Skip to main content

Equilibrium Pathway of Ultrathin Polymer Films as Revealed by Their Surface Dynamics

  • Chapter
  • First Online:
Non-equilibrium Phenomena in Confined Soft Matter

Part of the book series: Soft and Biological Matter ((SOBIMA))

Abstract

The majority of thin polymer films are prepared by spin-coating. In spin-coating, a drop of polymer solution is spread into a film which then dries into a solid in less than a minute. Abruptness of this process is believed to leave the polymer chains insufficient time to equilibrate, causing them to be kinetically trapped in an intermediate, transitory state. Indeed, several out-of-equilibrium attributes have been unequivocally identified, including residual stress, reduced chain entanglement and on-going polymer adsorption to the substrate surface. Upon annealing above the glass transition temperature, T g, these attributes evolve toward equilibrium. Another important, though less discussed out-of-equilibrium attribute is the smoother-than-equilibrium surface structure of as-cast spin-coated polymer films. Because of this, these films usually roughen upon heating. Importantly, the roughening process, especially for nanometer films, often results in the formation of deep holes and thereby ultimate rupture of the films. A question then naturally arises as to whether evolutions in the residual stress, chain entanglement and polymer adsorption may interfere with the roughening process, whereby modify the film stability. In recent years, our group has developed methods to monitor and analyze the surface roughening process. By applying these methods, important physical properties such as the effective viscosity and shear modulus of the films have been deduced. In this chapter, we shall briefly review these methods and the respectively model analyses. On the basis of these discussions, we then deliberate whether or not evolutions in the chain entanglement density, residual stress and adsorption phenomenon in the films may have influenced the roughening process measured, and thereby project their impacts on the film stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reiter, G., de Gennes, P.-G.: Eur. Phys. J. E 6, 25 (2001)

    Article  Google Scholar 

  2. Tsui, O.K.C., Wang, Y.J., Lee, F.K., Lam, C.H., Yang, Z.: Macromolecules 41, 1465 (2008)

    Article  ADS  MATH  Google Scholar 

  3. Orts, W.J., Vanzanten, J.H., Wu, W.L., Satija, S.K.: Phys. Rev. Lett. 71, 867 (1993)

    Article  ADS  Google Scholar 

  4. Mukherjee, M., Bhattacharya, M., Sanyal, M.K., Geue, T., Grenzer, J., Pietsch, U.: Phys. Rev. E 66, 061801 (2002)

    Article  ADS  Google Scholar 

  5. Miyazaki, T., Nishida, K., Kanaya, T.: Phys. Rev. E 69, 022801 (2004)

    Article  ADS  Google Scholar 

  6. Reiter, G., Hamieh, M., Damman, P., Sclavons, S., Gabriele, S., Vilmin, T., Raphael, E.: Nat. Mater. 4, 754 (2005)

    Article  ADS  Google Scholar 

  7. Vilmin, T., Raphael, E.: Europhys. Lett. 72, 781 (2005)

    Article  ADS  Google Scholar 

  8. Vilmin, T., Raphael, E.: Eur. Phys. J. E 21, 161 (2006)

    Article  Google Scholar 

  9. Fujii, Y., Yang, Z., Leach, J., Atarashi, H., Tanaka, K., Tsui, O.K.C.: Macromolecules 42, 7418 (2009)

    Article  Google Scholar 

  10. Napolitano, S., Wubbenhorst, M.: Nat. Commun. 2, 260 (2011)

    Article  ADS  Google Scholar 

  11. Housmans, C., Sferrazza, M., Napolitano, S.: Macromolecules 47, 3390 (2014)

    Article  ADS  Google Scholar 

  12. Koga, T., Jiang, N., Gin, P., Endoh, M.K., Narayanan, S., Lurio, L.B., Sinha, S.K.: Phys. Rev. Lett. 107, 225901 (2011)

    Article  ADS  Google Scholar 

  13. Jiang, N.S., Shang, J., Di, X.Y., Endoh, M.K., Koga, T.: Macromolecules 47, 2682 (2014)

    Article  ADS  Google Scholar 

  14. Chen, F., Lam, C.-H., Tsui, O.K.C.: Science 343, 975 (2014)

    Article  ADS  Google Scholar 

  15. Wang, Y.J., Lam, C.H., Zhang, X., Tsui, O.K.C.: Eur. Phys. J. 141, 181 (2007). (Special Topics)

    Google Scholar 

  16. Wang, Y.J., Tsui, O.K.C.: Langmuir 22, 1959 (2006)

    Article  Google Scholar 

  17. Wang, Y.J., Tsui, O.K.C.: J. Non-Cryst. Solids 352, 4977 (2006)

    Article  ADS  Google Scholar 

  18. Yang, Z., Lam, C.-H., DiMasi, E., Bouet, N., Jordan-Sweet, J., Tsui, O.K.C.: Appl. Phys. Lett. 94, 251906 (2009)

    Article  ADS  Google Scholar 

  19. Kajiyama, T., Tanaka, K., Takahara, A.: Macromolecules 30, 280 (1997)

    Article  ADS  Google Scholar 

  20. Tsui, O.K.C., Wang, X.P., Ho, J.Y.L., Ng, T.K., Xiao, X.D.: Macromolecules 33, 4198 (2000)

    Article  ADS  Google Scholar 

  21. Wang, X.P., Xiao, X.D., Tsui, O.K.C.: Macromolecules 34, 4180 (2001)

    Article  ADS  Google Scholar 

  22. Du, B.Y., Tsui, O.K.C., Zhang, Q.L., He, T.B.: Langmuir 17, 3286 (2001)

    Article  Google Scholar 

  23. Dubourg, F., Aime, J.P., Marsaudon, S., Couturier, G., Boisgard, R.: J. Phys.: Condens. Matter 15, 6167 (2003)

    ADS  Google Scholar 

  24. Valignat, M.P., Oshanin, G., Villette, S., Cazabat, A.M., Moreau, M.: Phys. Rev. Lett. 80, 5377 (1998)

    Article  ADS  Google Scholar 

  25. Manias, E., Chen, H., Krishnamoorti, R., Genzer, J., Kramer, E.J., Giannelis, E.P.: Macromolecules 33, 7955 (2000)

    Article  ADS  Google Scholar 

  26. Reiter, G.: Phys. Rev. Lett. 87, 186101 (2001)

    Article  ADS  Google Scholar 

  27. Damman, P., Gabriele, S., Sclavons, S., Desprez, S., Villers, D., Vilmin, T., Raphael, E., Hamieh, M., Alakhrass, S., Reiter, G.: Phys. Rev. Lett. 99, 036101 (2007)

    Article  ADS  Google Scholar 

  28. Shin, K., Obukhov, S., Chen, J.-T., Huh, J., Hwang, Y., Mok, S., Dobriyal, P., Thiyagarajan, P., Russell, T.P.: Nat. Mater. 6, 961 (2007)

    Article  ADS  Google Scholar 

  29. Heslot, F., Fraysse, N., Cazabat, A.M.: Nature 338, 640 (1989)

    Article  ADS  Google Scholar 

  30. Yang, Z., Fujii, Y., Lee, F.K., Lam, C.-H., Tsui, O.K.C.: Science 328, 1676 (2010)

    Article  ADS  Google Scholar 

  31. Lam, C.-H., Tsui, O.K.C., Peng, D.: Langmuir 28, 10217 (2012)

    Article  Google Scholar 

  32. Kim, H., Ruhm, A., Lurio, L.B., Basu, J.K., Lal, J., Lumma, D., Mochrie, S.G.J., Sinha, S.K.: Phys. Rev. Lett. 90, 068302 (2003)

    Article  ADS  Google Scholar 

  33. Li, C.H., Koga, T., Jiang, J., Sharma, S., Narayanan, S., Lurio, L.B., Hu, Y., Jiao, X., Sinha, S.K., Billet, S., Sosnowik, D., Kim, H., Sokolov, J.C., Rafailovich, M.H.: Macromolecules 38, 5144 (2005)

    Article  ADS  Google Scholar 

  34. Wang, S.-F., Yang, S., Lee, J., Akgun, B., Wu, D.T., Foster, M.D.: Phys. Rev. Lett. 111, 068303 (2013)

    Article  ADS  Google Scholar 

  35. Chai, Y., Salez, T., McGraw, J.D., Benzaquen, M., Dalnoki-Veress, K., Raphael, E., Forrest, J.A.: Science 343, 994 (2014)

    Article  ADS  Google Scholar 

  36. McGraw, J.D., Salez, T., Baeumchen, O., Raphael, E., Dalnoki-Veress, K.: Phys. Rev. Lett. 109, 128303 (2012)

    Article  ADS  Google Scholar 

  37. Zhu, L., Brian, C.W., Swallen, S.F., Straus, P.T., Ediger, M.D., Yu, L.: Phys. Rev. Lett. 106, 256103 (2011)

    Article  ADS  Google Scholar 

  38. Vrij, A., Overbeek, J.T.: J. Am. Chem. Soc. 90, 3074 (1968)

    Article  Google Scholar 

  39. Yang, Z., Peng, D., Clough, A., Lam, C.H., Tsui, O.K.C.: Eur. Phys. J. 189, 155 (2010). (Special Topics)

    Google Scholar 

  40. Yang, Z., Clough, A., Lam, C.-H., Tsui, O.K.C.: Macromolecules 44, 8294 (2011)

    Article  ADS  MATH  Google Scholar 

  41. Peng, D., Yang, Z., Tsui, O.K.C.: Macromolecules 44, 7460 (2011)

    Article  ADS  Google Scholar 

  42. Hiemenz, P.C., Lodge, T.P.: Polymer Chemistry, 2nd edn. Marcel Dekker Inc, New York (1984)

    Google Scholar 

  43. Yang, Z., Fujii, Y., Lee, F.K., Lam, C.-H., Tsui, O.K.C.: Science 328, 1676 (2010)

    Article  ADS  Google Scholar 

  44. Paeng, K., Ediger, M.D.: Macromolecules 44, 7034 (2011)

    Article  ADS  Google Scholar 

  45. Peng, D., Li, R.N., Lam, C.-H., Tsui, O.K.C.: Chin. J. Polym. Sci. 31, 12 (2013)

    Article  Google Scholar 

  46. Lam, C.-H., Tsui, O.K.C.: Phys. Rev. E 88, 042604 (2013)

    Article  ADS  Google Scholar 

  47. Li, R.N., Chen, F., Lam, C.-H., Tsui, O.K.C.: Macromolecules 46, 7889 (2013)

    Article  ADS  Google Scholar 

  48. Yang, Z., Clough, A., Lam, C.-H., Tsui, O.K.C.: Macromolecules 44, 8294 (2011)

    Article  ADS  Google Scholar 

  49. Fredrickson, G.H., Ajdari, A., Leibler, L., Carton, J.P.: Macromolecules 25, 2882 (1992)

    Article  ADS  Google Scholar 

  50. Safran, S.A., Klein, J.: J. Phys. II Fr. 3, 749 (1993)

    Google Scholar 

  51. Raegen, A., Chowdhury, M., Calers, C., Schmatulla, A., Steiner, U., Reiter, G.: Phys. Rev. Lett. 105(22), 227801 (2010)

    Article  ADS  Google Scholar 

  52. Barbero, D.R., Steiner, U.: Phys. Rev. Lett. 102, 248303 (2009)

    Article  ADS  Google Scholar 

  53. Fetters, L.J., Lohse, D.J., Milner, S.T.: Macromolecules 32, 6847 (1999)

    Article  ADS  Google Scholar 

  54. Rubinstein, M., Colby, R.H.: Polymer Physics, 1st edn. Oxford University Press, New York (2003)

    Google Scholar 

  55. Strobl, G.R.: The Physics of Polymers. Springer, Berlin (1996)

    Book  Google Scholar 

  56. Li, R.N., Clough, A., Yang, Z., Tsui, O.K.C.: Macromolecules 45, 1085 (2012)

    Article  ADS  Google Scholar 

  57. Damman, P., Gabriele, S., Coppee, S., Desprez, S., Villers, D., Vilmin, T., Raphael, E., Hamieh, M., Al Akhrass, S., Reiter, G.: Phys. Rev. Lett. 99, 036101 (2007)

    Article  ADS  Google Scholar 

  58. Yang, Z.H., Wang, Y., Todorova, L., Tsui, O.K.C.: Macromolecules 41, 8785 (2008)

    Article  ADS  Google Scholar 

  59. Priestley, R.D., Ellison, C.J., Broadbelt, L.J., Torkelson, J.M.: Science 309, 456 (2005)

    Article  ADS  Google Scholar 

  60. Chowdhury, M., Freyberg, P., Ziebert, F., Yang, A.C.M., Steiner, U., Reiter, G.: Phys. Rev. Lett. 109, 136102 (2012)

    Article  ADS  MATH  Google Scholar 

  61. Bodiguel, H., Fretigny, C.: Eur. Phys. J. E 19, 185 (2006)

    Article  Google Scholar 

  62. Chung, J.Y., Chastek, T.Q., Fasolka, M.J., Ro, H.W., Stafford, C.M.: ACS Nano 3, 844 (2009)

    Article  Google Scholar 

  63. Chung, J.Y., Nolte, A.J., Stafford, C.M.: Adv. Mater. 23, 349 (2011)

    Article  Google Scholar 

  64. Thomas, K.R., Steiner, U.: Soft Matter 7, 7839 (2011)

    Article  ADS  MATH  Google Scholar 

  65. Vilmin, T., Raphael, E.: Phys. Rev. Lett. 97, 036105 (2006)

    Article  ADS  MATH  Google Scholar 

  66. Asaro, R.J., Tiller, W.A.: Metall. Trans. 3, 1789 (1972)

    Article  Google Scholar 

  67. Grinfeld, M.A.: J. Nonlinear Sci. 3, 35 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  68. Closa, F., Ziebert, F., Raphael, E.: Phys. Rev. E 83, 051603 (2011)

    Article  ADS  Google Scholar 

  69. Napolitano, S., Capponi, S., Vanroy, B.: Eur. Phys. J. E 36, 61 (2013)

    Article  Google Scholar 

  70. Napolitano, S., Rotella, C., Wubbenhorst, M.: ACS Macro Lett. 1, 1189 (2012)

    Article  MATH  Google Scholar 

  71. Jiang, N., Shang, J., Di, X., Endoh, M.K., Koga, T.: Macromolecules 27, 2682 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We acknowledge important contribution from Prof. Chi-Hang Lam in the development of the model analyses discussed in this chapter. Contributions from former members of the group, particularly Dr. Andrew Clough, Dr. Yoshihisa Fujii, Dr. Ranxing N. Li and Dr. Dongdong Peng are also acknowledged. We are thankful to the support of National Science Foundation through the projects DMR-0706096, DMR-0908651, DMR-1004648 and DMR-1310536, which have enabled the results discussed in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ophelia K. C. Tsui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Geng, K., Chen, F., Yang, Z., Tsui, O.K.C. (2015). Equilibrium Pathway of Ultrathin Polymer Films as Revealed by Their Surface Dynamics. In: Napolitano, S. (eds) Non-equilibrium Phenomena in Confined Soft Matter. Soft and Biological Matter. Springer, Cham. https://doi.org/10.1007/978-3-319-21948-6_2

Download citation

Publish with us

Policies and ethics