Skip to main content

Part of the book series: Universitext ((UTX))

  • 1202 Accesses

Abstract

This chapter collects basic definitions, notions and also the simplest illustrating statements from the general theory of dynamical systems. We also describe all possible dynamical scenarios in 1D and 2D continuous systems and, by means of examples, discuss the principal bifurcation pictures. Our intention in the latter materials is to give the reader some feeling on what kind of dynamics can arise for low-dimensional (1 or 2) continuous time evolutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We recommend omitting of this remark at the first reading.

  2. 2.

    The Schauder theorem (see, e.g., Zeidler [231, Volume I, Chapter 2]) states that any continuous mapping from a convex compact set in a Banach space into itself has a fixed point.

  3. 3.

    If the space X is locally compact, then the second condition can be omitted. See, e.g., Sibirsky [212, Theorem 2.8].

  4. 4.

    There are examples showing that the property \( \mathop{\mathrm{dist}}\nolimits (v,S_{t}w) \rightarrow 0 \) as \( t \rightarrow +\infty \) does not imply the Lyapunov stability. See, e.g., Teschl [217, p. 168] and also Example 1.9.6 with μ = 0 in Section 1.9.

  5. 5.

    This means that \( \vert x(t)\vert \rightarrow \infty \) as t → T from the left.

  6. 6.

    In the Hamiltonian case (μ = 0) every nonzero trajectory γ starting in Δ is periodic, i.e., \( \gamma = \omega (\gamma ) = \alpha (\gamma ) \).

References

  1. R. Adams, Sobolev Spaces, Academic Press, New York, 1975.

    MATH  Google Scholar 

  2. R. Akhmerov, M. Kamenskii, A. Potapov, A. Rodkina, and B. Sadovskii, Measures of Noncompactness and Condensing Operators, Birkhäuser, Basel, 1992.

    Book  MATH  Google Scholar 

  3. E. Aragão-Costa, T. Caraballo, A. Carvalho, and J. Langa, Stability of gradient semigroups under perturbations, Nonlinearity, 24 (2011), 2099.

    Article  MATH  MathSciNet  Google Scholar 

  4. J.-P. Aubin, Une théorè de compacité, C.R. Acad. Sci. Paris, 256 (1963), 5042–5044.

    Google Scholar 

  5. J.-P. Aubin, Approximation of Elliptic Boundary-Value Problems, Wiley, New York, 1972.

    MATH  Google Scholar 

  6. G. Autuori, P. Pucci and M.C. Salvatori, Asymptotic stability for nonlinear Kirchhoff systems, Nonlinear Anal., RWA, 10 (2009), 889–909.

    Google Scholar 

  7. A. Babin, Global Attractors in PDE. In: B. Hasselblatt and A. Katok (Eds.), Handbook of Dynamical Systems, vol. 1B, Elsevier, Amsterdam, 2006, 983–1085.

    Google Scholar 

  8. A. Babin and M. Vishik, Unstable invariant sets of semigroups of nonlinear operators and their perturbations, Russian Math. Surveys, 41(4) 1986, 1–41.

    Article  MATH  MathSciNet  Google Scholar 

  9. A. Babin and M. Vishik, Attractors of Evolution Equations, North-Holland, Amsterdam, 1992.

    MATH  Google Scholar 

  10. D. Barbato, M. Barsanti, H. Bessaih and F. Flandoli, Some rigorous results on a stochastic Goy model, Journal of Statistical Physics, 125 (2006) 677–716.

    Article  MathSciNet  MATH  Google Scholar 

  11. N.N. Bautin and E.A. Leontovich, Methods and Examples of the Qualitative Analysis of Dynamical Systems in a Plane, Nauka, Moscow, 1990 (in Russian).

    MATH  Google Scholar 

  12. S. Bernstein, Sur une classe d’équations fonctionelles aux dérivées partielles, Bull. Acad. Sciences de l’URSS, Ser. Math. 4 (1940), 17–26.

    Google Scholar 

  13. J. Billoti and J. LaSalle, Periodic dissipative processes, Bull. Amer. Math. Soc., 6 (1971), 1082–1089.

    Article  MATH  Google Scholar 

  14. G.D. Birkhoff, Dynamical Systems, AMS Colloquium Publications, vol. 9, AMS, Providence, RI, 1927.

    Google Scholar 

  15. V.A. Boichenko, G.A. Leonov and V. Reitmann, Dimension Theory for Ordinary Differential Equations, Teubner, Wiesbaden, 2005.

    Book  MATH  Google Scholar 

  16. N. Bourbaki, General Topology: Chapters 5 –10, Berlin, Springer, 1998.

    MATH  Google Scholar 

  17. L. Boutet de Monvel, I. Chueshov and A. Rezounenko, Long-time behaviour of strong solutions of retarded nonlinear P.D.E.s, Commun. Partial Diff. Eqs., 22 (1997), 1453–1474.

    Google Scholar 

  18. N.F. Britton, Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model, SIAM. J. Appl. Math., 50 (1990), 1663–1688.

    Article  MATH  MathSciNet  Google Scholar 

  19. F. Bucci and I. Chueshov, Long-time dynamics of a coupled system of nonlinear wave and thermoelastic plate equations, Discr. Cont. Dyn. Sys., 22 (2008), 557–586.

    Article  MATH  MathSciNet  Google Scholar 

  20. F. Bucci, I. Chueshov and I. Lasiecka, Global attractor for a composite system of nonlinear wave and plate equations, Commun. Pure Appl. Anal., 6 (2007), 113–140.

    MATH  MathSciNet  Google Scholar 

  21. A. Busenberg, D. Fisher and M. Martelli, Better bounds for periodic solutions of differential equations in Banach spaces. Proc. Amer. Math. Soc., 98 (1986), 376–378.

    MATH  MathSciNet  Google Scholar 

  22. H. Cartan, Calculus Différentielles, Hermann, Paris, 1967.

    Google Scholar 

  23. A. Carvalho and J. Cholewa, Attractors for strongly damped wave equations with critical nonlinearities, Pacific J. Math., 207 (2002), 287–310.

    Article  MATH  MathSciNet  Google Scholar 

  24. A. Carvalho, J. Cholewa and T. Dlotko, Strongly damped wave problems: bootstrapping and regularity of solutions. J. Differential Equations, 244 (2008), 2310–2333.

    Article  MATH  MathSciNet  Google Scholar 

  25. A. Carvalho and J. Langa, An extension of the concept of gradient semigroups which is stable under perturbation, J. Diff. Equations, 246 (2009), 2646–2668.

    Article  MATH  MathSciNet  Google Scholar 

  26. A. Carvalho, J. Langa and J. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, New York, Springer, 2013.

    Book  MATH  Google Scholar 

  27. M.M. Cavalcanti, V.N.D. Cavalcanti, J.S.P. Filho and J.A. Soriano, Existence and exponential decay for a Kirchhoff–Carrier model with viscosity, J. Math. Anal. Appl., 226 (1998), 20–40.

    Article  MathSciNet  MATH  Google Scholar 

  28. S. Ceron and O. Lopes, α-contractions and attractors for dissipative semilinear hyperbolic equations and systems, Ann. Math. Pura Appl. IV, 160 (1991), 193–206.

    Google Scholar 

  29. V. Chepyzhov and A. Ilyin, On the fractal dimension of invariant sets: applications to the Navier-Stokes equations, Discrete Contin. Dyn. Syst., 10 (2004), 117–136.

    MATH  MathSciNet  Google Scholar 

  30. V. Chepyzhov, E. Titi and M. Vishik, On the convergence of solutions of the Leray-α model to the trajectory attractor of the 3D Navier-Stokes system, Discrete Contin. Dyn. Syst., 17 (2007), 481–500.

    MATH  MathSciNet  Google Scholar 

  31. V.V. Chepyzhov and M.I. Vishik, Attractors for Equations of Mathematical Physics, AMS, Providence, RI, 2002.

    MATH  Google Scholar 

  32. A. Cheskidov, Global attractors of evolutionary systems, J. Dyn. Dif. Equations, 21 (2009), 249–268.

    Article  MATH  MathSciNet  Google Scholar 

  33. A. Cheskidov and C. Foias, On global attractors of the 3D Navier-Stokes equations, J. Dif. Equations, 231 (2006), 714–754.

    Article  MATH  MathSciNet  Google Scholar 

  34. A. Cheskidov, D. Holm, E. Olson and E. Titi, On a Leray-α model of turbulence, Proc. R. Soc. Lond. Ser. A, 461 (2005), 629–649.

    Article  MATH  MathSciNet  Google Scholar 

  35. J.W. Cholewa and T. Dlotko, Strongly damped wave equation in uniform spaces, Nonlinear Anal., TMA, 64 (2006) 174–187.

    Google Scholar 

  36. I. Chueshov, On a system of equations with delay that arises in aero-elasticity, J. Soviet Math., 58 (1992), no. 4, 385–390.

    Article  MathSciNet  Google Scholar 

  37. I. Chueshov, On the finiteness of the number of determining elements for von Karman evolution equations, Math. Meth. Appl. Sci., 20 (1997), 855–865.

    Article  MATH  MathSciNet  Google Scholar 

  38. I. Chueshov, Theory of functionals that uniquely determine asymptotic dynamics of infinite-dimensional dissipative systems, Russian Math. Surv., 53 (1998), 731–776.

    Article  MATH  MathSciNet  Google Scholar 

  39. I. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems, Acta, Kharkov, 1999, in Russian; English translation: Acta, Kharkov, 2002; see also http://www.emis.de/monographs/Chueshov/

  40. I. Chueshov, Global attractors for a class of Kirchhoff wave models with a structural nonlinear damping, J. Abstract Diff. Equations and Applications, 1 (2010), 86–106.

    MATH  MathSciNet  Google Scholar 

  41. I. Chueshov, A global attractor for a fluid-plate interaction model accounting only for longitudinal deformations of the plate, Math. Meth. Appl. Sci., 34 (2011), 1801–1812.

    MATH  MathSciNet  Google Scholar 

  42. I. Chueshov, Long-time dynamics of Kirchhoff wave models with strong nonlinear damping, J. Diff. Equations, 252 (2012), 1229–1262.

    Article  MATH  MathSciNet  Google Scholar 

  43. I. Chueshov, Quantum Zakharov model in a bounded domain, Zeitschrift Angew. Math. Phys., 64 (2013), 967–989.

    Article  MATH  MathSciNet  Google Scholar 

  44. I. Chueshov, Discrete data assimilation via Ladyzhenskaya squeezing property in the 3D viscous primitive equations, Preprint arXiv:1308.1570 (August 2013).

    Google Scholar 

  45. I. Chueshov, Dynamics of a nonlinear elastic plate interacting with a linearized compressible viscous fluid, Nonlinear Anal., TMA, 95 (2014), 650–665.

    Google Scholar 

  46. I. Chueshov, Interaction of an elastic plate with a linearized inviscid incompressible fluid, Commun. Pure Appl. Anal., 13 (2014), 1759–1778.

    Article  MATH  MathSciNet  Google Scholar 

  47. I. Chueshov, M. Eller and I. Lasiecka, On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation, Commun. Partial Diff. Eqs., 27 (2002), 1901–1951.

    Article  MATH  MathSciNet  Google Scholar 

  48. I. Chueshov, M. Eller and I. Lasiecka, Finite dimensionality of the attractor for a semilinear wave equation with nonlinear boundary dissipation, Commun. Partial Diff. Eqs., 29 (2004), 1847–1976.

    Article  MATH  MathSciNet  Google Scholar 

  49. I. Chueshov and S. Kolbasin, Plate models with state-dependent damping coefficient and their quasi-static limits, Nonlinear Anal., TMA, 73 (2010), 1626–1644.

    Google Scholar 

  50. I. Chueshov and S. Kolbasin, Long-time dynamics in plate models with strong nonlinear damping, Commun. Pure Appl. Anal., 11 (2012), 659–674.

    Article  MATH  MathSciNet  Google Scholar 

  51. I. Chueshov and I. Lasiecka, Attractors for second order evolution equations, J. Dynam. Diff. Eqs., 16 (2004), 469–512.

    Article  MATH  MathSciNet  Google Scholar 

  52. I. Chueshov and I. Lasiecka, Global attractors for von Karman evolutions with a nonlinear boundary dissipation, J. Diff. Equations, 198 (2004), 196–221.

    Article  MATH  MathSciNet  Google Scholar 

  53. I. Chueshov and I. Lasiecka, Kolmogorov’s \( \,\varepsilon \)-entropy for a class of invariant sets and dimension of global attractors for second order in time evolution equations with nonlinear damping. In: Control Theory of Partial Differential Equations, O. Imanuvilov et al. (Eds.), A Series of Lectures in Pure and Applied Mathematics, vol. 242, Chapman & Hall/CRC, Boca Raton, FL, 2005, 51–69.

    Google Scholar 

  54. I. Chueshov and I. Lasiecka, Global attractors for Mindlin–Timoshenko plates and for their Kirchhoff limits, Milan J. Math., 74 (2006), 117–138.

    Article  MATH  MathSciNet  Google Scholar 

  55. I. Chueshov and I. Lasiecka, Long time dynamics of semilinear wave equation with nonlinear interior-boundary damping and sources of critical exponents. In Control Methods in PDE - Dynamical Systems, F. Ancona et al. (Eds.), Contemporary Mathematics, vol. 426, AMS, Providence, RI, 2007, 153–193.

    Google Scholar 

  56. I. Chueshov and I. Lasiecka, Long-Time Behavior of Second Order Evolution Equations with Nonlinear Damping, Memoirs of AMS, vol. 195, no. 912, AMS, Providence, RI, 2008.

    Google Scholar 

  57. I. Chueshov and I. Lasiecka, Attractors and long time behavior of von Karman thermoelastic plates, Appl. Math. Optim., 58 (2008), 195–241.

    Article  MATH  MathSciNet  Google Scholar 

  58. I. Chueshov and I. Lasiecka, Von Karman Evolution Equations, Springer, New York, 2010.

    Book  MATH  Google Scholar 

  59. I. Chueshov and I. Lasiecka, On global attractor for 2D Kirchhoff-Boussinesq model with supercritical nonlinearity, Commun. Partial Dif. Eqs., 36 (2011), 67–99.

    Article  MATH  MathSciNet  Google Scholar 

  60. I. Chueshov and I. Lasiecka, Well-posedness and long time behavior in nonlinear dissipative hyperbolic-like evolutions with critical exponents. In: Nonlinear Hyperbolic PDEs, Dispersive and Transport Equations, HCDTE Lecture Notes, Part I, G. Alberti et al. (Eds.), AIMS on Applied Mathematics, vol. 6, AIMS, Springfield, 2013, 1–96.

    Google Scholar 

  61. I. Chueshov, I. Lasiecka and D. Toundykov, Long-term dynamics of semilinear wave equation with nonlinear localized interior damping and a source term of critical exponent, Discr. Cont. Dyn. Sys., 20 (2008), 459–509.

    MATH  MathSciNet  Google Scholar 

  62. I. Chueshov, I. Lasiecka and D. Toundykov, Global attractor for a wave equation with nonlinear localized boundary damping and a source term of critical exponent, J. Dynam. Diff. Eqs., 21 (2009), 269–314.

    Article  MATH  MathSciNet  Google Scholar 

  63. I. Chueshov, I. Lasiecka and J.T. Webster, Attractors for delayed, non-rotational von Karman plates with applications to flow-structure interactions without any damping, Commun. Partial Dif. Eqs., 39, (2014), 1965–1997.

    Article  MATH  MathSciNet  Google Scholar 

  64. I. Chueshov, I. Lasiecka and J.T. Webster, Flow-plate interactions: well-posedness and long-time behavior, Discrete Continuous Dynamical Systems Ser. S, 7 (2014), 925–965.

    Article  MATH  MathSciNet  Google Scholar 

  65. I. Chueshov and A. Rezounenko, Global attractors for a class of retarded quasilinear partial differential equations, C. R. Acad. Sci. Paris, Ser. I, 321 (1995), 607–612.

    Google Scholar 

  66. I. Chueshov and A. Rezounenko, Dynamics of second order in time evolution equations with state-dependent delay, Nonlinear Anal. TMA, 123–124 (2015) 126–149.

    Article  MathSciNet  MATH  Google Scholar 

  67. I. Chueshov and A. Rezounenko, Finite-dimensional global attractors for parabolic nonlinear equations with state-dependent delay. Commun. Pure Appl. Anal., 14 (2015), 1685–1704.

    Article  MathSciNet  MATH  Google Scholar 

  68. I. Chueshov and I. Ryzhkova, A global attractor for a fluid-plate interaction model, Commun. Pure Appl. Anal., 12 (2013), 1635–1656.

    Article  MATH  MathSciNet  Google Scholar 

  69. I. Chueshov and I. Ryzhkova, Unsteady interaction of a viscous fluid with an elastic shell modeled by full von Karman equations. J. Diff. Equations, 254 (2013), 1833–1862.

    Article  MATH  MathSciNet  Google Scholar 

  70. I. Chueshov and A. Shcherbina, On 2D Zakharov system in a bounded domain, Diff. Integral Eqs., 18 (2005), 781–812.

    MATH  MathSciNet  Google Scholar 

  71. I. Chueshov and A. Shcherbina, Semi-weak well-posedness and attractors for 2D Schrödinger-Boussinesq equations, Evolution Equations and Control Theory, 1 (2012), 57–80.

    Article  MATH  MathSciNet  Google Scholar 

  72. P. Ciarlet, Mathematical Elasticity, Vol. III: Theory of Shells, North-Holland, Amsterdam, 2000.

    Google Scholar 

  73. B. Cockburn, D.A. Jones and E. Titi, Determining degrees of freedom for nonlinear dissipative systems, C.R. Acad. Sci. Paris, Ser. I, 321 (1995), 563–568.

    Google Scholar 

  74. B. Cockburn, D.A. Jones and E. Titi, Estimating the number of asymptotic degrees of freedom for nonlinear dissipative systems, Math. Comp., 66 (1997), 1073–1087.

    Article  MATH  MathSciNet  Google Scholar 

  75. E.A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955.

    MATH  Google Scholar 

  76. P. Constantin, C. Doering and E. Titi, Rigorous estimates of small scales in turbulent flows, J. Math. Phys., (1996), 6152–6156.

    Google Scholar 

  77. E Constantin and C. Foias, Global Lyapunov exponents, Kaplan-Yorke formulas and the dimension of the attractors for 2D Navier-Stokes equations, Comm. Pure Appl. Math., 38 (1985), 1–27.

    Google Scholar 

  78. P. Constantin and C. Foias, Navier-Stokes Equations, University of Chicago Press, Chicago, 1988.

    MATH  Google Scholar 

  79. P. Constantin, C. Foias and R. Temam, Attractors Representing Turbulent Flows, Memoirs of AMS, vol. 53, no. 314, AMS, Providence, RI, 1985.

    Google Scholar 

  80. P. Constantin, B. Levant and E.S. Titi, Analytic study of the shell model of turbulence, Physica D 219 (2006), 120–141.

    Article  MATH  MathSciNet  Google Scholar 

  81. K.L. Cooke and Z. Grossman, Discrete delay, distributed delay and stability switches, J. Math. Anal. Appl., 86 (1982), 592–627.

    Article  MATH  MathSciNet  Google Scholar 

  82. Data Assimilation. Making Sense of Observations (Eds: W. Lahoz, B. Khattatov, R. Ménard), Springer, New York, 2010.

    Google Scholar 

  83. L. De, The critical forms of the attractors for semigroups and the existence of critical attractors, Proc. Royal Society of London, Ser. A, 454 (1998), 2157–2171.

    Google Scholar 

  84. O. Diekmann, S. van Gils, S. Verduyn Lunel and H.-O. Walther, Delay Equations: Functional, Complex, and Nonlinear Analysis, Springer-Verlag, New York, 1995.

    Book  MATH  Google Scholar 

  85. J. Dieudonné, Foundations of Modern Analysis, Academic Press, New York, 1960.

    MATH  Google Scholar 

  86. R.D. Driver, A two-body problem of classical electrodynamics: the one-dimensional case, Ann. Physics, 21 (1963), 122–142.

    Article  MATH  MathSciNet  Google Scholar 

  87. Yu. A. Dubinskiï, Weak convergence in nonlinear elliptic and parabolic equtions, Math. USSR Sbornik 67(4) (1965), 609–642.

    Google Scholar 

  88. N. Dunford and J. Schwartz, Linear Operators, Part I: General Theory, Interscience, New York, 1958.

    MATH  Google Scholar 

  89. N. Dunford and J. Schwartz, Linear Operators, Part II: Spectral Theory, Interscience, New York, 1963.

    MATH  Google Scholar 

  90. G. Duvaut and J.L. Lions, Inéquations en thermoélasticité et magnéto hydrodynamique, Arch. Rational Mech. Anal. 46 (1972), 241–279.

    Article  MATH  MathSciNet  Google Scholar 

  91. M. Efendiev, A. Miranville and S. Zelik, Exponential attractors for nonlinear reaction-diffusion systems in \( \mathbb{R}^{n} \), C.R. Acad. Sci. Paris, Ser. I 330 (2000), 713–718.

    Google Scholar 

  92. A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations, Research in Appl. Math. 37, Masson, Paris, 1994.

    Google Scholar 

  93. K. Engel and R.Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer, New York, 2000.

    Google Scholar 

  94. P. Fabrie, C. Galusinski, A. Miranville and S. Zelik, Uniform exponential attractors for singularly perturbed damped wave equation, Discr. Cont. Dyn. Syst., 10 (2004), 211–238.

    Article  MATH  MathSciNet  Google Scholar 

  95. K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, Wiley, Chichester, 1990.

    MATH  Google Scholar 

  96. X. Fan and S. Zhou, Kernel sections for non-autonomous strongly damped wave equations of non-degenerate Kirchhoff-type, Appl. Math. Computation, 158 (2004), 253–266.

    Article  MATH  MathSciNet  Google Scholar 

  97. M. Farkas, Periodic Motions, Springer, New York, 1994.

    Book  MATH  Google Scholar 

  98. T. Fastovska, Upper semicontinuous attractor for 2D Mindlin–Timoshenko thermoelastic model with memory, Commun. Pure Appl. Anal., 6 (2007), 83–101.

    Article  MATH  MathSciNet  Google Scholar 

  99. T. Fastovska, Upper semicontinuous attractors for a 2D Mindlin–Timoshenko thermo-viscoelastic model with memory, Nonlinear Anal., TMA, 71 (2009) 4833–4851.

    Google Scholar 

  100. E. Feireisl and D. Pražák, Asymptotic Behavior of Dynamical Systems in Fluid Mechanics, Springfield, AIMS, 2010.

    MATH  Google Scholar 

  101. W.E. Fitzgibbon, Semilinear functional differential equations in Banach space, J. Differential Equations, 29 (1978) 1–14.

    Article  MATH  MathSciNet  Google Scholar 

  102. C. Foias and E. Olson, Finite fractal dimension and Hölder–Lipschitz parametrization, Indiana Univ. Math. J., 45 (1996), 603–616.

    Article  MATH  MathSciNet  Google Scholar 

  103. C. Foias, O. Manley and R. Temam, Attractors for the Bénard problem: existence and physical bounds on their fractal dimension. Nonlinear Analysis, 11 (1987), 939–967.

    Article  MATH  MathSciNet  Google Scholar 

  104. C. Foias, O. Manley, R. Temam and Y.M. Treve, Asymptotic analysis of the Navier–Stokes equations, Physica D, 9 (1983), 157–188.

    Article  MATH  MathSciNet  Google Scholar 

  105. C. Foias and G. Prodi, Sur le comportement global des solutions non stationnaires des equations de Navier-Stokes en dimension deux, Rend. Sem. Mat. Univ. Padova, 36 (1967), 1–34.

    MathSciNet  MATH  Google Scholar 

  106. C. Foias, R. Rosa, and R. Temam, Topological properties of the weak global attractor of the three-dimensional Navier-Stokes equations, Discrete Contin. Dyn. Syst., 27 (2010), 611–1631.

    Article  MathSciNet  MATH  Google Scholar 

  107. C. Foias and R. Temam, Determination of solutions of the Navier–Stokes equations by a set of nodal values, Math. Comp., 43 (1984), 117–133.

    Article  MATH  MathSciNet  Google Scholar 

  108. C. Foias and E.S. Titi, Determining nodes, finite difference schemes and inertial manifolds, Nonlinearity, 4 (1991), 135–153.

    Article  MATH  MathSciNet  Google Scholar 

  109. G.P. Galdi and M. Padula, A new approach to energy theory in the stability of fluid motion, Arch. Rational Mech. Anal., 110 (1990), 187–286.

    Article  MATH  MathSciNet  Google Scholar 

  110. M.J. Garrido-Atienza and J. Real, Existence and uniqueness of solutions for delay evolution equations of second order in time, J. Math. Anal. Appl., 283 (2003), 582–609.

    Article  MATH  MathSciNet  Google Scholar 

  111. S. Gatti and V. Pata, A one-dimensional wave equation with nonlinear damping, Glasgow Math. J., 48 (2006), 419–430.

    Article  MATH  MathSciNet  Google Scholar 

  112. M. Ghisi, Global solutions for dissipative Kirchhoff strings with non-Lipschitz nonlinear term, J. Differential Equations, 230 (2006), 128–139.

    Article  MATH  MathSciNet  Google Scholar 

  113. S. Gourley, J. So and J. Wu, Non-locality of reaction–diffusion equations induced by delay: biological modeling and nonlinear dynamics. In: D.V. Anosov, A. Skubachevskii (Eds.), Contemporary Mathematics, Thematic Surveys, Kluwer, Plenum, Dordrecht, New York, 2003, 84–120.

    Google Scholar 

  114. J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, New York, 1983.

    Book  MATH  Google Scholar 

  115. J.K. Hale, Theory of Functional Differential Equations, 2nd ed., Springer, New York, 1977.

    Book  MATH  Google Scholar 

  116. J.K. Hale, Asymptotic Behavior of Dissipative Systems, AMS, Providence, RI, 1988.

    MATH  Google Scholar 

  117. J. Hale and H. Kocak. Dynamics and Bifurcations. Springer, New York, 1991.

    Book  MATH  Google Scholar 

  118. A. Haraux, Two remarks on dissipative hyperbolic problems. In: Research Notes in Mathematics, Pitman, 1985, pp. 161–179.

    Google Scholar 

  119. A. Haraux, Semilinear Hyperbolic Problems in Bounded Domains, Mathematical Reports, vol. 3, Harwood Gordon Breach, New York, 1987.

    MATH  Google Scholar 

  120. P. Hartman, Ordinary Differential Equations, 2nd ed., SIAM, Philadelphia, 2002.

    Book  MATH  Google Scholar 

  121. F. Hartung, T. Krisztin, H.-O. Walther and J. Wu, Functional differential equations with state-dependent delays: Theory and applications. In: A. Canada, P. Drabek, and A. Fonda (Eds.) Handbook of Differential Equations, Ordinary Differential Equations, vol. 3, Elsevier, North Holland, 2006, pp. 435–545.

    Chapter  Google Scholar 

  122. K. Hayden, E. Olson and E.S. Titi, Discrete data assimilation in the Lorenz and 2D Navier-Stokes equations, Physica D, 240 (2011), 1416–1425.

    Google Scholar 

  123. D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer, New York, 1981.

    MATH  Google Scholar 

  124. L. Hoang, E. Olson and J. Robinson, On the continuity of global attractors, Preprint ArXiv:1407.3306 (July 2014).

    Google Scholar 

  125. B.R. Hunt and V.Y. Kaloshin, Regularity of embeddings of infinite-dimensional fractal sets into finite-dimensional spaces.Nonlinearity, 12 (1999), 1263–1275.

    Google Scholar 

  126. D.A. Jones and E.S. Titi, Determination of the solutions of the Navier-Stokes equations by finite volume elements, Physica D, 60 (1992), 165–174.

    Article  MATH  MathSciNet  Google Scholar 

  127. D.A. Jones and E.S. Titi, Upper bounds on the number of determining modes, nodes and volume elements for the Navier-Stokes equations, Indiana Univ. Math. J., 42 (1993), 875–887.

    Article  MATH  MathSciNet  Google Scholar 

  128. V. Kalantarov and S. Zelik, Finite-dimensional attractors for the quasi-linear strongly-damped wave equation, J. Differential Equations, 247 (2009), 1120–1155.

    Article  MATH  MathSciNet  Google Scholar 

  129. E. Kalnay, Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, Cambridge, UK, 2003.

    Google Scholar 

  130. L.V. Kapitansky and I.N. Kostin, Attractors of nonlinear evolution equations and their approximations,Leningrad Math. J., 2 (1991), 97–117.

    Google Scholar 

  131. A.G. Kartsatos and L.P. Markov, An L 2-approach to second-order nonlinear functional evolutions involving m-accretive operators in Banach spaces, Differential Integral Equations, 14 (2001), 833–866.

    MATH  MathSciNet  Google Scholar 

  132. A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, Cambridge, UK, 1996.

    MATH  Google Scholar 

  133. N.H. Katz and N. Pavlović, Finite time blow-up for a dyadic model of the Euler equations, Trans. Amer. Math. Soc. 357 (2005), 695–708.

    Article  MATH  MathSciNet  Google Scholar 

  134. A.K. Khanmamedov, Global attractors for von Karman equations with nonlinear dissipation, J. Math. Anal. Appl., 318 (2006), 92–101.

    Article  MATH  MathSciNet  Google Scholar 

  135. P. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems. AMS, Providence, RI, 2011.

    Book  MATH  Google Scholar 

  136. N.N. Krasovskii, Stability of Motion: Applications of Lyapunov’s Second Method to Differential Systems and Equations with Delay. Stanford University Press, 1963.

    Google Scholar 

  137. T. Krisztin and O. Arino, The two-dimensional attractor of a differential equation with state-dependent delay, J. Dynam. Diff. Eqs., 13 (2001) 453–522.

    Article  MATH  MathSciNet  Google Scholar 

  138. K. Kunisch and W. Schappacher, Necessary conditions for partial differential equations with delay to generate C 0-semigroups, J. Differential Equations, 50 (1983), 49–79.

    Article  MATH  MathSciNet  Google Scholar 

  139. Yu. Kuznetsov, Elements of Applied Bifurcation Theory, Springer, New York, 1998.

    MATH  Google Scholar 

  140. O. Ladyzhenskaya, A dynamical system generated by the Navier–Stokes equations, J. Soviet Math., 3(4) (1975), 458–479.

    Article  MATH  Google Scholar 

  141. O. Ladyzhenskaya, Estimates for the fractal dimension and number of deterministic modes for invariant sets of dynamical systems, J. Soviet Math., 49 (1990), 1186–1201.

    Article  MATH  MathSciNet  Google Scholar 

  142. O. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations, Cambridge University Press, Cambridge, UK, 1991.

    Book  MATH  Google Scholar 

  143. O. Ladyzhenskaya and V. Solonnikov, Solution of some nonstationary magnetohydrodynamical problems for incompressible fluid, Trudy Steklov Math. Inst. 59 (1960), 115–173; in Russian.

    Google Scholar 

  144. I. Lasiecka and R. Triggiani, Exact null controllability of structurally damped and thermo-elastic parabolic models, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei, Mat. Appl., 9 (1998), 43–69.

    Google Scholar 

  145. I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations, Cambridge University Press, Cambridge, UK, 2000.

    Book  MATH  Google Scholar 

  146. A. Lasota and J. Yorke. The generic property of existence of solutions of differential equations in Banach space, J. Diff. Eqs., 13 (1973), 1–12.

    Article  MATH  MathSciNet  Google Scholar 

  147. P. Lazo, Global solutions for a nonlinear wave equation, Appl. Math. Computation, 200 (2008), 596–601.

    Article  MATH  MathSciNet  Google Scholar 

  148. S. Lefschetz, Differential Equations: Geometric Theory, Dover New York, 1977.

    Google Scholar 

  149. J. Leray, Essai sur le mouvement d’un fluide visqueux emplissant l’espace, Acta Math., 63 (1934), 193–248.

    Article  MATH  MathSciNet  Google Scholar 

  150. N. Levinson, Transformation theory of non-linear differential equations of the second order, Annals of Mathematics, 45 (1944), 723–737.

    Article  MATH  MathSciNet  Google Scholar 

  151. J.L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris, 1969.

    MATH  Google Scholar 

  152. J.L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, vol. 1. Springer, New York, 1972.

    Google Scholar 

  153. J.L. Lions, On some questions in boundary value problems in mathematical physics. In: International Symposium on Continuum Mechanics and Partial Differential Equations, Rio de Janeiro, 1977. North-Holland, Amsterdam, 1978.

    Google Scholar 

  154. A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems. Birkhäuser, Basel, 1995.

    Book  MATH  Google Scholar 

  155. V.S. Lvov, E. Podivilov, A. Pomyalov, I. Procaccia, and D. Vandembroucq, Improved shell model of turbulence, Physical Review E, 58 (1998), 1811–1822.

    Article  MathSciNet  Google Scholar 

  156. Q. Ma, S. Wang and C. Zhong, Necessary and sufficient conditions for the existence of global attractors for semigroups and applications, Indiana Univ. Math. J., 51 (2002), 1541–1559.

    Article  MATH  MathSciNet  Google Scholar 

  157. J. Málek and J. Nečas, A finite dimensional attractor for three dimensional flow of incompressible fluids, J. Differential Equations, 127 (1996), 498–518.

    Article  MATH  MathSciNet  Google Scholar 

  158. J. Málek and D. Pražák, Large time behavior via the method of l-trajectories, J. Differential Equations, 181 (2002), 243–279.

    Article  MATH  MathSciNet  Google Scholar 

  159. J. Mallet-Paret, Negatively invariant sets of compact maps and an extension of a theorem of Cartwright, J. Differential Equations, 22 (1976), 331–348.

    Article  MATH  MathSciNet  Google Scholar 

  160. J. Mallet-Paret, R.D. Nussbaum and P. Paraskevopoulos, Periodic solutions for functional-differential equations with multiple state-dependent time lags, Topol. Methods Nonlinear Anal., 3 (1994), 101–162.

    MATH  MathSciNet  Google Scholar 

  161. R. Mañé, On the dimension of the compact invariant sets of certain nonlinear maps, Dynamical Systems and Turbulence, Warwick 1980 (Coventry, 1979/1980), Lecture Notes in Math., vol. 898, Springer, Berlin (1981), 230–242.

    Google Scholar 

  162. T. Matsuyama and R. Ikehata, On global solution and energy decay for the wave equation of Kirchhoff type with nonlinear damping term, J. Math. Anal. Appl., 204 (1996), 729–753.

    Article  MATH  MathSciNet  Google Scholar 

  163. L.A. Medeiros, J.L. Ferrel and S.B. de Menezes, Vibration of elastic strings: Mathematical Aspects, Part One, J. Comp. Analysis Appl., 4 (2002), 91–127.

    MATH  Google Scholar 

  164. L.A. Medeiros and M. Milla Miranda, On a nonlinear wave equation with damping, Revista Mat. Univ. Complutense Madrid, 3 (1990), 213–231.

    MATH  MathSciNet  Google Scholar 

  165. J.-L. Menaldi and S. Sritharan, Stochastic 2-D Navier-Stokes equation, Appl. Math. Optimization, 46 (2002), 31–54.

    Article  MATH  MathSciNet  Google Scholar 

  166. A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains. In: C.M. Dafermos, and M. Pokorny (Eds.), Handbook of Differential Equations: Evolutionary Equations, vol. 4, Elsevier, Amsterdam, 2008, pp. 103–200.

    Google Scholar 

  167. R. Moreau, Magnetohydrodynamics, Kluwer, Dordrecht, 1990.

    Book  MATH  Google Scholar 

  168. O. Naboka, On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping, Commun. Pure Appl. Anal., 8 (2009), 1933–1956.

    Article  MATH  MathSciNet  Google Scholar 

  169. M. Nakao, An attractor for a nonlinear dissipative wave equation of Kirchhoff type, J. Math. Anal. Appl., 353 (2009), 652–659.

    Article  MATH  MathSciNet  Google Scholar 

  170. M. Nakao and Y. Zhijian, Global attractors for some quasi-linear wave equations with a strong dissipation, Adv. Math. Sci. Appl., 17 (2007), 89–105.

    MATH  MathSciNet  Google Scholar 

  171. V.V. Nemytskii and V.V. Stepanov, Qualitative Theory of Differential Equations, Princeton University Press, NJ, 1960.

    MATH  Google Scholar 

  172. M. Nieuwenhuis, J. Robinson, and S. Steinerberger, Minimal periods for ordinary differential equations in strictly convex Banach spaces and explicit bounds for some l p -spaces, J. Differential Equations, 256 (2014), 2846–2857.

    Article  MATH  MathSciNet  Google Scholar 

  173. K. Ohkitani and M. Yamada, Temporal intermittency in the energy cascade process and local Lyapunov analysis in fully developed model of turbulence, Prog. Theor. Phys., 89 (1989), 329–341.

    Article  MathSciNet  Google Scholar 

  174. K. Ono, Global existence, decay, and blow up of solutions for some mildly degenerate nonlinear Kirchhoff strings, J. Differential Equations, 137 (1997), 273–301.

    Article  MATH  MathSciNet  Google Scholar 

  175. K. Ono, On global existence, asymptotic stability and blowing up of solutions for some degenerate non-linear wave equations of Kirchhoff type with a strong dissipation, Math. Methods Appl. Sci., 20 (1997), 151–177.

    Article  MATH  MathSciNet  Google Scholar 

  176. W. Orlicz, Zur Theorie der Differentialgleichung y′ = f(t, y), Bull. de Acad. Pol. des Sciences, Ser. A, 1932, 221–228.

    Google Scholar 

  177. V. Pata and S. Zelik, Smooth attractors for strongly damped wave equations, Nonlinearity, 19 (2006), 1495–1506.

    Article  MATH  MathSciNet  Google Scholar 

  178. V. Pata and S. Zelik, Global and exponential attractors for 3-D wave equations with displacement dependent damping, Math. Meth. Appl. Sci., 29 (2006), 1291–1306.

    Article  MATH  MathSciNet  Google Scholar 

  179. V. Pata and S. Zelik, A result on the existence of global attractors for semigroups of closed operators, Commun. Pure. Appl. Anal., 6 (2007) 481–486.

    Article  MATH  MathSciNet  Google Scholar 

  180. V. Pata and S. Zelik, Attractors and their regularity for 2-D wave equations with nonlinear damping, Adv. Math. Sci. Appl., 17 (2007), 225–237.

    MATH  MathSciNet  Google Scholar 

  181. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1986.

    MATH  Google Scholar 

  182. V.A. Pliss, Nonlocal Problems of the Theory of Oscillations, Academic Press, New York, 1966.

    MATH  Google Scholar 

  183. V.A. Pliss, Integral Sets of Periodic Systems of Differential Equations, Nauka, Moscow, 1977 (in Russian).

    MATH  Google Scholar 

  184. S.I. Pohozhaev, On a class of quasilinear hyperbolic equations, Math. USSR, Sbornik, 25 (1975), no. 1, 145–158.

    Google Scholar 

  185. E Poláček, Parabolic equations: Asymptotic behavior and dynamics on invariant manifolds. In: B. Fiedler (Ed.), Handbook of Dynamical Systems, vol. 2, Elsevier, Amsterdam, 2002, 835–883.

    Google Scholar 

  186. M. Potomkin, Asymptotic behavior of thermoviscoelastic Berger plate, Commun. Pure Appl. Anal., 9 (2010), 161–192.

    Article  MATH  MathSciNet  Google Scholar 

  187. D. Pra\( \check{\mathrm{z}} \)ák, On finite fractal dimension of the global attractor for the wave equation with nonlinear damping, J. Dyn. Diff. Eqs., 14 (2002), 764–776.

    Google Scholar 

  188. G. Raugel, Global attractors in partial differential equations. In: B. Fiedler (Ed.), Handbook of Dynamical Systems, vol. 2, Elsevier, Amsterdam, 2002, 885–982.

    Google Scholar 

  189. R. Reissing, G. Sansone and R. Conti, Qualitative Theory of Ordinary Differential Equations, Nauka, Moscow, 1974 (in Russian).

    Google Scholar 

  190. A.V. Rezounenko, Partial differential equations with discrete distributed state-dependent delays, J. Math Anal. and Appl., 326 (2007), 1031–1045.

    Article  MATH  MathSciNet  Google Scholar 

  191. A.V. Rezounenko, Differential equations with discrete state-dependent delay: uniqueness and well-posedness in the space of continuous functions, Nonlinear Anal., TMA, 70 (2009), 3978–3986.

    Google Scholar 

  192. A.V. Rezounenko, Non-linear partial differential equations with discrete state-dependent delays in a metric space, Nonlinear Anal., TMA, 73 (2010), 1707–1714.

    Google Scholar 

  193. A.V. Rezounenko, A condition on delay for differential equations with discrete state-dependent delay, J. Math Anal. and Appl., 385 (2012), 506–516.

    Article  MATH  MathSciNet  Google Scholar 

  194. A.V. Rezounenko and P. Zagalak, Non-local PDEs with discrete state-dependent delays: well-posedness in a metric space, Discrete Contin. Dyn. Syst., 33 (2013), 819–835.

    MATH  MathSciNet  Google Scholar 

  195. J. Robinson, Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge University Press, 2001.

    Google Scholar 

  196. J.Robinson, Dimensions, Embeddings, and Attractors, Cambridge University Press, 2011.

    Google Scholar 

  197. J. Robinson and A. Vidal-López, Minimal periods of semilinear evolution equations with Lipschitz nonlinearity, J. Differential Equations, 220 (2006), 396–406.

    Article  MATH  MathSciNet  Google Scholar 

  198. J. Robinson and A. Vidal-López, Minimal periods of semilinear evolution equations with Lipschitz nonlinearity revisited, J. Differential Equations, 254 (2013), 4279–4289.

    Article  MATH  MathSciNet  Google Scholar 

  199. W. Rudin, Functional Analysis, McGraw-Hill, Inc., New York, 1991.

    MATH  Google Scholar 

  200. W.M. Ruess, Existence of solutions to partial differential equations with delay. In: Theory and Applications of Nonlinear Operators of Accretive Monotone Type, Lecture Notes Pure Appl. Math. 178 (1996), 259–288.

    Google Scholar 

  201. I. Ryzhkova, On a retarded PDE system for a von Karman plate with thermal effects in the flow of gas, Matem. Fizika, Analiz, Geometrija, 12 (2005), 173–186.

    Google Scholar 

  202. A. Savostianov and S. Zelik, Recent progress in attractors for quintic wave equations, Mathematica Bohemica, 139 (2014), 657–665.

    MathSciNet  MATH  Google Scholar 

  203. A. Savostianov and S. Zelik, Smooth attractors for the quintic wave equations with fractional damping, Asymptotic Analysis, 87 (2014), 191–221.

    MATH  MathSciNet  Google Scholar 

  204. A.P.S. Selvadurai, Elastic Analysis of Soil Foundation Interaction, Elsevier, Amsterdam, 1979.

    Google Scholar 

  205. M. Sermange and R. Temam, Some mathematical questions related to MHD equations, Commun. Pure Appl. Math. 36 (1983), 635–664.

    Article  MATH  MathSciNet  Google Scholar 

  206. G.R. Sell and Y. You, Dynamics of Evolutionary Equations, Springer, New York, 2002.

    Book  MATH  Google Scholar 

  207. A. Sharkovsky, Ideal turbulence, Nonlinear Dynamics, 44 (2006), 15–27.

    Article  MATH  MathSciNet  Google Scholar 

  208. A. Sharkovsky, S. Kolyada, A. Siwak and V. Fedorenko, Dynamics of One-Dimensional Maps, Naukova Dumka, Kiev, 1989 (in Russian).

    Google Scholar 

  209. A. Sharkovsky, Yu. Maistrenko and E. Romanenko, Difference Equations and Their Applications, Naukova Dumka, Kiev, 1986 (in Russian).

    Google Scholar 

  210. R. Showalter, Monotone Operators in Banach Spaces and Nonlinear Partial Differential Equations, AMS, Providence, RI, 1997.

    MATH  Google Scholar 

  211. V.I. Shubov, On subsets of a Hilbert space which have a finite Hausdorff dimension,Zapiski Nauchnyh Seminarov LOMI, 163 (1987), 154–165; in Russian.

    Google Scholar 

  212. K.S. Sibirsky, Introduction to Topological Dynamics, Noordhoff, Leyden, 1975.

    MATH  Google Scholar 

  213. J. Simon, Compact sets in the space L p(0, T; B), Annali Mat. Pura Appl., 148 (1987), 65–96.

    MathSciNet  MATH  Google Scholar 

  214. T. Taniguchi, Existence and asymptotic behaviour of solutions to weakly damped wave equations of Kirchhoff type with nonlinear damping and source terms, J. Math. Anal. Appl., 361 (2010), 566–578.

    Article  MATH  MathSciNet  Google Scholar 

  215. R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, 2nd edition, SIAM, Philadelphia, 1995.

    Book  MATH  Google Scholar 

  216. R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, 2nd edition, Springer, New York, 1997.

    Book  MATH  Google Scholar 

  217. G. Teschl, Ordinary Differential Equations and Dynamical Systems, AMS, Providence, RI, 2012.

    MATH  Google Scholar 

  218. C.C. Travis and G.F. Webb, Existence and stability for partial functional differential equations, Transactions of AMS, 200 (1974), 395–418.

    Article  MATH  MathSciNet  Google Scholar 

  219. C.C. Travis and G.F. Webb, Existence, stability, and compactness in the α-norm for partial functional differential equations, Transactions of AMS, 240 (1978), 129–143.

    MATH  MathSciNet  Google Scholar 

  220. H. Triebel, Interpolation Theory, Functional Spaces and Differential Operators, North-Holland, Amsterdam, 1978.

    MATH  Google Scholar 

  221. V.Z. Vlasov and U.N. Leontiev, Beams, Plates, and Shells on Elastic Foundation, Israel Program for Scientific Translations, Jerusalem, 1966 (translated from Russian).

    Google Scholar 

  222. H.-O. Walther, The solution manifold and C 1-smoothness for differential equations with state-dependent delay, J. Differential Equations, 195 (2003), 46–65.

    Article  MATH  MathSciNet  Google Scholar 

  223. H.-O. Walther, On Poisson’s state-dependent delay, Discrete Contin. Dyn. Syst., 33 (2013), 365–379.

    Article  MATH  MathSciNet  Google Scholar 

  224. J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer, New York, 1996.

    Book  MATH  Google Scholar 

  225. Z.-J. Yang, Longtime behavior of the Kirchhoff type equation with strong damping in R N, J. Differential Equations, 242 (2007), 269–286.

    Article  MATH  MathSciNet  Google Scholar 

  226. Z.-J. Yang, Y.-Q. Wang, Global attractor for the Kirchhoff type equation with a strong dissipation J. Differential Equations, 249 (2010), 3258–3278.

    Google Scholar 

  227. Z. Yang, X. Li, Finite dimensional attractors for the Kirchhoff equation with a strong dissipation, J. Math. Anal. Appl., 375 (2011), 579–593.

    Article  MATH  MathSciNet  Google Scholar 

  228. J.A. Yorke, Periods of periodic solutions and the Lipschitz constant. Proc. AMS, 22 (1969), 509–512.

    Article  MATH  MathSciNet  Google Scholar 

  229. K. Yosida, Functional Analysis, 4th ed., Springer, Berlin, 1974.

    Book  MATH  Google Scholar 

  230. V.I. Yudovich, Mathematical Models of Natural Sciences, Vuzovckaya kniga, 2009; in Russian.

    Google Scholar 

  231. E. Zeidler, Nonlinear Functional Analysis and Its Applications, vol.I-IV, Springer, Berlin, 1986–1995.

    Google Scholar 

  232. S. Zelik, The attractor for a nonlinear reaction-diffusion system with a supercritical nonlinearity and its dimension, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., 24 (2000) 1–25.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chueshov, I. (2015). Basic Concepts. In: Dynamics of Quasi-Stable Dissipative Systems. Universitext. Springer, Cham. https://doi.org/10.1007/978-3-319-22903-4_1

Download citation

Publish with us

Policies and ethics