Skip to main content

Part of the book series: Nutrition and Health ((NH))

Abstract

The human intestinal microbiome is a key component of the body. Composed of 1014 bacteria, it is very much a part of all of us. Research into the microbiome has greatly expanded over the last few years. Animal studies, especially on germ-free animals, have helped greatly to define the role of the microbiome in growth and development, especially of the immune system and the inflammatory responses. Importantly, disease states are associated with derangements of the microbiome. It is likely that few, if any, critically ill patients have a “normal” microbiome. Deprivation of enteral nutrition promotes a less healthy and more virulent microbial population, even if parenteral nutrition is provided. Indeed, changes in the microbiome may be the reason for the wellknown superiority of enteral over parenteral nutrition. We can modify the microbiome with probiotics, although the science of doing so is still undeveloped. We are just beginning to understand the role of the microbiome in health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–14.

    Article  Google Scholar 

  2. Loudon I. Ignaz Phillip Semmelweis’ studies of death in childbirth. J R Soc Med. 2013;106(11):461–3.

    Article  PubMed  Google Scholar 

  3. Wishnow RM. The conquest of the major infectious diseases in the United States: a bicentennial retrospect. Annu Rev Microbiol. 1976;30:427–50.

    Article  CAS  PubMed  Google Scholar 

  4. Aylward B, Hennessey KA, Zagaria N, Olive JM, Cochi S. When is a disease eradicable? 100 years of lessons learned. Am J Public Health. 2000;90(10):1515–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Lederberg J, Mccray T. ‘Ome sweet’ omics--a genalogic treasury of words. Scientist. 2001;15:8–10.

    Google Scholar 

  6. Dethlefsen L, Eckburg PB, Bik EM, Relman DA. Assembly of the human intestinal microbiota. Trends Ecol Evol. 2006;21(9):517–23.

    Article  PubMed  Google Scholar 

  7. Grönlund MM, Lehtonen OP, Eerola E, Kero P. Fecal microflora in healthy infants born by different methods of delivery: permanent changes in intestinal flora after cesarean delivery. J Pediatr Gastroenterol Nutr. 1999;28(1):19–25.

    Article  PubMed  Google Scholar 

  8. Mändar R, Mikelsaar M. Transmission of mother’s microflora to the newborn at birth. Biol Neonate. 1996;69(1):30–5.

    Article  PubMed  Google Scholar 

  9. Savage DC. Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol. 1977;31:107–33.

    Article  CAS  PubMed  Google Scholar 

  10. Mirtallo J, Canada T, Johnson D, Kumpf V, Petersen C, Sacks G, et al. Safe practices for parenteral nutrition. JPEN J Parenter Enteral Nutr. 2004;28(6):S39–70.

    Article  PubMed  Google Scholar 

  11. Tyakht AV, Kostryukova ES, Popenko AS, Belenikin MS, Pavlenko AV, Larin AK, et al. Human gut microbiota community structures in urban and rural populations in Russia. Nat Commun. 2013;4:2469.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Miyasaka EA, Feng Y, Poroyko V, Falkowski NR, Erb-Downward J, Gillilland MG, et al. Total parenteral nutrition-associated lamina propria inflammation in mice is mediated by a MyD88-dependent mechanism. J Immunol. 2013;190(12):6607–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med. 2009;1(6):6ra14.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Tlaskalova-Hogenova H, Stepankova R, Kozakova H, Hudcovic T, Vannucci L, Tuckova L, et al. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cell Mol Immunol. 2011;8(2):110–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Tlaskalová H, Kamarýtová V, Mandel L, Prokesová L, Kruml J, Lanc A, et al. The immune response of germ-free piglets after peroral monocontamination with living Escherichia coli strain 086. I. The fate of antigen, dynamics and site of antibody formation, nature of antibodies and formation of heterohaemagglutinins. Folia Biol (Praha). 1970;16(3):177–87.

    Google Scholar 

  16. Schuijt TJ, van der Poll T, de Vos WM, Wiersinga WJ. The intestinal microbiota and host immune interactions in the critically ill. Trends Microbiol. 2013;21(5):221–9.

    Article  CAS  PubMed  Google Scholar 

  17. Walter J, Ley R. The human gut microbiome: ecology and recent evolutionary changes. Annu Rev Microbiol. 2011;65:411–29.

    Article  CAS  PubMed  Google Scholar 

  18. Smith VH, Holt RD. Resource competition and within-host disease dynamics. Trends Ecol Evol. 1996;11(9):386–9.

    Article  CAS  PubMed  Google Scholar 

  19. Janeway CA. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol. 1989;54(Pt 1):1–13.

    Article  CAS  PubMed  Google Scholar 

  20. Hoffmann JA. The immune response of Drosophila. Nature. 2003;426(6962):33–8.

    Article  CAS  PubMed  Google Scholar 

  21. Kawai T, Akira S. The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol. 2009;21(4):317–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Takeda K, Akira S. TLR signaling pathways. Semin Immunol. 2004;16(1):3–9.

    Article  CAS  PubMed  Google Scholar 

  23. Brandtzaeg P. Secretory IgA: designed for anti-microbial defense. Front Immunol. 2013;4:222.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Wells JM, Rossi O, Meijerink M, van Baarlen P. Epithelial crosstalk at the microbiota-mucosal interface. Proc Natl Acad Sci U S A. 2011;108 Suppl 1:4607–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Clark JA, Coopersmith CM. Intestinal crosstalk: a new paradigm for understanding the gut as the “motor” of critical illness. Shock. 2007;28(4):384–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Wong JM, de Souza R, Kendall CW, Emam A, Jenkins DJ. Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol. 2006;40(3):235–43.

    Article  CAS  PubMed  Google Scholar 

  27. Hijova E, Chmelarova A. Short chain fatty acids and colonic health. Bratisl Lek Listy. 2007;108(8):354–8.

    CAS  PubMed  Google Scholar 

  28. Cook SI, Sellin JH. Review article: short chain fatty acids in health and disease. Aliment Pharmacol Ther. 1998;12(6):499–507.

    Article  CAS  PubMed  Google Scholar 

  29. Säemann MD, Böhmig GA, Zlabinger GJ. Short-chain fatty acids: bacterial mediators of a balanced host-microbial relationship in the human gut. Wien Klin Wochenschr. 2002;114(8-9):289–300.

    PubMed  Google Scholar 

  30. Zedelius J, Rabus R, Grundmann O, Werner I, Brodkorb D, Schreiber F, et al. Alkane degradation under anoxic conditions by a nitrate-reducing bacterium with possible involvement of the electron acceptor in substrate activation. Environ Microbiol Rep. 2011;3(1):125–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Ben XM, Li J, Feng ZT, Shi SY, Lu YD, Chen R, et al. Low level of galacto-oligosaccharide in infant formula stimulates growth of intestinal Bifidobacteria and Lactobacilli. World J Gastroenterol. 2008;14(42):6564–8.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Pop M. We are what we eat: how the diet of infants affects their gut microbiome. Genome Biol. 2012;13(4):152.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Schwartz S, Friedberg I, Ivanov IV, Davidson LA, Goldsby JS, Dahl DB, et al. A metagenomic study of diet-dependent interaction between gut microbiota and host in infants reveals differences in immune response. Genome Biol. 2012;13(4):r32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 2010;107(33):14691–6.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Ralls MW, Miyasaka E, Teitelbaum DH. Intestinal microbial diversity and perioperative complications. JPEN J Parenter Enteral Nutr. 2014;38:392.

    Article  PubMed Central  PubMed  Google Scholar 

  36. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Ohland CL, Kish L, Bell H, Thiesen A, Hotte N, Pankiv E, et al. Effects of Lactobacillus helveticus on murine behavior are dependent on diet and genotype and correlate with alterations in the gut microbiome. Psychoneuroendocrinology. 2013;38(9):1738–47.

    Article  CAS  PubMed  Google Scholar 

  38. Shapira I, Sultan K, Lee A, Taioli E. Evolving concepts: how diet and the intestinal microbiome act as modulators of breast malignancy. ISRN Oncol. 2013;2013:693920.

    PubMed Central  PubMed  Google Scholar 

  39. Hildebrandt MA, Hoffmann C, Sherrill-Mix SA, Keilbaugh SA, Hamady M, Chen YY, et al. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology. 2009;137(5):1716-24.e1–2.

    Article  Google Scholar 

  40. Noh H, Eomm M, Han A. Usefulness of pretreatment neutrophil to lymphocyte ratio in predicting disease-specific survival in breast cancer patients. J Breast Cancer. 2013;16(1):55–9.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Azab B, Shah N, Radbel J, Tan P, Bhatt V, Vonfrolio S, et al. Pretreatment neutrophil/lymphocyte ratio is superior to platelet/lymphocyte ratio as a predictor of long-term mortality in breast cancer patients. Med Oncol. 2013;30(1):432.

    Article  PubMed  Google Scholar 

  42. Sun X, Yang H, Nose K, Nose S, Haxhija EQ, Koga H, et al. Decline in intestinal mucosal IL-10 expression and decreased intestinal barrier function in a mouse model of total parenteral nutrition. Am J Physiol Gastrointest Liver Physiol. 2008;294(1):G139–47.

    Article  CAS  PubMed  Google Scholar 

  43. Feng Y, Teitelbaum DH. Tumour necrosis factor--induced loss of intestinal barrier function requires TNFR1 and TNFR2 signalling in a mouse model of total parenteral nutrition. J Physiol. 2013;591(Pt 15):3709–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Alverdy JC, Spitz J, Hecht G, Ghandi S. Causes and consequences of bacterial adherence to mucosal epithelia during critical illness. New Horiz. 1994;2(2):264–72.

    CAS  PubMed  Google Scholar 

  45. Shimizu K, Ogura H, Goto M, Asahara T, Nomoto K, Morotomi M, et al. Altered gut flora and environment in patients with severe SIRS. J Trauma. 2006;60(1):126–33.

    Article  PubMed  Google Scholar 

  46. Shimizu K, Ogura H, Hamasaki T, Goto M, Tasaki O, Asahara T, et al. Altered gut flora are associated with septic complications and death in critically ill patients with systemic inflammatory response syndrome. Dig Dis Sci. 2011;56(4):1171–7.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Shimizu K, Ogura H, Tomono K, Tasaki O, Asahara T, Nomoto K, et al. Patterns of Gram-stained fecal flora as a quick diagnostic marker in patients with severe SIRS. Dig Dis Sci. 2011;56(6):1782–8.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Demehri FR, Barrett M, Ralls MW, Miyasaka EA, Feng Y, Teitelbaum DH. Intestinal epithelial cell apoptosis and loss of barrier function in the setting of altered microbiota with enteral nutrient deprivation. Front Cell Infect Microbiol. 2013;3:105.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Alverdy J, Gilbert J, Defazio JR, Sadowsky MJ, Chang EB, Morowitz MJ, et al. Proceedings of the A.S.P.E.N.-sponsored workshop: the interface between nutrition and the gut microbiome: implications and applications for human health. JPEN J Parenter Enteral Nutr. 2014;38:167.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Weflen AW, Alto NM, Viswanathan VK, Hecht G. E. coli secreted protein F promotes EPEC invasion of intestinal epithelial cells via an SNX9-dependent mechanism. Cell Microbiol. 2010;12(7):919–29.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Feng Y, Ralls MW, Xiao W, Miyasaka E, Herman RS, Teitelbaum DH. Loss of enteral nutrition in a mouse model results in intestinal epithelial barrier dysfunction. Ann N Y Acad Sci. 2012;1258:71–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Vincent JL, Jacobs F. Effect of selective decontamination on antibiotic resistance. Lancet Infect Dis. 2011;11(5):337–8.

    Article  PubMed  Google Scholar 

  53. Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A. 2011;108 Suppl 1:4554–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Bakken JS. Fecal bacteriotherapy for recurrent Clostridium difficile infection. Anaerobe. 2009;15(6):285–9.

    Article  PubMed  Google Scholar 

  55. FAO/WHO. Joint FAO/WHO expert consultation of health and nutritional properties of probiotics in food including powder milk and live lactic acid bacteria. Rome: FAO; 2001.

    Google Scholar 

  56. Baba N, Samson S, Bourdet-Sicard R, Rubio M, Sarfati M. Commensal bacteria trigger a full dendritic cell maturation program that promotes the expansion of non-Tr1 suppressor T cells. J Leukoc Biol. 2008;84(2):468–76.

    Article  CAS  PubMed  Google Scholar 

  57. Preidis GA, Versalovic J. Targeting the human microbiome with antibiotics, probiotics, and prebiotics: gastroenterology enters the metagenomics era. Gastroenterology. 2009;136(6):2015–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Forestier C, Guelon D, Cluytens V, Gillart T, Sirot J, De Champs C. Oral probiotic and prevention of Pseudomonas aeruginosa infections: a randomized, double-blind, placebo-controlled pilot study in intensive care unit patients. Crit Care. 2008;12(3):R69.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Barraud D, Bollaert PE, Gibot S. Impact of the administration of probiotics on mortality in critically ill adult patients: a meta-analysis of randomized controlled trials. Chest. 2013;143(3):646–55.

    PubMed  Google Scholar 

  60. AlFaleh K, Anabrees J. Probiotics for prevention of necrotizing enterocolitis in preterm infants. Cochrane Database Syst Rev. 2014;(4):CD005496.

    Google Scholar 

  61. Besselink MG, van Santvoort HC, Buskens E, Boermeester MA, van Goor H, Timmerman HM, et al. Probiotic prophylaxis in predicted severe acute pancreatitis: a randomised, double-blind, placebo-controlled trial. Lancet. 2008;371(9613):651–9.

    Article  PubMed  Google Scholar 

  62. Besselink MG, Timmerman HM, Buskens E, Nieuwenhuijs VB, Akkermans LM, Gooszen HG, et al. Probiotic prophylaxis in patients with predicted severe acute pancreatitis (PROPATRIA): design and rationale of a double-blind, placebo-controlled randomised multicenter trial [ISRCTN38327949]. BMC Surg. 2004;4:12.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Expression of concern--probiotic prophylaxis in predicted severe acute pancreatitis: a randomised, double-blind, placebo-controlled trial. Lancet. 2010;375(9718):875–6.

    Google Scholar 

  64. Moore FA, Feliciano DV, Andrassy RJ, McArdle AH, Booth FV, Morgenstein-Wagner TB, et al. Early enteral feeding, compared with parenteral, reduces postoperative septic complications. The results of a meta-analysis. Ann Surg. 1992;216(2):172–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Wang YC, McPherson K, Marsh T, Gortmaker SL, Brown M. Health and economic burden of the projected obesity trends in the USA and the UK. Lancet. 2011;378(9793):815–25.

    Article  PubMed  Google Scholar 

  66. Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A. 2005;102(31):11070–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Bäckhed F, Manchester JK, Semenkovich CF, Gordon JI. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A. 2007;104(3):979–84.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Hotamisligil GS. Endoplasmic reticulum stress and inflammation in obesity and type 2 diabetes. Novartis Found Symp. 2007;286:86–94. discussion 8, 162–3, 96–203.

    Article  PubMed  Google Scholar 

  69. Cani PD, Osto M, Geurts L, Everard A. Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes. 2012;3(4):279–88.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S, Srinivasan S, et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science. 2010;328(5975):228–31.

    Article  CAS  PubMed  Google Scholar 

  71. Arora T, Singh S, Sharma RK. Probiotics: interaction with gut microbiome and antiobesity potential. Nutrition. 2013;29(4):591–6.

    Article  CAS  PubMed  Google Scholar 

  72. Abu Kwaik Y, Bumann D. Microbial quest for food in vivo: ‘nutritional virulence’ as an emerging paradigm. Cell Microbiol. 2013;15(6):882–90.

    Article  CAS  PubMed  Google Scholar 

  73. Rohmer L, Hocquet D, Miller SI. Are pathogenic bacteria just looking for food? Metabolism and microbial pathogenesis. Trends Microbiol. 2011;19(7):341–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Santos RL, Raffatellu M, Bevins CL, Adams LG, Tükel C, Tsolis RM, et al. Life in the inflamed intestine, Salmonella style. Trends Microbiol. 2009;17(11):498–506.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Raffatellu M, George MD, Akiyama Y, Hornsby MJ, Nuccio SP, Paixao TA, et al. Lipocalin-2 resistance confers an advantage to Salmonella enterica serotype Typhimurium for growth and survival in the inflamed intestine. Cell Host Microbe. 2009;5(5):476–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Winter SE, Winter MG, Xavier MN, Thiennimitr P, Poon V, Keestra AM, et al. Host-derived nitrate boosts growth of E. coli in the inflamed gut. Science. 2013;339(6120):708–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Price CT, Al-Quadan T, Santic M, Rosenshine I, Abu Kwaik Y. Host proteasomal degradation generates amino acids essential for intracellular bacterial growth. Science. 2011;334(6062):1553–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel H. Teitelbaum MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Barrett, M., Teitelbaum, D.H. (2016). Microbiome in the Critically Ill. In: Seres, D., Van Way, III, C. (eds) Nutrition Support for the Critically Ill. Nutrition and Health. Humana Press, Cham. https://doi.org/10.1007/978-3-319-21831-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21831-1_15

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-21830-4

  • Online ISBN: 978-3-319-21831-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics