Skip to main content

Choice of Origins and Replication Timing Control in Budding Yeast

  • Chapter
  • First Online:
The Initiation of DNA Replication in Eukaryotes
  • 1485 Accesses

Abstract

A complete and exact replication of every eukaryotic chromosome within each cell division cycle is essential to maintain stable genomes during cell proliferation. Abundant origins of DNA replication where the replication machinery assembles into replisomes to initiate DNA synthesis are widespread along chromosomes. DNA replication shows characteristic spatio-temporal patterns of origin usage and replication timing during S phase, which are conserved through evolution and are cell type specific, indicating an active process of regulation. Important advances have recently been made to elucidate the determinants and molecular mechanisms that regulate the patterns of origin activation. Among these, cis-acting elements, chromatin determinants, the timing of origin licensing and factors regulating the choice of origins and the firing timing during S phase have been described in Saccharomyces cerevisiae. Much less understood is the biological significance of this replication programme, but it could be significant in providing both robustness and plasticity to the DNA replication process in terms of replication completion and the maintenance of genome integrity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leonard AC, Méchali M. DNA replication origins. Cold Spring Harb Perspect Biol. 2013;5(10):a010116.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  2. Gilbert DM. In search of the holy replicator. Nat Rev Mol Cell Biol. 2004;5(10):848–55.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Siddiqui K, On KF, Diffley JFX. Regulating DNA replication in eukarya. Cold Spring Harb Perspect Biol 2013; 5(9).

    Google Scholar 

  4. Tanaka S, Araki H. Helicase activation and establishment of replication forks at chromosomal origins of replication. Cold Spring Harb Perspect Biol. 2013;5(12):a010371.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Diffley JF, Cocker JH, Dowell SJ, Rowley A. Two steps in the assembly of complexes at yeast replication origins in vivo. Cell. 1994;78(2):303–16.

    Article  PubMed  CAS  Google Scholar 

  6. Zou L, Stillman B. Formation of a preinitiation complex by S-phase cyclin CDK-dependent loading of Cdc45p onto chromatin. Science. 1998;280(5363):593–6.

    Article  PubMed  CAS  Google Scholar 

  7. Muramatsu S, Hirai K, Tak Y-S, Kamimura Y, Araki H. CDK-dependent complex formation between replication proteins Dpb11, Sld2, Pol, and GINS in budding yeast. Genes Dev. 2010;24(6):602–12.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Tanaka S, Umemori T, Hirai K, Muramatsu S, Kamimura Y, Araki H. CDK-dependent phosphorylation of Sld2 and Sld3 initiates DNA replication in budding yeast. Nature. 2007;445(7125):328–32.

    Article  PubMed  CAS  Google Scholar 

  9. Zegerman P, Diffley JFX. Phosphorylation of Sld2 and Sld3 by cyclin-dependent kinases promotes DNA replication in budding yeast. Nature. 2007;445(7125):281–5.

    Article  PubMed  CAS  Google Scholar 

  10. Gambus A, Jones RC, Sanchez-Diaz A, Kanemaki M, van Deursen F, Edmondson RD, et al. GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nat Cell Biol. 2006;8(4):358–66.

    Article  PubMed  CAS  Google Scholar 

  11. Moyer SE, Lewis PW, Botchan MR. Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. Proc Natl Acad Sci U S A. 2006;103(27):10236–41.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Diffley JFX. Regulation of early events in chromosome replication. Curr Biol. 2004;14(18):R778–86.

    Article  PubMed  CAS  Google Scholar 

  13. Friedman KL, Brewer BJ, Fangman WL. Replication profile of Saccharomyces cerevisiae chromosome VI. Genes Cells. 1997;2(11):667–78.

    Article  PubMed  CAS  Google Scholar 

  14. Yamashita M, Hori Y, Shinomiya T, Obuse C, Tsurimoto T, Yoshikawa H, et al. The efficiency and timing of initiation of replication of multiple replicons of Saccharomyces cerevisiae chromosome VI. Genes Cells. 1997;2(11):655–65.

    Article  PubMed  CAS  Google Scholar 

  15. Poloumienko A, Dershowitz A, De J, Newlon CS. Completion of replication map of Saccharomyces cerevisiae chromosome III. Mol Biol Cell. 2001;12(11):3317–27.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Raghuraman MK, Winzeler EA, Collingwood D, Hunt S, Wodicka L, Conway A, et al. Replication dynamics of the yeast genome. Science. 2001;294(5540):115–21.

    Article  PubMed  CAS  Google Scholar 

  17. Wyrick JJ, Aparicio JG, Chen T, Barnett JD, Jennings EG, Young RA, et al. Genome-wide distribution of ORC and MCM proteins in S. cerevisiae: high-resolution mapping of replication origins. Science. 2001;294(5550):2357–60.

    Article  PubMed  CAS  Google Scholar 

  18. Yabuki N, Terashima H, Kitada K. Mapping of early firing origins on a replication profile of budding yeast. Genes Cells. 2002;7(8):781–9.

    Article  PubMed  CAS  Google Scholar 

  19. Patel PK, Arcangioli B, Baker SP, Bensimon A, Rhind N. DNA replication origins fire stochastically in fission yeast. Mol Biol Cell. 2006;17(1):308–16.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Czajkowsky DM, Liu J, Hamlin JL, Shao Z. DNA combing reveals intrinsic temporal disorder in the replication of yeast chromosome VI. J Mol Biol. 2008;375(1):12–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Yang SC-H, Rhind N, Bechhoefer J. Modeling genome-wide replication kinetics reveals a mechanism for regulation of replication timing. Mol Syst Biol. 2010;6:404.

    PubMed Central  PubMed  Google Scholar 

  22. Bechhoefer J, Rhind N. Replication timing and its emergence from stochastic processes. Trends Genet. 2012;28(8):374–81.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Méchali M, Yoshida K, Coulombe P, Pasero P. Genetic and epigenetic determinants of DNA replication origins, position and activation. Curr Opin Genet Dev. 2013;23(2):124–31.

    Article  PubMed  CAS  Google Scholar 

  24. Raghuraman MK, Brewer BJ. Molecular analysis of the replication program in unicellular model organisms. Chromosome Res. 2010;18(1):19–34.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Renard-Guillet C, Kanoh Y, Shirahige K, Masai H. Temporal and spatial regulation of eukaryotic DNA replication: from regulated initiation to genome-scale timing program. Semin Cell Dev Biol. 2014;30:110–20.

    Article  PubMed  CAS  Google Scholar 

  26. Rhind N, Gilbert DM. DNA replication timing. Cold Spring Harb Perspect Biol. 2013;5(8):a010132.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Hyrien O, Marheineke K, Goldar A. Paradoxes of eukaryotic DNA replication: MCM proteins and the random completion problem. Bioessays. 2003;25(2):116–25.

    Article  PubMed  CAS  Google Scholar 

  28. Rhind N, Yang SC-H, Bechhoefer J. Reconciling stochastic origin firing with defined replication timing. Chromosome Res. 2010;18(1):35–43.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Rhind N. DNA replication timing: random thoughts about origin firing. Nat Cell Biol. 2006;8(12):1313–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Brewer BJ, Fangman WL. The localization of replication origins on ARS plasmids in S. cerevisiae. Cell. 1987;51(3):463–71.

    Article  PubMed  CAS  Google Scholar 

  31. Celniker SE, Campbell JL. Yeast DNA replication in vitro: initiation and elongation events mimic in vivo processes. Cell. 1982;31(1):201–13.

    Article  PubMed  CAS  Google Scholar 

  32. Huberman JA, Spotila LD, Nawotka KA, el-Assouli SM, Davis LR. The in vivo replication origin of the yeast 2 microns plasmid. Cell. 1987;51(3):473–81.

    Article  PubMed  CAS  Google Scholar 

  33. Stinchcomb DT, Thomas M, Kelly J, Selker E, Davis RW. Eukaryotic DNA segments capable of autonomous replication in yeast. Proc Natl Acad Sci U S A. 1980;77(8):4559–63.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Marahrens Y, Stillman B. A yeast chromosomal origin of DNA replication defined by multiple functional elements. Science. 1992;255(5046):817–23.

    Article  PubMed  CAS  Google Scholar 

  35. Theis JF, Newlon CS. The ARS309 chromosomal replicator of Saccharomyces cerevisiae depends on an exceptional ARS consensus sequence. Proc Natl Acad Sci U S A. 1997;94(20):10786–91.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Xu W, Aparicio JG, Aparicio OM, Tavaré S. Genome-wide mapping of ORC and Mcm2p binding sites on tiling arrays and identification of essential ARS consensus sequences in S. cerevisiae. BMC Genomics. 2006;7:276.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Eaton ML, Galani K, Kang S, Bell SP, MacAlpine DM. Conserved nucleosome positioning defines replication origins. Genes Dev. 2010;24(8):748–53.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Siow CC, Nieduszynska SR, Müller CA, Nieduszynski CA. OriDB, the DNA replication origin database updated and extended. Nucleic Acids Res. 2012;40(Database issue):D682–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Diffley JF, Cocker JH. Protein-DNA interactions at a yeast replication origin. Nature. 1992;357(6374):169–72.

    Article  PubMed  CAS  Google Scholar 

  40. Rao H, Marahrens Y, Stillman B. Functional conservation of multiple elements in yeast chromosomal replicators. Mol Cell Biol. 1994;14(11):7643–51.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Wilmes GM, Bell SP. The B2 element of the Saccharomyces cerevisiae ARS1 origin of replication requires specific sequences to facilitate pre-RC formation. Proc Natl Acad Sci U S A. 2002;99(1):101–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Remus D, Beuron F, Tolun G, Griffith J, Morris E, Diffley J. Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing. Cell. 2009;139:719.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. On KF, Beuron F, Frith D, Snijders AP, Morris EP, Diffley JFX. Prereplicative complexes assembled in vitro support origin-dependent and independent DNA replication. EMBO J. 2014;33(6):605–20.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  44. Crevel G, Cotterill S. Forced binding of the origin of replication complex to chromosomal sites in Drosophila S2 cells creates an origin of replication. J Cell Sci. 2012;125(Pt 4):965–72.

    Article  PubMed  CAS  Google Scholar 

  45. Huang RY, Kowalski D. Multiple DNA elements in ARS305 determine replication origin activity in a yeast chromosome. Nucleic Acids Res. 1996;24(5):816–23.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Theis JF, Newlon CS. Domain B of ARS307 contains two functional elements and contributes to chromosomal replication origin function. Mol Cell Biol. 1994;14(11):7652–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  47. Hoggard T, Shor E, Müller CA, Nieduszynski CA, Fox CA. A link between ORC-origin binding mechanisms and origin activation time revealed in budding yeast. PLoS Genet. 2013;9(9):e1003798.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Donato JJ, Chung SCC, Tye BK. Genome-wide hierarchy of replication origin usage in Saccharomyces cerevisiae. PLoS Genet. 2006;2(9):e141.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Nieduszynski CA, Blow JJ, Donaldson AD. The requirement of yeast replication origins for pre-replication complex proteins is modulated by transcription. Nucleic Acids Res. 2005;33(8):2410–20.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. Tanny RE, MacAlpine DM, Blitzblau HG, Bell SP. Genome-wide analysis of re-replication reveals inhibitory controls that target multiple stages of replication initiation. Mol Biol Cell. 2006;17(5):2415–23.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  51. Brewer BJ, Fangman WL. Initiation at closely spaced replication origins in a yeast chromosome. Science. 1993;262(5140):1728–31.

    Article  PubMed  CAS  Google Scholar 

  52. Ferguson BM, Fangman WL. A position effect on the time of replication origin activation in yeast. Cell. 1992;68(2):333–9.

    Article  PubMed  CAS  Google Scholar 

  53. Pohl TJ, Kolor K, Fangman WL, Brewer BJ, Raghuraman MK. A DNA sequence element that advances replication origin activation time in Saccharomyces cerevisiae. G3. 2013;3(11):1955–63.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  54. Koren A, Tsai H-J, Tirosh I, Burrack LS, Barkai N, Berman J. Epigenetically-inherited centromere and neocentromere DNA replicates earliest in S-phase. PLoS Genet. 2010;6(8):e1001068.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  55. Pohl TJ, Brewer BJ, Raghuraman MK. Functional centromeres determine the activation time of pericentric origins of DNA replication in Saccharomyces cerevisiae. PLoS Genet. 2012;8(5):e1002677.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  56. Hayashi MT, Takahashi TS, Nakagawa T, Nakayama J-I, Masukata H. The heterochromatin protein Swi6/HP1 activates replication origins at the pericentromeric region and silent mating-type locus. Nat Cell Biol. 2009;11(3):357–62.

    Article  PubMed  CAS  Google Scholar 

  57. Bianchi A, Shore D. Early replication of short telomeres in budding yeast. Cell. 2007;128(6):1051–62.

    Article  PubMed  CAS  Google Scholar 

  58. Lian H-Y, Robertson ED, Hiraga S-I, Alvino GM, Collingwood D, McCune HJ, et al. The effect of Ku on telomere replication time is mediated by telomere length but is independent of histone tail acetylation. Mol Biol Cell. 2011;22(10):1753–65.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  59. Stevenson JB, Gottschling DE. Telomeric chromatin modulates replication timing near chromosome ends. Genes Dev. 1999;13(2):146–51.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Cosgrove AJ, Nieduszynski CA, Donaldson AD. Ku complex controls the replication time of DNA in telomere regions. Genes Dev. 2002;16(19):2485–90.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  61. Pappas DL, Frisch R, Weinreich M. The NAD(+)-dependent Sir2p histone deacetylase is a negative regulator of chromosomal DNA replication. Genes Dev. 2004;18(7):769–81.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  62. Crampton A, Chang F, Pappas DL, Frisch RL, Weinreich M. An ARS element inhibits DNA replication through a SIR2-dependent mechanism. Mol Cell. 2008;30(2):156–66.

    Article  PubMed  CAS  Google Scholar 

  63. Knott SRV, Viggiani CJ, Tavaré S, Aparicio OM. Genome-wide replication profiles indicate an expansive role for Rpd3L in regulating replication initiation timing or efficiency, and reveal genomic loci of Rpd3 function in Saccharomyces cerevisiae. Genes Dev. 2009;23(9):1077–90.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  64. Vogelauer M, Rubbi L, Lucas I, Brewer BJ, Grunstein M. Histone acetylation regulates the time of replication origin firing. Mol Cell. 2002;10(5):1223–33.

    Article  PubMed  CAS  Google Scholar 

  65. Espinosa MC, Rehman MA, Chisamore-Robert P, Jeffery D, Yankulov K. GCN5 is a positive regulator of origins of DNA replication in Saccharomyces cerevisiae. PLoS One. 2010;5(1):e8964.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  66. Unnikrishnan A, Gafken PR, Tsukiyama T. Dynamic changes in histone acetylation regulate origins of DNA replication. Nat Struct Mol Biol. 2010;17(4):430–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  67. Irlbacher H, Franke J, Manke T, Vingron M, Ehrenhofer-Murray AE. Control of replication initiation and heterochromatin formation in Saccharomyces cerevisiae by a regulator of meiotic gene expression. Genes Dev. 2005;19(15):1811–22.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  68. Weber JM, Irlbacher H, Ehrenhofer-Murray AE. Control of replication initiation by the Sum1/Rfm1/Hst1 histone deacetylase. BMC Mol Biol. 2008;9:100.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  69. Pryde F, Jain D, Kerr A, Curley R, Mariotti FR, Vogelauer M. H3 k36 methylation helps determine the timing of cdc45 association with replication origins. PLoS One. 2009;4(6):e5882.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  70. Rizzardi LF, Dorn ES, Strahl BD, Cook JG. DNA replication origin function is promoted by H3K4 di-methylation in Saccharomyces cerevisiae. Genetics. 2012;192(2):371–84.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  71. Lee W, Tillo D, Bray N, Morse RH, Davis RW, Hughes TR, et al. A high-resolution atlas of nucleosome occupancy in yeast. Nat Genet. 2007;39(10):1235–44.

    Article  PubMed  CAS  Google Scholar 

  72. Mavrich TN, Ioshikhes IP, Venters BJ, Jiang C, Tomsho LP, Qi J, et al. A barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome. Genome Res. 2008;18(7):1073–83.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  73. Mcguffee SR, Smith DJ, Whitehouse I. Quantitative, genome-wide analysis of eukaryotic replication initiation and termination. Mol Cell. 2013;50:123–35.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  74. Simpson RT. Nucleosome positioning can affect the function of a cis-acting DNA element in vivo. Nature. 1990;343(6256):387–9.

    Article  PubMed  CAS  Google Scholar 

  75. Berbenetz NM, Nislow C, Brown GW. Diversity of eukaryotic DNA replication origins revealed by genome-wide analysis of chromatin structure. PLoS Genet. 2010;1:6(9).

    Google Scholar 

  76. Lipford JR, Bell SP. Nucleosomes positioned by ORC facilitate the initiation of DNA replication. Mol Cell. 2001;7(1):21–30.

    Article  PubMed  CAS  Google Scholar 

  77. Raghuraman MK, Brewer BJ, Fangman WL. Cell cycle-dependent establishment of a late replication program. Science. 1997;276(5313):806–9.

    Article  PubMed  CAS  Google Scholar 

  78. Heun P, Laroche T, Raghuraman MK, Gasser SM. The positioning and dynamics of origins of replication in the budding yeast nucleus. J Cell Biol. 2001;152(2):385–400.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  79. Pope BD, Aparicio OM, Gilbert DM. SnapShot: replication timing. Cell. 2013;152(6):1390–1.

    Article  PubMed  CAS  Google Scholar 

  80. Soriano I, Morafraile EC, Vázquez E, Antequera F, Segurado M. Different nucleosomal architectures at early and late replicating origins in Saccharomyces cerevisiae. BMC Genomics. 2014;15:791.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  81. Belsky JA, MacAlpine HK, Lubelsky Y, Hartemink AJ, MacAlpine DM. Genome-wide chromatin footprinting reveals changes in replication origin architecture induced by pre-RC assembly. Genes Dev. 2015;29(2):212–24.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  82. Wu P-YJ, Nurse P. Establishing the program of origin firing during S phase in fission Yeast. Cell. 2009;136(5):852–64.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  83. Callebaut I, Courvalin JC, Mornon JP. The BAH (bromo-adjacent homology) domain: a link between DNA methylation, replication and transcriptional regulation. FEBS Lett. 1999;446(1):189–93.

    Article  PubMed  CAS  Google Scholar 

  84. Kuo AJ, Song J, Cheung P, Ishibe-Murakami S, Yamazoe S, Chen JK, et al. The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier-Gorlin syndrome. Nature. 2012;484(7392):115–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  85. Müller P, Park S, Shor E, Huebert DJ, Warren CL, Ansari AZ, et al. The conserved bromo-adjacent homology domain of yeast Orc1 functions in the selection of DNA replication origins within chromatin. Genes Dev. 2010;24(13):1418–33.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  86. Hizume K, Yagura M, Araki H. Concerted interaction between origin recognition complex (ORC), nucleosomes and replication origin DNA ensures stable ORC-origin binding. Genes Cells. 2013;18(9):764–79.

    Article  PubMed  CAS  Google Scholar 

  87. Knott SRV, Peace JM, Ostrow AZ, Gan Y, Rex AE, Viggiani CJ, et al. Forkhead transcription factors establish origin timing and long-range clustering in S. cerevisiae. Cell. 2012;148(1-2):99–111.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  88. Lõoke M, Kristjuhan K, Värv S, Kristjuhan A. Chromatin-dependent and -independent regulation of DNA replication origin activation in budding yeast. EMBO Rep. 2013;14(2):191–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  89. Duan Z, Andronescu M, Schutz K, Mcilwain S, Kim YJ, Lee C, et al. A three-dimensional model of the yeast genome. Nature. 2010;465(7296):363–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  90. Cornacchia D, Dileep V, Quivy J-P, Foti R, Tili F, Santarella-Mellwig R, et al. Mouse Rif1 is a key regulator of the replication-timing programme in mammalian cells. EMBO J. 2012;31(18):3678–90.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  91. Hayano M, Kanoh Y, Matsumoto S, Renard-Guillet C, Shirahige K, Masai H. Rif1 is a global regulator of timing of replication origin firing in fission yeast. Genes Dev. 2012;26(2):137–50.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  92. Peace JM, Ter-Zakarian A, Aparicio OM. Rif1 regulates initiation timing of late replication origins throughout the S. cerevisiae genome. PLoS One. 2014;9(5):e98501.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  93. Yamazaki S, Ishii A, Kanoh Y, Oda M, Nishito Y, Masai H. Rif1 regulates the replication timing domains on the human genome. EMBO J. 2012;31(18):3667–77.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  94. Smith CD, Smith DL, DeRisi JL, Blackburn EH. Telomeric protein distributions and remodeling through the cell cycle in Saccharomyces cerevisiae. Mol Biol Cell. 2003;14(2):556–70.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  95. Davé A, Cooley C, Garg M, Bianchi A. Protein phosphatase 1 recruitment by Rif1 regulates DNA replication origin firing by counteracting DDK activity. Cell Rep. 2014;7(1):61.

    Article  CAS  Google Scholar 

  96. Hiraga S-I, Alvino GM, Chang F, Lian H-Y, Sridhar A, Kubota T, et al. Rif1 controls DNA replication by directing Protein Phosphatase 1 to reverse Cdc7-mediated phosphorylation of the MCM complex. Genes Dev. 2014;28(4):372–83.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  97. Mattarocci S, Shyian M, Lemmens L, Damay P, Altintas DM, Shi T, et al. Rif1 controls DNA replication timing in yeast through the PP1 phosphatase Glc7. Cell Rep. 2014;7(1):69.

    Article  CAS  Google Scholar 

  98. Sridhar A, Kedziora S, Donaldson AD. At short telomeres Tel1 directs early replication and phosphorylates Rif1. PLoS Genet. 2014;10(10):e1004691.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  99. Aparicio OM, Stout AM, Bell SP. Differential assembly of Cdc45p and DNA polymerases at early and late origins of DNA replication. Proc Natl Acad Sci U S A. 1999;96(16):9130–5.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  100. Mantiero D, Mackenzie A, Donaldson A, Zegerman P. Limiting replication initiation factors execute the temporal programme of origin firing in budding yeast. EMBO J. 2011;30(23):4805–14.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  101. Tanaka T, Umemori T, Endo S, Muramatsu S, Kanemaki M, Kamimura Y, et al. Sld7, an Sld3-associated protein required for efficient chromosomal DNA replication in budding yeast. EMBO J. 2011;30(10):2019–30.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  102. Santocanale C, Diffley JF. A Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication. Nature. 1998;395(6702):615–8.

    Article  PubMed  CAS  Google Scholar 

  103. Shirahige K, Hori Y, Shiraishi K, Yamashita M, Takahashi K, Obuse C, et al. Regulation of DNA-replication origins during cell-cycle progression. Nature. 1998;395(6702):618–21.

    Article  PubMed  CAS  Google Scholar 

  104. Duncker BP, Shimada K, Tsai-Pflugfelder M, Pasero P, Gasser SM. An N-terminal domain of Dbf4p mediates interaction with both origin recognition complex (ORC) and Rad53p and can deregulate late origin firing. Proc Natl Acad Sci U S A. 2002;99(25):16087–92.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  105. Lopez-Mosqueda J, Maas NL, Jonsson ZO, Defazio-Eli LG, Wohlschlegel J, Toczyski DP. Damage-induced phosphorylation of Sld3 is important to block late origin firing. Nature. 2010;467(7314):479–83.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  106. Zegerman P, Diffley JFX. Checkpoint-dependent inhibition of DNA replication initiation by Sld3 and Dbf4 phosphorylation. Nature. 2010;467(7314):474–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  107. Müller CA, Nieduszynski CA. Conservation of replication timing reveals global and local regulation of replication origin activity. Genome Res. 2012;22(10):1953–62.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  108. Donley N, Thayer MJ. DNA replication timing, genome stability and cancer: late and/or delayed DNA replication timing is associated with increased genomic instability. Semin Cancer Biol. 2013;23(2):80–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  109. McCarroll RM, Fangman WL. Time of replication of yeast centromeres and telomeres. Cell. 1988;54(4):505–13.

    Article  PubMed  CAS  Google Scholar 

  110. Feng W, Bachant J, Collingwood D, Raghuraman MK, Brewer BJ. Centromere replication timing determines different forms of genomic instability in Saccharomyces cerevisiae checkpoint mutants during replication stress. Genetics. 2009;183(4):1249–60.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  111. Durkin SG, Glover TW. Chromosome fragile sites. Annu Rev Genet. 2007;41:169–92.

    Article  PubMed  CAS  Google Scholar 

  112. Letessier A, Millot GA, Koundrioukoff S, Lachagès A-M, Vogt N, Hansen RS, et al. Cell-type-specific replication initiation programs set fragility of the FRA3B fragile site. Nature. 2011;470(7332):120–3.

    Article  PubMed  CAS  Google Scholar 

  113. Ozeri-Galai E, Lebofsky R, Rahat A, Bester AC, Bensimon A, Kerem B. Failure of origin activation in response to fork stalling leads to chromosomal instability at fragile sites. Mol Cell. 2011;43(1):122–31.

    Article  PubMed  CAS  Google Scholar 

  114. Kunkel TA. Evolving views of DNA replication (in)fidelity. Cold Spring Harb Symp Quant Biol. 2009;74:91–101.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  115. Marsolier-Kergoat M-C, Goldar A. DNA replication induces compositional biases in yeast. Mol Biol Evol. 2012;29(3):893–904.

    Article  PubMed  CAS  Google Scholar 

  116. Agier N, Fischer G. The mutational profile of the yeast genome is shaped by replication. Mol Biol Evol. 2012;29(3):905–13.

    Article  PubMed  CAS  Google Scholar 

  117. Lang GI, Murray AW. Mutation rates across budding yeast chromosome VI are correlated with replication timing. Genome Biol Evol. 2011;3:799–811.

    Article  PubMed Central  PubMed  Google Scholar 

  118. Kumar D, Viberg J, Nilsson AK, Chabes A. Highly mutagenic and severely imbalanced dNTP pools can escape detection by the S-phase checkpoint. Nucleic Acids Res. 2010;38(12):3975–83.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  119. Blow JJ, Gillespie PJ, Francis D, Jackson DA. Replication origins in Xenopus egg extract Are 5-15 kilobases apart and are activated in clusters that fire at different times. J Cell Biol. 2001;152(1):15–25.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  120. Newman TJ, Mamun MA, Nieduszynski CA, Blow JJ. Replisome stall events have shaped the distribution of replication origins in the genomes of yeasts. Nucleic Acids Res. 2013;41(21):9705–18.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  121. Branzei D, Foiani M. Maintaining genome stability at the replication fork. Nat Rev Mol Cell Biol. 2010;11(3):208–19.

    Article  PubMed  CAS  Google Scholar 

  122. Calzada A, Hodgson B, Kanemaki M, Bueno A, Labib K. Molecular anatomy and regulation of a stable replisome at a paused eukaryotic DNA replication fork. Genes Dev. 2005;19(16):1905–19.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  123. Ivessa AS, Lenzmeier BA, Bessler JB, Goudsouzian LK, Schnakenberg SL, Zakian VA. The Saccharomyces cerevisiae helicase Rrm3p facilitates replication past nonhistone protein-DNA complexes. Mol Cell. 2003;12(6):1525–36.

    Article  PubMed  CAS  Google Scholar 

  124. Tourrière H, Versini G, Cordón-Preciado V, Alabert C, Pasero P. Mrc1 and Tof1 promote replication fork progression and recovery independently of Rad53. Mol Cell. 2005;19(5):699–706.

    Article  PubMed  CAS  Google Scholar 

  125. Blow JJ, Ge XQ, Jackson DA. How dormant origins promote complete genome replication. Trends Biochem Sci. 2011;36(8):405–14.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  126. Dershowitz A, Newlon CS. The effect on chromosome stability of deleting replication origins. Mol Cell Biol. 1993;13(1):391–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  127. Dershowitz A, Snyder M, Sbia M, Skurnick JH, Ong LY, Newlon CS. Linear derivatives of Saccharomyces cerevisiae chromosome III can be maintained in the absence of autonomously replicating sequence elements. Mol Cell Biol. 2007;27(13):4652–63.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  128. Maine GT, Sinha P, Tye BK. Mutants of S. cerevisiae defective in the maintenance of minichromosomes. Genetics. 1984;106(3):365–85.

    PubMed Central  PubMed  CAS  Google Scholar 

  129. Lengronne A, Schwob E. The yeast CDK inhibitor Sic1 prevents genomic instability by promoting replication origin licensing in late G(1). Mol Cell. 2002;9(5):1067–78.

    Article  PubMed  CAS  Google Scholar 

  130. Tanaka S, Diffley JFX. Deregulated G1-cyclin expression induces genomic instability by preventing efficient pre-RC formation. Genes Dev. 2002;16(20):2639–49.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  131. Ayuda-Durán P, Devesa F, Gomes F, Sequeira-Mendes J, Avila-Zarza C, Gómez M, et al. The CDK regulators Cdh1 and Sic1 promote efficient usage of DNA replication origins to prevent chromosomal instability at a chromosome arm. Nucleic Acids Res. 2014;42(11):7057–68.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arturo Calzada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Calzada, A. (2016). Choice of Origins and Replication Timing Control in Budding Yeast. In: Kaplan, D. (eds) The Initiation of DNA Replication in Eukaryotes. Springer, Cham. https://doi.org/10.1007/978-3-319-24696-3_2

Download citation

Publish with us

Policies and ethics