Skip to main content

Physical Models: Tissue Simulants

  • Chapter
  • First Online:
Blast Injury Science and Engineering

Abstract

The most common manner of reproducing the effects of energised fragments penetrating human tissues is to use a physical model as a tissue simulant. Such physical models encompass simulants including animal based simulants such as gelatin, animal physical models and in more limited circumstances post mortem human subjects (PMHS). No physical model can currently accurately reproduce all of the complex projectile and tissue variables that occur within live human tissues. Therefore individual models attempt to accurately reproduce a limited number of variables, with data produced from different types of model often being used synergistically to generate the bigger picture. For example a freshly killed animal surrogate may closely resemble the tissue properties of a live human but may not be able to reproduce the complex anatomy if that is required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Breeze J, Sedman AJ, James GR, et al. Determining the wounding effects of ballistic projectiles to inform future injury models: a systematic review. J R Army Med Corps. 2013;160(4):273–8. doi:10.1136/jramc-2013-000099.

    Article  PubMed  Google Scholar 

  2. Berlin RH, Gelin LE, Janzon B, et al. Local effects of assault rifle bullets in live tissues. Acta Chir Scand Suppl. 1976;459:1–76.

    CAS  PubMed  Google Scholar 

  3. Orlowski T, Piecuch T, Domaniecki J, et al. Mechanisms of development of shot wounds caused by missiles of different initial velocity. Acta Chir Scand Suppl. 1982;508:123–7.

    CAS  PubMed  Google Scholar 

  4. Wang ZG, Tang CG, Chen XY, et al. Early pathomorphologic characteristics of the wound track caused by fragments. J Trauma. 1988;28(1 Suppl):S89–95.

    Article  CAS  PubMed  Google Scholar 

  5. Korac Z, Crnica S, Bozo N. Histologic analysis of pig muscle tissue after wounding with a high-velocity projectile-preliminary report. Acta Clin Croat. 2006;45:3–7.

    Google Scholar 

  6. Cooper GJ, Ryan JM. Interaction of penetrating missiles with tissues: some common misapprehensions and implications for wound management. Br J Surg. 1990;77(6):606–10.

    Article  CAS  PubMed  Google Scholar 

  7. Kieser DC, Carr DJ, Leclair SC, Horsfall I, Theis JC, Swain MV, Kieser JA. Gunshot induced indirect femoral fracture: mechanism of injury and fracture morphology. J R Army Med Corps. 2013;159:294–9.

    Article  PubMed  Google Scholar 

  8. Black AN, Burns BD, Zuckerman S. An experimental study of the wounding mechanism of high-velocity missiles. Br Med J. 1941;2(4224):872–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li M, Ma YY, Fu RX, et al. The characteristics of the pressure waves generated in the soft target by impact and its contribution to indirect bone fractures. J Trauma. 1988;28(1):S104–9.

    Article  CAS  PubMed  Google Scholar 

  10. Dougherty PJ, Sherman D, Dau N, et al. Ballistic fractures: indirect fractures to bone. J Trauma. 2011;71(5):1381–4.

    Article  PubMed  Google Scholar 

  11. Amato JJ, Syracuse D, Seaver Jr PR, et al. Bone as a secondary missile: an experimental study in the fragmenting of bone by high-velocity missiles. J Trauma. 1989;29:609–12.

    Article  CAS  PubMed  Google Scholar 

  12. Lai X, Liu Y, Chen L. The effect of indirect injury to peripheral nerves on wound healing after firearm wounds. J Trauma. 1996;40(3 Suppl):S56–9.

    CAS  PubMed  Google Scholar 

  13. Amato JJ, Rich NM, Billy LJ, et al. High-velocity arterial injury: a study of the mechanism of injury. J Trauma. 1971;11(5):412–6.

    Article  CAS  PubMed  Google Scholar 

  14. Rich NM, Manion WC, Hughes CW. Surgical and pathological evaluation of vascular injuries in Vietnam. J Trauma. 1969;9(4):279–91.

    Article  CAS  PubMed  Google Scholar 

  15. Oehmichen M, Meissner C, König HG. Brain injury after gunshot wounding: morphometric analysis of cell destruction caused by temporary cavitation. J Neurotrauma. 2000;17(2):155–62.

    Article  CAS  PubMed  Google Scholar 

  16. Jussila J. Measurement of kinetic energy dissipation with gelatine fissure formation with special reference to gelatine validation. Forensic Sci Int. 2005;150(1):53–62.

    Article  CAS  PubMed  Google Scholar 

  17. Breeze J, Hunt NC, Gibb I, et al. Experimental penetration of fragment simulating projectiles into porcine tissues compared with simulants. J Foren Legal Med. 2013;20:296–9.

    Article  CAS  Google Scholar 

  18. Breeze J, James GR, Hepper AE. Perforation of fragment simulating projectiles into goat skin and muscle. J R Army Med Corps. 2013;159:84–9.

    Article  PubMed  Google Scholar 

  19. Harvey EN. The mechanism of wounding by high velocity missiles. Proc Am Philos Soc. 1948;92(4):294–304.

    CAS  PubMed  Google Scholar 

  20. Harvey EN, Korr IM. Secondary damage in wounding due to pressure changes accompanying the passage of high velocity missiles. Surgery. 1947;21(2):218–39.

    CAS  PubMed  Google Scholar 

  21. Fackler ML, Bellamy RF, Malinowski JA. A reconsideration of the wounding mechanism of very high velocity projectiles- importance of projectile shape. J Trauma. 1988;28(1 Suppl):S63–7.

    Article  CAS  PubMed  Google Scholar 

  22. Janzon B. Edge size and temperature effect in soft soap block simulant targets used for wound ballistic studies. Acta Chir Scand Suppl. 1982;508:105–22.

    CAS  PubMed  Google Scholar 

  23. Kneubuehl B, Coupland R, Rothschild MA, Thali MJ, editors. Wound ballistics: basics and applications. 1st ed. Berlin: Springer Science & Business Media; 2011. ISBN 9783642203565.

    Google Scholar 

  24. Mabbott A, Carr DJ, Champion S, Malbon C, Tichler C. Comparison of 10% gelatine, 20% gelatine and Perma-GelTM for ballistic testing. In: Proceedings of International Symposium on Ballistics, 22–26 April, Freiberg, 2013.

    Google Scholar 

  25. Hopkinson DA, Watts JC. Studies in experimental missile injuries of skeletal muscle. Proc R Soc Med. 1963;56:461–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Berlin RH, Janzon B, Rybeck B, et al. Local effects of assault rifle bullets in live tissues. Part II. Further studies in live tissues and relations to some simulant media. Acta Chir Scand Suppl. 1977;477:5–48.

    CAS  PubMed  Google Scholar 

  27. Korac Z, Kelenc D, Hancevic J, et al. The application of computed tomography in the analysis of permanent cavity: a new method in terminal ballistics. Acta Clin Croat. 2002;41:205–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Breeze PhD, MRCS, MFDS, MBBS, BDS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Breeze, J., Carr, D.J. (2016). Physical Models: Tissue Simulants. In: Bull, A., Clasper, J., Mahoney, P. (eds) Blast Injury Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-21867-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21867-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21866-3

  • Online ISBN: 978-3-319-21867-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics