Skip to main content

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 39))

  • 837 Accesses

Abstract

Here we introduce a hierarchical approach to brain dynamics using Freeman K sets, including the hierarchy of \(K0\), \(KI\), \(KII\), and \(KIII\) sets Freeman, Erwin, Scholarpedia, 3(2):3238, 2008, [1]. They correspond to brain scales starting from the sub-mm range to the complete hemisphere, for details see supplementary sections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Freeman WJ, Erwin H (2008) Freeman K-set. Scholarpedia 3(2):3238

    Article  Google Scholar 

  2. Freeman WJ (2005) Origin, structure, and role of background EEG activity. Part 3. Neural frame classification. Clin Neurophysiol 116(5):1118–1129

    Article  Google Scholar 

  3. Ilin R, Kozma R (2006) Stability of coupled excitatory-inhibitory neural populations application to control multistable systems. Phys Lett A 360:66–83

    Article  Google Scholar 

  4. Puljic M, Kozma R (2008) Narrow-band oscillations in probabilistic cellular automata. Phys Rev E 78:026214

    Article  Google Scholar 

  5. Puljic M, Kozma R (2010) Broad-band oscillations by probabilistic cellular automata. J Cell Autom 5(6):491–507

    MathSciNet  MATH  Google Scholar 

  6. Kozma R, Puljic M (2013) Learning effects in neural oscillators. Cogn Comput 5(2):164–169

    Article  MATH  Google Scholar 

  7. Deng J, Elberger AJ (2001) The role of pioneer neurons in the development of mouse visual cortex and corpus callosum. Anat Embryol 204(6):437–453

    Article  Google Scholar 

  8. Morante-Oria J, Carleton A, Ortino B, Kremer EJ, Fairen A, Lledo P-M (2003) Subpallial origin of a population of projecting pioneer neurons during corticogenesis. PNAS 100(21):12468–12473

    Article  Google Scholar 

  9. Shatz CJ, Chun JJM, Luskin MB (1988) The role of the subplate in the development of the telencephalon. In: Jones EG, Peters A (eds) The cerebral cortex. The development of the cerebral cortex, Vol. III. Plenum, New York, pp 35–58

    Google Scholar 

  10. Allendoerfer KL, Shatz CJ (1994) The subplate, a transient neocortical structure: Its role in the development of connections between thalamus and cortex. Annu Rev Neurosci 17:185–218

    Article  Google Scholar 

  11. Paldino A, Harth E (1977) A computerized study of Golgi-impregnated axons in rat visual cortex. In: Lindsay RD (ed) Computer analysis of neuronal structures. Plenum, New York, pp 189–207

    Chapter  Google Scholar 

  12. Braitenberg V, Schuz A (1998) Cortex: statistics and geometry of neuronal connectivity, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  13. Bollobas B, Kozma R, Miklos D (eds) (2009) Handbook of large-scale random networks. Bolyai society mathematical studies. Springer, New York. ISBN: 978-3-540-69394-9

    Google Scholar 

  14. Freeman WJ, Kozma R, Bollobas B, Riordan O (2009) Chapter 7. Scale-free cortical planar network. In: Bollobas B, Kozma R, Miklos D (eds) Handbook of large-scale random networks. Series: Bolyai mathematical studies, vol 18. Springer, New York, pp. 277–324

    Google Scholar 

  15. Freeman WJ, Quian Quiroga R (2013) Imaging brain function with EEG: advanced temporal and spatial analysis of electroencephalographic and electrocorticographic signals. Springer, New York

    Book  Google Scholar 

  16. Zhou S, Mondragon RJ (2004) Accurately modeling the internet topology. Phys Rev E 70(6):066108

    Article  Google Scholar 

  17. Zamora-Lopez G, Zhou C, Kurths J (2011) Exploring brain function from anatomical connectivity. Front Neurosci, 5

    Google Scholar 

  18. Van den Heuvel MP, Sporns O (2011) Rich-club organization of the human connectome. J Neurosci 31(44):15775–15786

    Article  Google Scholar 

  19. Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 13(5):336–349

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Kozma .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kozma, R., Freeman, W.J. (2016). Critical Behavior in Hierarchical Neuropercolation Models of Cognition. In: Cognitive Phase Transitions in the Cerebral Cortex - Enhancing the Neuron Doctrine by Modeling Neural Fields. Studies in Systems, Decision and Control, vol 39. Springer, Cham. https://doi.org/10.1007/978-3-319-24406-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24406-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24404-4

  • Online ISBN: 978-3-319-24406-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics