and telomere length regulation. Genes Dev. 1992;6(5):801–14.

    Article  PubMed  CAS  Google Scholar 

  49. Xue Y, Rushton MD, Maringele L. A novel checkpoint and RPA inhibitory pathway regulated by Rif1. PLoS Genet. 2011;7(12), e1002417.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. Ribeyre C, Shore D. Anticheckpoint pathways at telomeres in yeast. Nat Struct Mol Biol. 2012;19(3):307–13.

    Article  PubMed  CAS  Google Scholar 

  51. Chapman JR, Barral P, Vannier JB, Borel V, Steger M, Tomas-Loba A, et al. RIF1 is essential for 53BP1-dependent nonhomologous end joining and suppression of DNA double-strand break resection. Mol Cell. 2013;49(5):858–71.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  52. Escribano-Diaz C, Orthwein A, Fradet-Turcotte A, Xing M, Young JT, Tkac J, et al. A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice. Mol Cell. 2013;49(5):872–83.

    Article  PubMed  CAS  Google Scholar 

  53. Zimmermann M, Lottersberger F, Buonomo SB, Sfeir A, de Lange T. 53BP1 regulates DSB repair using Rif1 to control 5' end resection. Science (New York, NY). 2013;339(6120):700–4.

    Article  CAS  Google Scholar 

  54. Di Virgilio M, Callen E, Yamane A, Zhang W, Jankovic M, Gitlin AD, et al. Rif1 prevents resection of DNA breaks and promotes immunoglobulin class switching. Science (New York, NY). 2013;339(6120):711–5.

    Article  CAS  Google Scholar 

  55. Kumar S, Yoo HY, Kumagai A, Shevchenko A, Shevchenko A, Dunphy WG. Role for Rif1 in the checkpoint response to damaged DNA in Xenopus egg extracts. Cell Cycle. 2012;11(6):1183–94.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  56. Martina M, Bonetti D, Villa M, Lucchini G, Longhese MP. Saccharomyces cerevisiae Rif1 cooperates with MRX-Sae2 in promoting DNA-end resection. EMBO Rep. 2014.

    Google Scholar 

  57. Loyola A, Tagami H, Bonaldi T, Roche D, Quivy JP, Imhof A, et al. The HP1alpha-CAF1-SetDB1-containing complex provides H3K9me1 for Suv39-mediated K9me3 in pericentric heterochromatin. EMBO Rep. 2009;10(7):769–75.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  58. Dan J, Liu Y, Liu N, Chiourea M, Okuka M, Wu T, et al. Rif1 maintains telomere length homeostasis of ESCs by mediating heterochromatin silencing. Dev Cell. 2014;29(1):7–19.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  59. Diffley JF. Regulation of early events in chromosome replication. Curr Biol. 2004;14(18):R778–86.

    Article  PubMed  CAS  Google Scholar 

  60. Nguyen VQ, Co C, Li JJ. Cyclin-dependent kinases prevent DNA re-replication through multiple mechanisms. Nature. 2001;411(6841):1068–73.

    Article  PubMed  CAS  Google Scholar 

  61. Kreitz S, Ritzi M, Baack M, Knippers R. The human origin recognition complex protein 1 dissociates from chromatin during S phase in HeLa cells. J Biol Chem. 2001;276(9):6337–42.

    Article  PubMed  CAS  Google Scholar 

  62. Siddiqui K, Stillman B. ATP-dependent assembly of the human origin recognition complex. J Biol Chem. 2007;282(44):32370–83.

    Article  PubMed  CAS  Google Scholar 

  63. Lee KY, Bang SW, Yoon SW, Lee SH, Yoon JB, Hwang DS. Phosphorylation of ORC2 protein dissociates origin recognition complex from chromatin and replication origins. J Biol Chem. 2012;287(15):11891–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  64. Lee KY, Bae JS, Kim GS, Hwang DS. Protein phosphatase 1 dephosphorylates Orc2. Biochem Biophys Res Commun. 2014;447(3):437–40.

    Article  PubMed  CAS  Google Scholar 

  65. Lee KY, Bae JS, Yoon S, Hwang DS. Dephosphorylation of Orc2 by protein phosphatase 1 promotes the binding of the origin recognition complex to chromatin. Biochem Biophys Res Commun. 2014;448(4):385–9.

    Article  PubMed  CAS  Google Scholar 

  66. Lin XH, Walter J, Scheidtmann K, Ohst K, Newport J, Walter G. Protein phosphatase 2A is required for the initiation of chromosomal DNA replication. Proc Natl Acad Sci U S A. 1998;95(25):14693–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  67. Chou DM, Petersen P, Walter JC, Walter G. Protein phosphatase 2A regulates binding of Cdc45 to the prereplication complex. J Biol Chem. 2002;277(43):40520–7.

    Article  PubMed  CAS  Google Scholar 

  68. Petersen P, Chou DM, You Z, Hunter T, Walter JC, Walter G. Protein phosphatase 2A antagonizes ATM and ATR in a Cdk2- and Cdc7-independent DNA damage checkpoint. Mol Cell Biol. 2006;26(5):1997–2011.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  69. Guo C, Kumagai A, Schlacher K, Shevchenko A, Shevchenko A, Dunphy WG. Interaction of Chk1 with Treslin negatively regulates the initiation of chromosomal DNA replication. Mol Cell. 2015;57(3):492–505.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  70. Chowdhury A, Liu G, Kemp M, Chen X, Katrangi N, Myers S, et al. The DNA unwinding element binding protein DUE-B interacts with Cdc45 in preinitiation complex formation. Mol Cell Biol. 2010;30(6):1495–507.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  71. Gao Y, Yao J, Poudel S, Romer E, Abu-Niaaj L, Leffak M. Protein phosphatase 2A and Cdc7 kinase regulate the DNA unwinding element-binding protein in replication initiation. J Biol Chem. 2014;289(52):35987–6000.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  72. Yan Z, Fedorov SA, Mumby MC, Williams RS. PR48, a novel regulatory subunit of protein phosphatase 2A, interacts with Cdc6 and modulates DNA replication in human cells. Mol Cell Biol. 2000;20(3):1021–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  73. Hartwell LH, Smith D. Altered fidelity of mitotic chromosome transmission in cell cycle mutants of S. cerevisiae. Genetics. 1985;110(3):381–95.

    PubMed Central  PubMed  CAS  Google Scholar 

  74. Hogan E, Koshland D. Addition of extra origins of replication to a minichromosome suppresses its mitotic loss in cdc6 and cdc14 mutants of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1992;89(7):3098–102.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  75. Fitzpatrick PJ, Toyn JH, Millar JB, Johnston LH. DNA replication is completed in Saccharomyces cerevisiae cells that lack functional Cdc14, a dual-specificity protein phosphatase. Mol Gen Genet. 1998;258(4):437–41.

    Article  PubMed  CAS  Google Scholar 

  76. Visintin R, Craig K, Hwang ES, Prinz S, Tyers M, Amon A. The phosphatase Cdc14 triggers mitotic exit by reversal of Cdk-dependent phosphorylation. Mol Cell. 1998;2(6):709–18.

    Article  PubMed  CAS  Google Scholar 

  77. Noton E, Diffley JF. CDK inactivation is the only essential function of the APC/C and the mitotic exit network proteins for origin resetting during mitosis. Mol Cell. 2000;5(1):85–95.

    Article  PubMed  CAS  Google Scholar 

  78. Lengronne A, Schwob E. The yeast CDK inhibitor Sic1 prevents genomic instability by promoting replication origin licensing in late G(1). Mol Cell. 2002;9(5):1067–78.

    Article  PubMed  CAS  Google Scholar 

  79. Dulev S, de Renty C, Mehta R, Minkov I, Schwob E, Strunnikov A. Essential global role of CDC14 in DNA synthesis revealed by chromosome underreplication unrecognized by checkpoints in cdc14 mutants. Proc Natl Acad Sci U S A. 2009;106(34):14466–71.

    Article  PubMed Central  PubMed  Google Scholar 

  80. Keogh MC, Kim JA, Downey M, Fillingham J, Chowdhury D, Harrison JC, et al. A phosphatase complex that dephosphorylates gammaH2AX regulates DNA damage checkpoint recovery. Nature. 2006;439(7075):497–501.

    Article  PubMed  CAS  Google Scholar 

  81. Bazzi M, Mantiero D, Trovesi C, Lucchini G, Longhese MP. Dephosphorylation of gamma H2A by Glc7/protein phosphatase 1 promotes recovery from inhibition of DNA replication. Mol Cell Biol. 2010;30(1):131–45.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  82. Travesa A, Duch A, Quintana DG. Distinct phosphatases mediate the deactivation of the DNA damage checkpoint kinase Rad53. J Biol Chem. 2008;283(25):17123–30.

    Article  PubMed  CAS  Google Scholar 

  83. Hustedt N, Seeber A, Sack R, Tsai-Pflugfelder M, Bhullar B, Vlaming H, et al. Yeast PP4 interacts with ATR homolog Ddc2-Mec1 and regulates checkpoint signaling. Mol Cell. 2015;57(2):273–89.

    Article  PubMed  CAS  Google Scholar 

  84. Chowdhury D, Keogh MC, Ishii H, Peterson CL, Buratowski S, Lieberman J. Gamma-H2AX dephosphorylation by protein phosphatase 2A facilitates DNA double-strand break repair. Mol Cell. 2005;20(5):801–9.

    Article  PubMed  CAS  Google Scholar 

  85. Nakada S, Chen GI, Gingras AC, Durocher D. PP4 is a gamma H2AX phosphatase required for recovery from the DNA damage checkpoint. EMBO Rep. 2008;9(10):1019–26.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  86. Terrak M, Kerff F, Langsetmo K, Tao T, Dominguez R. Structural basis of protein phosphatase 1 regulation. Nature. 2004;429(6993):780–4.

    Article  PubMed  CAS  Google Scholar 

  87. Scotto-Lavino E, Garcia-Diaz M, Du G, Frohman MA. Basis for the isoform-specific interaction of myosin phosphatase subunits protein phosphatase 1c beta and myosin phosphatase targeting subunit 1. J Biol Chem. 2010;285(9):6419–24.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  88. Cho US, Xu W. Crystal structure of a protein phosphatase 2A heterotrimeric holoenzyme. Nature. 2007;445(7123):53–7.

    Article  PubMed  CAS  Google Scholar 

  89. Moreland JL, Gramada A, Buzko OV, Zhang Q, Bourne PE. The molecular biology toolkit (MBT): a modular platform for developing molecular visualization applications. BMC Bioinformatics. 2005;6:21.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in the Donaldson/Hiraga lab is funded by Cancer Research UK grants C1445/A13356 and C1445/A19059, and BBSRC grant K006304/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne D. Donaldson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Stark, M.J.R., Hiraga, Si., Donaldson, A.D. (2016). Protein Phosphatases and DNA Replication Initiation. In: Kaplan, D. (eds) The Initiation of DNA Replication in Eukaryotes. Springer, Cham. https://doi.org/10.1007/978-3-319-24696-3_23

Download citation

Publish with us

Policies and ethics