Skip to main content

Primary Blast Lung Injury

  • Chapter
  • First Online:
Blast Injury Science and Engineering

Abstract

To facilitate effective gas exchange and act as a blood-gas interface the adult human lung consists of some 500 million air sacs (alveoli), each only 1/3 mm in diameter but generating a combined surface area of approximately 100 m2. The alveolar wall measures 0.2–0.3 μm across and is encased in a mesh of very fine and fragile blood vessels the diameter of which is just sufficient to allow the passage of red blood cells [1]. Whilst elegantly adapted to facilitate rapid diffusion of gas across tissue, the very nature of the lungs’ role in gas exchange renders them particularly susceptible to injury following blast exposure. Such injury, due only to exposure to blast wave (primary blast) and not to other consequences of proximity to an explosion (for example penetrating – secondary blast – or burn injuries – quaternary blast) is known as primary blast lung injury (PBLI). As a diagnosis of exclusion, it occurs within 12 h of blast exposure in the absence of secondary or tertiary lung injury and in the presence of radiological or arterial blood gas evidence of acute lung injury [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. West JB. Respiratory physiology the essentials. 8th ed. Philadelphia: Lippincott Williams & Wilkins; 2003.

    Google Scholar 

  2. Mackenzie I, Tunnicliffe B, Clasper J, Mahoney P, Kirkman E. What the intensive care doctor needs to know about blast-related lung injury. J Intensive Care Soc. 2013;14(4):303–12.

    Article  Google Scholar 

  3. Smith JE. The epidemiology of blast lung injury during recent military conflicts: a retrospective database review of cases presenting to deployed military hospitals, 2003–2009. Philos Trans R Soc Lond B Biol Sci. 2011;366(1562):291–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Aboudara M, et al. Primary blast lung injury at a NATO Role 3 hospital. J R Army Med Corps. 2014;160(2):161–6.

    Article  PubMed  Google Scholar 

  5. Singleton JA, et al. Primary blast lung injury prevalence and fatal injuries from explosions: insights from postmortem computed tomographic analysis of 121 improvised explosive device fatalities. J Trauma Acute Care Surg. 2013;75(2 Suppl 2):S269–74.

    Article  PubMed  Google Scholar 

  6. Mellor SG, Cooper GJ. Analysis of 828 servicemen killed or injured by explosion in Northern Ireland 1970–84: the Hostile Action Casualty System. Br J Surg. 1989;76:1006–10.

    Article  CAS  PubMed  Google Scholar 

  7. Pizov R, et al. Blast lung injury from an explosion on a civilian bus. Chest. 1999;115(1):165–72.

    Article  CAS  PubMed  Google Scholar 

  8. Cooper GJ, Taylor DE. Biophysics of impact injury to the chest and abdomen. J R Army Med Corps. 1989;135:58–67.

    Article  CAS  PubMed  Google Scholar 

  9. Rice DA. Sound speed in pulmonary parenchyma. J Appl Physiol. 1983;54:304–8.

    CAS  PubMed  Google Scholar 

  10. Tsokos M, et al. Histologic, immunohistochemical, and ultrastructural findings in human blast lung injury. Am J Respir Crit Care Med. 2003;168(5):549–55.

    Article  PubMed  Google Scholar 

  11. Guy RJ, Kirkman PE, Watkins E, Cooper CJ. Physiologic responses to primary blast. J Trauma. 1998;45:983–7.

    Article  CAS  PubMed  Google Scholar 

  12. Kirkman E, Watts S. Characterization of the response to primary blast injury. Philos Trans R Soc. 2011;366:286–90.

    Article  CAS  Google Scholar 

  13. Horrocks CL. Blast injuries: biophysics, pathophysiology and management principles. J R Army Med Corps. 2001;147:28–40.

    Article  CAS  PubMed  Google Scholar 

  14. ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, et al. Acute respiratory distress syndrome: the Berlin definition. JAMA. 2012;307:2526–33.

    Google Scholar 

  15. The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342:1301–8.

    Article  Google Scholar 

  16. Mackenzie IM, Tunnicliffe B. Blast injuries to the lung: epidemiology and management. Philos Trans R Soc Lond B Biol Sci. 2011;366(1562):295–9.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Guerin C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulain T, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368:2159–68.

    Article  CAS  PubMed  Google Scholar 

  18. Papazian L, Forel JM, Gacouin A, et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010;363:1107–16.

    Article  CAS  PubMed  Google Scholar 

  19. Fanelli V, Vlachou A, Ghannadian S, Simonetti U, Slutsky AS, Zhang H. Acute respiratory distress syndrome: new definition, current and future therapeutic options. J Thorac Dis. 2013;5(3):326–34.

    PubMed  PubMed Central  Google Scholar 

  20. Peek GJ, Mugford M, Tiruvoipati R, et al. Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet. 2009;374(9698):1351–63.

    Article  PubMed  Google Scholar 

  21. Avidan V, et al. Blast lung injury: clinical manifestations, treatment, and outcome. Am J Surg. 2005;190(6):927–31.

    Article  PubMed  Google Scholar 

  22. Leibovici D, Gofrit ON, Shapira SC. Eardrum perforation in explosion survivors: is it a marker of pulmonary blast injury? Ann Emerg Med. 1991;34:168–72.

    Article  Google Scholar 

  23. Hirshberg B, Oppenheim-Eden A, Pizov R, Sklair-Levi M, Rivkin A, Bardach E, et al. Recovery from blast lung injury. Chest. 1999;116:1683–8.

    Article  CAS  PubMed  Google Scholar 

  24. Chavko M, Adeeb S, Ahlers ST, McCarron RM. Attenuation of pulmonary inflammation after exposure to blast overpressure by N-acetylcysteine amide. Shock. 2009;32(3):325–31.

    Article  CAS  PubMed  Google Scholar 

  25. Mei SH, Haitsma JJ, Dos Santos CC, et al. Mesenchymal stem cells reduce inflammation while enhancing bacterial clearance and improving survival in sepsis. Am J Respir Crit Care Med. 2010;182:1047–57.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. H. Scott FRCS (Ed), FRCOphth, DM, (RAF) .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Scott, R.A.H. (2016). Primary Blast Lung Injury. In: Bull, A., Clasper, J., Mahoney, P. (eds) Blast Injury Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-21867-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21867-0_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21866-3

  • Online ISBN: 978-3-319-21867-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics