Skip to main content

Nitrogen Transformations in Soils, Agricultural Plants and the Atmosphere

  • Chapter
Sustainable Agriculture Reviews

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 18))

Abstract

In dynamically developing countries plant production is on the increase together with the use of fertilizers and increasing air pollution with ammonia and nitrogen oxides (NOx) and nitrous oxide (N2O) is observed. When these forms of nitrogen occur at very high concentrations, they may be harmful to the environment (e.g. to cause the acidification of soils, an eutrophication, global warming, toxicity to plants, animals and for people). The monitoring of the concentrations of gases released into the atmosphere is important in order to reduce their amounts. However, this does not depend only on a human activity, but also on the intensity of the processes occurring in nature. Hence, in this paper the following issues are discussed: (1) the processes associated with the nitrogen cycle, occurring in soils, plants and the atmosphere, (2) the factors affecting them, (3) methods of the analysis of concentrations of these gases in the atmosphere and ammonium, nitrate, nitrite, organic and total nitrogen – in plants and soils. Both old, but commonly used methods and modern ones were presented, requiring specialized and expensive equipment. Alternative methods are suggested that are less expensive and more convenient in field studies, as well as enabling the monitoring of environmental pollution in the long term and at many locations simultaneously. The possibility of using a new method for the determination of trace amounts of ammonia in the air and ammonium nitrogen in plants and soils is pointed out. The review presents the most important factors affecting variable gas concentrations in the atmosphere, which, in addition to the use of fertilizers, may also include crop species, animal husbandry and meteorological conditions. Three spectrophotometric methods, the Nessler method, the indophenol method and the ISO 7150 method are compared to show that the ISO method is the best to analyse N concentrations in soils and plants. Passive samplers are used to measure ammonia in the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addiscott TM (1996) Fertilizers and nitrate leaching. In: Hester RE, Harrison RM (eds) Issues in environmental science and technology, 5th edition The Royal Society of Chemistry, Cambridge, pp. 1–26

    Google Scholar 

  • Adema EH, Mejstřík V, Binek B (1993) The determination of NH3-concentration gradients in a spruce forest using a passive sampling technique. Water Air Soil Poll 69:321–335. doi:10.1007/BF00478168

    CAS  Google Scholar 

  • Alebic-Juretic A (2008) Airborne ammonia and ammonium within the Northern Adriatic area, Croatia. Environ Pollut 154:439–447. doi:10.1016/j.envpol.2007.11.029

    CAS  PubMed  Google Scholar 

  • Amri S, Driejana R, Irsyad M (2009) Proceedings of international conference on sustainable infrastructure and built environment in developing countries, section H: environmental protection and management, Bandung, 2–3 Nov 2009, pp. 274–278

    Google Scholar 

  • Asman WAH (1992) Ammonia emission in Europe: update emission and emission variations. Report 228471008. National Institute of Public health and Environmental protection, Bilthoven

    Google Scholar 

  • Bandurska H, Floryszak-Wieczorek J, Gniazdowska-Skoczek H, Kozłowska M, Kubiś J, Politycka B, Stroiński A (1994) The assimilation of nitrates. Task 3.2. The induction of nitrate reductase. In: Fiedorow Z A guidebook to exercises from the physiology of plants. Scripts of The Agricultural Academy. The script for students of Agricultural, Horticultural and Forest Faculties, Publisher of Agricultural Academy in Poznań, Poland (in Polish), pp. 52–55

    Google Scholar 

  • Barthelmie RJ, Pryor SC (1998) Implications of ammonia emissions for fine aerosol formation and visibility impairment – a case study from the lower fraser valley, British Columbia. Atmos Environ 32:345–352. doi:10.1016/S1352-2310(97)83466-8

    CAS  Google Scholar 

  • Batlle-Aguilar J, Brovelli A, Porporato A, Barry DA (2011) Modelling soil carbon and nitrogen cycles during land use change. A review. Agron Sustain Dev 31:251–274. doi:10.1051/agro/2010007

    CAS  Google Scholar 

  • Bechle MJ, Millet DB, Marshall JD (2013) Remote sensing of exposure to NO2: satellite versus ground-based measurement in a large urban area. Atmos Environ 69:345–353. doi:10.1016/j.atmosenv.2012.11.046

    CAS  Google Scholar 

  • Bélanger G, Richards JE (2000) Dynamics of biomass and N accumulation of alfalfa under three N fertilization rates. Plant Soil 219:177–185

    Google Scholar 

  • Bergström A-K, Jansson M (2006) Atmospheric nitrogen deposition has caused nitrogen enrichment and eutrophication of lakes in the northern hemisphere. Glob Chang Biol 12:635–643. doi:10.1111/j.1365-2486.2006.01129.x

    Google Scholar 

  • Bishop EC, Hossain MA (1984) Field comparison between two nitrous oxide (N2O) passive monitors and conventional sampling methods. Am Ind Hyg Assoc J 45(12):812–816. doi:10.1080/15298668491400692

    CAS  PubMed  Google Scholar 

  • Bouwman AF, Lee DS, Asman WAH, Dentener FJ, Van der Hoek KW, Olivier JGJ (1997) A global high-resolution emission inventory for ammonia. Global Biogeochem Cycles 11:561–587. doi:10.1029/97GB02266

    CAS  Google Scholar 

  • Bouwman AF, Van Vuuren DP, Derwent RG, Posch M (2002) A global analysis of acidification and eutrophication of terrestrial ecosystems. Water Air Soil Poll 141:349–382

    CAS  Google Scholar 

  • Bremner JM (1965) Total nitrogen. In: Black CA et al. (eds) Methods of soil analysis, part 2. Agronomy, vol 9. Am. Soc. Agron. Inc, Madison, pp. 1149–1178

    Google Scholar 

  • Brink C, Kroeze C, Klimont Z (2001) Ammonia abatement and its impact on emissions of nitrous oxide and methane – part 2: application for Europe. Atmos Environ 35:6313–6325. doi:10.1016/S1352-2310(01)00433-2

    CAS  Google Scholar 

  • Buijsman E, Aben JMM, Van Elzakker BG, Mennen MG (1998) An automatic atmospheric ammonia network in the Netherlands. Setup and results. Atmos Environ 32:317–324. doi:10.1016/S1352-2310(97)00233-1

    CAS  Google Scholar 

  • Burton DL, Beauchamp EG (1986) Nitrogen losses from swine housings. Agric Wastes 15(1):59–74. doi:10.1016/0141-4607(86)90126-5

    Google Scholar 

  • Butterbach-Bahl K, Nemitz E, Zaehle S, Billen G, Boeckx P, Erisman JW, Garnier J, Upstill-Goddard R, Kreuzer M, Oenema O, Reis S, Schaap M, Simpson D, de Vries W, Winiwarter W, Sutton MA (2011) Nitrogen as a threat to the European greenhouse balance. In: Sutton MA, Howard CM, Erisman JW, Billen G, Bleeker A, Grennfelt P, van Grinsven H, Grizzetti B (eds) Chapter 19. The European Nitrogen Assessment. Sources, effects and policy perspectives. Published in the United States of America by Cambridge University Press, New York, pp. 434–462

    Google Scholar 

  • Campbell WH (1999) Nitrate reductase structure, function and regulation: bridging the gap between biochemistry and physiology. Annu Rev Plant Physiol Plant Mol Biol 50:277–303

    CAS  PubMed  Google Scholar 

  • Chien SH, Prochnow LI, Cantarella H (2009) Recent developments of fertilizer production and use to improve nutrient efficiency and minimize environmental impacts. Adv Agron 102:267–322. doi:10.1016/S0065-2113(09)01008-6

    CAS  Google Scholar 

  • Clarkson DT, Warner AJ (1979) Relationships between root temperature and the transport of ammonium and nitrate ions by Italian and Perennial ryegrass (Lolium multiflorum and Lolium perenne). Plant Physiol 64:557–561

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cowell DA, Apsimon HM (1998) Cost-effective strategies for the abatement of ammonia emissions from European agriculture. Atmos Environ 32(3):573–580. doi:10.1016/S1352-2310(97)00203-3

    CAS  Google Scholar 

  • Cruchaga S, Lasa B, Jauregui I, González-Murua C, Aparicio-Tejo PM, Ariz I (2013) Inhibition of endogenous urease activity by NBPT application reveals differential N metabolism responses to ammonium or nitrate nutrition in pea plants: a physiological study. Plant Soil 373:813–827. doi:10.1007/s11104-013-1830-x

    CAS  Google Scholar 

  • Cygański A (1993 and 2009) Spectroscopic methods in analytical chemistry (in Polish), 4th extended edition. Scientific and Technical Publishing Houses Ltd., Warsaw, pp. 213–214

    Google Scholar 

  • David M, Loubet B, Cellier P, Mattsson M, Schjoerring JK, Nemitz E, Roche R, Riedo M, Sutton M (2009) Ammonia sources and sinks in an intensively managed grassland using dynamic chambers. Biogeosciences 6:1903–1915. doi:10.5194/bg-6-1903-2009

    CAS  Google Scholar 

  • De Vries W, Solberg S, Dobbertin M, Sterba H, Laubhann D, van Oijen M, Evans C, Gundersen P, Kros J, Wamelink GWW, Reinds GJ, Sutton MA (2009) The impact of nitrogen deposition on carbon sequestration by terrestrial ecosystems. Forest Ecol Manag 258:1814–1823. doi:10.1016/j.foreco.2009.02.034

    Google Scholar 

  • Debouba M, Gouia H, Valadier MH, Ghorbel MH, Suzuki A (2006) Salinity-induced tissue-specific diurnal changes in nitrogen assimilatory enzymes in tomato seedlings grown under high or low nitrate medium. Plant Physiol Biochem 44:409–419

    CAS  PubMed  Google Scholar 

  • Denmead OT, Simpson JR, Freney JR (1974) Ammonia flux into the atmosphere from a grazed pasture. Science 185:609–610. doi:10.1126/science.185.4151.609

    CAS  PubMed  Google Scholar 

  • Duxbury JM (1994) The significance of agricultural sources of greenhouse gases. Fert Res 38:151–163. doi:10.1007/BF00748775

    Google Scholar 

  • Elbanowska H, Zerbe J, Siepak J (1999) Physico-chemical studies of waters. Polish Scientific Publishers Adam Mickiewicz University (UAM), Poznań, (in Polish), pp. 121–126, 177

    Google Scholar 

  • Erisman JW, Grennfelt P, Sutton M (2003) The European perspective on nitrogen emission and deposition. Environ Int 29:311–325. doi:10.1016/S0160-4120(02)00162-9

    CAS  PubMed  Google Scholar 

  • Farquhar GD, Firth PM, Wetselaar R, Weir B (1980) On the gaseous exchange of ammonia between leaves and the environment: determination of the ammonia compensation point. Plant Physiol 66:710–714. doi:10.1104/pp. 66.4.710

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fenn LB, Matocha JE, Wu E (1982) Substitution of ammonium and potassium for added calcium in reduction of ammonia loss from surface-applied urea. Soil Sci Soc Am J 46:771–776. doi:10.2136/sssaj1982.03615995004600040021x

    CAS  Google Scholar 

  • Flechard CR, Ambus P, Skiba U, Rees RM, Hensen A, van Amstel A, van den Pol-van DA, Soussana J-F, Jones M, Clifton-Brown J, Raschi A, Horvath L, Neftel A, Jocher M, Ammann C, Leifeld J, Fuhrer J, Calanca P, Thalman E, Pilegaard K, Di Marco C, Campbell C, Nemitz E, Hargreaves KJ, Levy PE, Ball BC, Jones SK, van de Bulk WCM, Groot T, Blom M, Domingues R, Kasper G, Allard V, Ceschia E, Cellier P, Laville P, Henault C, Bizouard F, Abdalla M, Williams M, Baronti S, Berretti F, Grosz B (2007) Effects of climate and management intensity on nitrous oxide emissions in grassland systems across Europe. Agr Ecosyst Environ 121:135–152. doi:10.1016/j.agee.2006.12.024

    CAS  Google Scholar 

  • Flesh TK, Wilson JD, Herper LA, Crenna BP (2005) Estimating gas emissions from a farm with an inverse – dispersion technique. Atmos Environ 39:4863–4874. doi:10.1016/j.atmosenv.2005.04.032

    Google Scholar 

  • Fowler D, Pilegaard K, Sutton MA, Ambus P, Raivonen M, Duyzer J, Simpson D, Fagerli H, Fuzzi S, Schjoerring JK, Granier C, Neftel A, Isaksen ISA, Laj P, Maione M, Monks PS, Burkhardt J, Daemmgen U, Neirynck J, Personne E, Wichink-Kruit R, Butterbach-Bahl K, Flechard C, Tuovinen JP, Coyle M, Gerosa G, Loubet B, Altimir N, Gruenhage L, Ammann C, Cieslik S, Paoletti E, Mikkelsen TN, Ro-Poulsen H, Cellier P, Cape JN, Horváth L, Loreto F, Niinemets Ü, Palmer PI, Rinne J, Misztal P, Nemitz E, Nilsson D, Pryor S, Gallagher MW, Vesala T, Skiba U, Brüggemann N, Zechmeister-Boltenstern S, Williams J, O'Dowd C, Facchini MC, de Leeuw G, Flossman A, Chaumerliac N, Erisman JW (2009) Atmospheric composition change: ecosystems-atmosphere interactions. Atmos Environ 43:5193–5267. doi:10.1016/j.atmosenv.2009.07.068

    CAS  Google Scholar 

  • Gabryś H (1998) 4.2. Metabolism of nitrogen. In: Kopcewicz J, Lewak S (eds) Basics of plant physiology. Polish Scientific Publishing – PWN SA, Warsaw (in Polish), pp. 206–215

    Google Scholar 

  • Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vorosmarty CJ (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226. doi:10.1007/s10533-004-0370-0

    CAS  Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai ZC, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892. doi:10.1126/science.1136674

    CAS  PubMed  Google Scholar 

  • Geetanjali NG (2007) Symbiotic nitrogen fixation in legume nodules: process and signaling. A review. Agron Sustain Dev 27:59–68. doi:10.1051/agro:2006030

    Google Scholar 

  • Ghauch A, Rima J, Charef A, Suptil J, Fachinger C, Martin-Bouyer M (1999) Quantitative measurements of ammonium, hydrogen phosphate and Cu(II) by diffuse reflectance spectrometry. Talanta 48:385–392. doi:10.1016/S0039-9140 (98) 00260-4

    CAS  PubMed  Google Scholar 

  • Górnicka J (2013) Body strengthening. Health library (in Polish). Jerzy Mostowski Publishing Agency, Janki near Warsaw, Raszyn, pp. 15–20

    Google Scholar 

  • Gradko International Limited (2012) Gradko environmental. Technical data sheet, DIF 400 RTU – AMMONIA, TDS 7: V1 March. Gradko International Ltd., Winchester

    Google Scholar 

  • Griffin G, Jokela W, Ross D (1995) Recommended soil nitrate-N tests. In: Sims T, Wolf A (eds) Recommended soil testing procedures for the Northeastern United States. U Delaware Agric Exp Stn Bull 493: 22–29

    Google Scholar 

  • Groffman PM, Boulware NJ, Zipperer WC, Pouyat RV, Band LE, Colosimo MF (2002) Soil nitrogen cycle processes in urban riparian zones. Environ Sci Tech 36:4547–4552

    CAS  Google Scholar 

  • Guerreiro CBB, Foltescu V, de Leeuw F (2014) Air quality status and trends in Europe. Atmos Environ 98:376–384. doi:10.1016/j.atmosenv.2014.09.017

    CAS  Google Scholar 

  • Harper LA, Catchpoole VR, Davis R, Weir KL (1983) Ammonia volatilization: soil, plant and microclimate effects on diurnal and seasonal fluctuations. Agron J 75(2):212–218. doi:10.2134/agronj1983.00021962007500020014x

    Google Scholar 

  • Harper LA, Sharpe RR, Langdale GW, Giddens JE (1987) Nitrogen cycling in a wheat crop: soil, plant, and aerial nitrogen transport. Agron J 79:965–973

    Google Scholar 

  • Hauk S, Gutser R, Zeisig HD (1990) Wirkung von hühnerstallabluft auf pflanzen. In: KTBL/VDI (ed) Ammoniak in der Umwelt. Kreisläufe, Wirkungen, Minderung., Gemeinsames Symp., 10–12 Okt., FAL, Braunschweig-Völkenrode. Landwirtschaftsverlag, Muünster-Hiltrup, pp. 9.1–9.13

    Google Scholar 

  • Hensen A, Skiba U, Famulari D (2013) Low cost and state of the art methods to measure nitrous oxide emissions. Environ Res Lett 8:1–10. doi:10.1088/1748-9326/8/2/025022

    Google Scholar 

  • Hertel O, Reis S, Skjøth CA, Bleeker A, Harrison R, Cape JN, Fowler D, Skiba U, Simpson D, Jickells T, Baker A, Kulmula M, Gyldenkaerne S, Sørensen LL, Erisman JW (2011) Nitrogen processes in the atmosphere. In: Sutton MA, Howard CM, Erisman JW, Billen G, Bleeker A, Grennfelt P, Van Grinsven H, Grizzetti B (eds) Chapter 9. The European Nitrogen Assessment. Sources, effects and policy perspectives. Published in the United States of America by Cambridge University Press, New York, pp. 177–207

    Google Scholar 

  • Hoffmann G, Teicher K (1961) Urease. Colorimetric method. Z. Pflanzenernährung, Düngung, Bodenkunde 95(104):55 In: Bergmeyer H-U (ed) Methods of enzymatic analysis. Verlag Chemie, Gmbh, Weinheim/Bergstr., Acad. Press, New York/London, 1963, pp. 912–916

    Google Scholar 

  • Holland EA, Braswell BH, Lamarque J‐F, Townsend A, Sulzman J, Müller J‐F, Dentener F, Brasseur G, Levy H II, Penner E, Roelofs GJ (1997) Variations in the predicted spatial distribution of atmospheric nitrogen deposition and their impact on carbon uptake by terrestrial ecosystems. J Geophys Res 102:15849–15866. doi:10.1029/96JD03164

    CAS  Google Scholar 

  • Holtan-Hartwig L, Bøckman OC (1994) Ammonia exchange between crops and air. Norw J Agric Sci (Suppl. 14):1–41

    Google Scholar 

  • Humphries EC (1956) Mineral components and ash analysis. In: Paech K, Tracey MV (eds) Modern methods of plant analysis, vol 1. Springer-Verlag, Berlin, pp. 468–502. doi:10.1007/978-3-642-80530-1_17

    Google Scholar 

  • Husted S, Jensen JS, Jørgensen SS (1991) Reducing ammonia loss from cattle slurry by the use of acidifying additives: the role of the buffer system. J Sci Food Agric 57:335–349. doi:10.1002/jsfa.2740570305

    CAS  Google Scholar 

  • Isermann K (1994) Agriculture’s share in the emission of trace gases affecting the climate and some cause-oriented proposals for sufficiently reducing this share. Environ Pollut 83:95–111. doi:10.1016/0269-7491(94)90027-2

    CAS  PubMed  Google Scholar 

  • Ishizawa S, Tanabe I, Matsuguchi T (1961) Effects of DD, EDB and PCP upon microorganisms and their activities in soil part II effects on microbial activity. Soil Sci Plant Nutr 6(4):156–163. doi:10.1080/00380768.1961.10430941

    Google Scholar 

  • ISO 7150-1 (1984) Water quality – determination of ammonium – part 1: manual spectrometric method: 1–7. This standard was published on 1984-05-01 and last reviewed in 2012. http://www.iso.org/iso/catalogue_detail.htm?csnumber=13742

  • ISO/TS 14256-1 (2003) Soil quality – determination of nitrate, nitrite and ammonium in field – moist soils by extraction with potassium chloride solution – part 1: manual method. NORMSERVIS s.r.o., Czech Republic, pp. 1–14

    Google Scholar 

  • Johansen A (1999) Depletion of soil mineral N by roots of Cucumis sativus L. colonized or not by arbuscular mycorrhizal fungi. Plant Soil 209:119–127. doi:10.1023/A:1004558126118

    CAS  Google Scholar 

  • Jüttner F (1999) Interference with ammonium determination by the indophenol-type reaction of salicylate and dichloroisocyanurate. Fresen J Anal Chem 363:128–129, doi:10.1007/s002160051156

    Google Scholar 

  • Kallinger G, Niessner R (1999) Laboratory investigation of annular denuders as sampling system for the determination of aliphatic primary and secondary amines in stack gas. Microchim Acta 130:309–316, doi:10.1007/BF01242921

    CAS  Google Scholar 

  • Kandeler E (1996) Nitrate reductase activity. In: Schinner F, Öhlinger R, Kandeler E, Margesin R (eds) Methods in soil biology. Springer-Verlag, Berlin, pp. 176–179

    Google Scholar 

  • Kandeler E, Gerber H (1988) Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol Fertil Soils 6:68–72. doi:10.1007/BF00257924

    CAS  Google Scholar 

  • Keeney DR, Bremner JM (1966) Comparison and evaluation of laboratory methods of obtaining an index of soil nitrogen availability. Agron J 58:498–503

    CAS  Google Scholar 

  • Konieczka P, Namieśnik J (2007) Assessment and control of the quality of analytical measurements results (in Polish). Scientific and Technical Publishing Houses Ltd., Warsaw, pp. 96–97, 225–300

    Google Scholar 

  • Kopáček J, Veselý J (2005) Sulfur and nitrogen emissions in the Czech Republic and Slovakia from 1850 till 2000. Atmos Environ 39:2179–2188. doi:10.1016/j.atmosenv.2005.01.002

    Google Scholar 

  • Kopcewicz J, Lewak S (eds) (1998) Fundamentals of plant physiology (in Polish), Polish Scientific Publishers – PWN SA, Warsaw, pp. 538–541, 684

    Google Scholar 

  • Krul CA, Zeilmaker MJ, Schothorst RC, Havenaar R (2004) Intra gastric formation and modulation of N-nitrosodimethylamine in a dynamic in vitro gastrointestinal model under human physiological conditions. Food Chem Toxicol 42:51–63

    CAS  PubMed  Google Scholar 

  • Kułek B (2009a) The use of photoacoustic method for detecting ammonia concentrations in the atmosphere. Quality of the environment, raw materials and food. Materials of III scientific symposium, Lublin, 30–31 Mar 2009, pp. 320–321 (in Polish)

    Google Scholar 

  • Kułek B (2009b) The application of passive samplers for the detection of the concentration of gaseous ammonia and nitrous oxide in different ecosystems and seasons of the year. Quality of the environment, raw materials and food. Materials of III scientific symposium, Poland, Lublin, 30–31 Mar 2009, pp. 317–319 (in Polish)

    Google Scholar 

  • Kułek B (2010a) Part B: posters – 4.11. A determination of ammonia concentration over crop fields at different locations in the vicinity of Turew. NitroEurope IP open science conference “reactive nitrogen and the European greenhouse gas balance”, Solothurn, 3–4 Feb 2010, pp. 77–78

    Google Scholar 

  • Kułek B (2010b) A determination of ammonia concentration over crop fields at different locations in the vicinity of Turew. Quality of the environment, raw materials and food. Materials of IV scientific symposium, Poland, Kraków, 22–23 Apr 2010, pp. 322–325 (in Polish)

    Google Scholar 

  • Kułek B (2011) Part C. Poster abstracts in session S1 “novel approaches to measuring, interpreting and parameterising biosphere/atmosphere exchange of nitrogen compounds”. In: Sutton M et al. (editors) Nitrogen & global change key findings – future challenges conference proceedings. Edinburgh, 11–15 Apr 2011. http://nitrogen.ceh.ac.uk/nitrogen2011/_poster_presentations/S1_Kulek.pdf

  • LaHue MD, Axelrod HD, Lodge JP (1971) Measurement of atmospheric nitrous oxide using a molecular sieve 5A trap and gas chromatography. Anal Chem 43(8):1113–1115. doi:10.1021/ac60303a025

    CAS  Google Scholar 

  • Leiva GMA, Gonzales B, Vargas D, Toro R, Morales SRGE (2013) Estimating the uncertainty in the atmospheric ammonia concentration in an urban area by Ogawa passive samplers. Microchem J 110:340–349. doi:10.1016/j.microc.2013.05.004

    Google Scholar 

  • Lemon E, Van Houtte R (1980) Ammonia exchange at the land surface. Agron J 72:876–883. doi:10.2134/agronj1980.00021962007200060005x

    CAS  Google Scholar 

  • Levine IN (1995) Physical chemistry, 4th edition, McGraw-Hill, New York

    Google Scholar 

  • Loubet B, Laville P, Lehuger S, Larmanou E, Fléchard C, Mascher N, Genermont S, Roche R, Ferrara RM, Stella P, Personne E, Durand B, Decuq C, Flura D, Masson S, Fanucci O, Rampon J-N, Siemens J, Kindler R, Gabrielle B, Schrumpf CP (2011) Carbon, nitrogen and greenhouse gases budgets over a four years crop rotation in northern France. Plant Soil 343:109–137. doi:10.1007/s11104-011-0751-9

    CAS  Google Scholar 

  • Malhi SS, Nyborg M, Jahn HG, Penney DC (1988) Yield and nitrogen uptake of rapeseed (Brassica campestris L.) with ammonium and nitrate. Plant Soil 105:231–239. doi:10.1007/BF02376787

    CAS  Google Scholar 

  • Marczenko Z, Balcerzak M (1998) Chapter 7: Nitrogen. In: Galus M (editor) Spectrophotometric methods in inorganic analysis. PWN SA, Warszawa, pp. 102–112 (in Polish)

    Google Scholar 

  • Mattsson M, Schjoerring JK (2003) Senescence-induced changes in apoplastic and bulk tissue ammonia concentrations of ryegrass leaves. New Phytol 160:489–499. doi:10.1046/j.1469-8137.2003.00902.x

    Google Scholar 

  • McCulloch RB, Stephen FG, Murray J, George C, Aneja VP (1998) Analysis of ammonia, ammonium aerosols and acid gases in the atmosphere at a commercial hog farm in eastern North Carolina, USA. Environ Pollut 102(S1):263–268. doi:10.1016/S0269-7491(98)80042-0

    CAS  Google Scholar 

  • McGinn SM, Janzen HH (1998) Ammonia sources in agriculture and their measurement. Can J Soil Sci 78(1):139–148. doi:10.4141/S96-059

    CAS  Google Scholar 

  • Misselbrook T, Hansen M (2001) Field evaluation of the equilibrium concentration technique (JTI method) for measuring ammonia emission from land spread manure or fertiliser. Atmos Environ 22:3761–3768. doi:10.1016/S1352-2310(01)00169-8

    Google Scholar 

  • Moldanová J, Grennfelt P, Jonsson Å (2011) Nitrogen as a threat to European air quality. In: Sutton MA, Howard CM, Erisman JW, Billen G, Bleeker A, Grennfelt P, van Grinsven H, Grizzetti B (eds) Chapter 18 The European nitrogen assessment. Sources, effects and policy perspectives. Published in the United States of America by Cambridge University Press, New York, pp. 405–433

    Google Scholar 

  • Morcheoine A (2002) Passive samplers for nitrogen dioxide. ADEME Éditions, Paris, pp. 1–148

    Google Scholar 

  • Morgan JA, Parton WJ (1989) Characteristics of ammonia volatilization from spring wheat. Crop Sci 29:726–731

    Google Scholar 

  • Morier I, Schleppi P, Saurer M, Providoli I, Guenat C (2010) Retention and hydrolysable fraction of atmospherically deposited nitrogen in two contrasting forest soils in Switzerland. Eur J Soil Sci 61:197–206. doi:10.1111/j.1365-2389.2010.01226.x

    CAS  Google Scholar 

  • Morra L, Pagano L, Iovieno P, Baldantoni D, Alfani A (2010) Soil and vegetable crop response to addition of different levels of municipal waste compost under Mediterranean greenhouse conditions. Agron Sustain Dev 30:701–709. doi:10.1051/agro/2009046

    Google Scholar 

  • Mroczkowski W, Cygański A (1983) Spectrophotometric determination of nitrogen in plant materials. Anal Chem (in Polish) 28:319–323

    CAS  Google Scholar 

  • Nemitz E, Sutton MA, Gut A, San JR, Husted S, Schjoerring JK (2000) Sources and sinks of ammonia within an oilseed rape canopy. Agr Forest Meteorol (Ammonia Exchange Special Issue) 105(4):385–404. doi:10.1016/S0168-1923(00)00205-7

    Google Scholar 

  • Nemitz E, Milford C, Sutton MA (2001) A two-layer canopy compensation point model for describing bi-directional biosphere-atmosphere exchange of ammonia. Q J Roy Meteorol Soc 127:815–833. doi:10.1002/qj.49712757306

    Google Scholar 

  • Nishikawa Y, Taguchi K (1987) Ion chromatographic determination of nitrogen dioxide and sulphur dioxide in the atmosphere using triethanolamine-potassium hydroxide-coated cartridges. J Chromatogr 396:251–259. doi:10.1016/S0021-9673(01)94062-2

    CAS  PubMed  Google Scholar 

  • Nishikawa Y, Taguchi K, Tsujino Y, Kuwata K (1986) Ion chromatographic determination of nitrogen dioxide in the atmosphere by using a triethanolamine-coated cartridge. J Chromatogr 370(1):121–130. doi:10.1016/S0021-9673(00)94680-6

    CAS  Google Scholar 

  • Palmes ED (1981) Development and application of a diffusional sampler for NO2. Environ Int 5(2):97–100. doi:10.1016/0160-4120(81)90128-8

    CAS  Google Scholar 

  • Panak H (1997) Methodological guide for agricultural chemistry exercises, 3rd edn. M. Oczapowski Agricultural and Technical Academy, ART Olsztyn Publishing House, Olsztyn, (in Polish), pp. 71–77

    Google Scholar 

  • Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon Press, Elmsford

    Google Scholar 

  • PN-ISO 14256-2 (2010) Soil quality. Determination of nitrate, nitrite and ammonium in field moist soils by extraction with potassium chloride solution – part 2: automated method with segmented flow analysis. Polish standard. Polish Committee for Standardization, Warsaw (in Polish), September, pp. 1–16

    Google Scholar 

  • PN-R-04028 (1997) Agrochemical soil analysis – determination of nitrate and ammonium ions in the mineral soils. Polish standard. Polish Committee for Standardization, Warsaw (in Polish), December, pp. 1–5

    Google Scholar 

  • PN-R-04030 (1998) Agrochemical plants analyses – determination of nitrate (V) ions in plant material. Polish standard. Polish Committee for Standardization, Warsaw (in Polish), October, pp. 1–4

    Google Scholar 

  • PN-Z-04009-2 (1998) Air purity protection – tests for nitrogen and its compounds – determination of ammonia in ambient air (immission) by spectrophotometric, indophenol method. Polish standard. Polish Committee for Standardization, Warsaw (in Polish), July, pp. 1–5

    Google Scholar 

  • PN-Z-04009-9 (1997) Air purity protection. Tests for content of nitrogen and its compounds – determination of nitrogen dioxide in ambient air (immission) by spectrophotometric method with Saltzman reagent, the Polish Committee for Standardization. Polish standard, Warsaw (in Polish), September, pp. 1–9

    Google Scholar 

  • Pogány A, Weidinger T, Bozóki Z, Mohácsi A, Bieńkowski J, Józefczyk D, Eredics A, Bordás A, Gyöngyösi AZ, Horváth L, Szabó G (2012) Application of a novel photoacoustic instrument for ammonia concentration and flux monitoring above agricultural landscape – results of a field measurement campaign in Choryń, Poland. Időjárás 116(2):93–107

    Google Scholar 

  • Pryor SC, Barthelmie RJ, Sørensen BJ (2001) Ammonia concentrations and fluxes over a forest in the midwestern USA. Atmos Environ 35(32):5645–5656. doi:10.1016/S1352-2310(01)00259-X

    CAS  Google Scholar 

  • Puchalski MA, Sather ME, Walker JT, Lehmann CMB, Gay DA, Mathew J, Robarge WP (2011) Passive ammonia monitoring in the United States: comparing three different sampling devices. J Environ Monit 13:3156–3167. doi:10.1039/C1EM10553A

    CAS  PubMed  Google Scholar 

  • Pushkarsky MB, Webber ME, Baghdassarian O, Narasimhan LR, Patel CKN (2002) Laser-based photoacoustic ammonia sensors for industrial application. Appl Phys B 75:391–396. doi:10.1007/s00340-002-0967-8

    CAS  Google Scholar 

  • Qiu W, Di HJ, Cameron KC, Hu CH (2010) Nitrous oxide emissions from animal urine as affected by season and a nitrification inhibitor dicyandiamide. J Soils Sediments 10:1229–1235. doi:10.1007/s11368-010-0242-2

    CAS  Google Scholar 

  • Reche C, Viana M, Pandolfi M, Alastuey A, Moreno T, Amato F, Ripoll A, Querol X (2012) Urban NH3 levels and sources in a Mediterranean environment. Atmos Environ 57:153–164. doi:10.1016/j.atmosenv.2012.04.021

    CAS  Google Scholar 

  • Rhine ED, Sims GK, Mulvaney RL, Pratt EJ (1998) Soil Sci Soc Am J 62:473–480. doi:10.2136/sssaj1998.03615995006200020026x

    CAS  Google Scholar 

  • Riddick SN, Blackall TD, Dragosits U, Daunt F, Braban CF, Tang YS, MacFarlane W, Taylor S, Wanless S, Sutton MA (2014) Measurement of ammonia emissions from tropical seabird colonies. Atmos Environ 89:35–42. doi:10.1016/j.atmosenv.2014.02.012

    CAS  Google Scholar 

  • Roadman MJ, Scudlark JR, Meisinger JJ, Ullman WJ (2003) Validation of Ogawa passive samplers for the determination of gaseous ammonia concentrations in agricultural settings. Atmos Environ 37:2317–2325. doi:10.1016/S1352-2310(03)00163-8

    CAS  Google Scholar 

  • Robarge WP, Walker JT, McCulloch RB, Murray G (2002) Atmospheric concentrations of ammonia and ammonium at an agricultural site in the southeast United States. Atmos Environ 36(10):1661–1674. doi:10.1016/S1352-2310(02)00171-1

    CAS  Google Scholar 

  • Sahrawat KL (1995) Fixed ammonium and carbon – nitrogen ratios of some semi-arid tropical Indian soils. Geoderma 68:219–224

    CAS  Google Scholar 

  • Sapek A, Sapek B (1997) Chapters: 13.1. Extract preparation, 13.4.1. Extract mineralization, 13.4.2. Determination of organic nitrogen. In: Oenema O and Sapek A (editors) Methods of chemical analysis of organic soils. Instructional materials No. 115, Institute for Land Reclamation and Grassland Farming, IMUZ Publishing House , Falenty, Raszyn (in Polish), pp. 66, 69–71

    Google Scholar 

  • Schinner F, Kandeler E, Öhlinger R, Margesin R (1995) Methods in soil biology. Springer-Verlag, Berlin/New York. doi:10.1007/1978-3-642-60966-4

    Google Scholar 

  • Schjoerring JK (1995) Long-term quantification of ammonia exchange between agricultural cropland and the atmosphere. I. Evaluation of a new method based on passive flux samplers in gradient configuration. Atmos Environ 29(8):885–893. doi:10.1016/1352-2310(95)00020-Y

    CAS  Google Scholar 

  • Schjoerring JK, Sommer SG, Ferm M (1992) A simple passive sampler for measuring ammonia emission in the field. Water Air Soil Poll 62(1-2):13–24. doi:10.1007/BF00478450

    CAS  Google Scholar 

  • Schjørring JK (1991) In: Sharkey TD, Holland EA, Mooney HA (eds) Trace gas emissions by plants. Academic, San Diego, pp. 267–292

    Google Scholar 

  • Schlegel HG (1974) Production, modification, and consumption of atmospheric trace gases by microorganisms. Tellus 26(1-2):11–20

    CAS  Google Scholar 

  • Scholtens R, Dore CJ, Jones BMR, Lee DS, Phillips VR (2004) Measuring ammonia emission rates from livestock buildings and manure stores – part 1: development and validation of external tracer ratio, internal tracer ratio and passive flux sampling methods. Atmos Environ 38:3003–3015. doi:10.1016/j.atmosenv.2004.02.030

    CAS  Google Scholar 

  • Searle PL (1984) The Berthelot or indolphenol reaction and its use in the analytical chemistry of nitrogen – a review. Analyst 109:549–568. doi:10.1039/AN9840900549

    CAS  Google Scholar 

  • Shrivastava A, Gupta VB (2011) Methods for the determination of limit of detection and limit of quantification of the analytical methods. Chron Young Sci 2:21–25. doi:10.4103/2229-5186.79345

    Google Scholar 

  • Solórzano L (1969) Determination of ammonia in natural waters by the phenol hypochlorite method. Limnol Oceanogr 14:799–801. doi:10.4319/lo.1969.14.5.0799

    Google Scholar 

  • Sommer SG, Olesen JE, Christensen BT (1991) Effects of temperature, wind speed and air humidity on ammonia volatilization from surface applied cattle slurry. J Agric Sci (Camb) 117:91–100. doi:10.1017/S0021859600079016

    Google Scholar 

  • Stevens CJ, Dise NB, Mountford JO, Gowing DJ (2004) Impact of nitrogen deposition on the species richness of grasslands. Science 303:1876–1879. doi:10.1126/science.1094678

    CAS  PubMed  Google Scholar 

  • Sutton MA, Tang YS, Dragosits U, Fournier N, Dore AJ, Smith RI, Weston KJ, Fowler D (2001) A spatial analysis of atmospheric ammonia and ammonium in the U.K. Sci World J 1(S2):275–286. doi:10.1100/tsw.2001.313

    Google Scholar 

  • Sutton MA, Howard CM, Erisman JW, Billen G, Bleeker A, Grennfelt P, van Grinsven H, Grizzetti (2011) The European nitrogen assessment. Sources, effects and policy perspectives. Published in the United States of America by Cambridge University Press, New York

    Google Scholar 

  • Svensson L (1994) Ammonia volatilization following application of livestock manure to arable land. J Agric Eng Res 58:241–260. doi:10.1006/jaer.1994.1054

    CAS  Google Scholar 

  • Świetlik R, Dojlido JR (1999) Methods of water and sewage analysis (in Polish), 1st edn. Kazimierz Pułaski Radom University of Technology Publishing House, Radom, pp. 72–75, 78–80

    Google Scholar 

  • Szajdak LW, Gaca W (2010) The influence of nitrogen on denitrification processes in soil under shelterbelt and adjoining cultivated fields. In: Szajdak LW, Karabanov AK (editors) Physical, chemical and biological processes in soils. Poznań, pp. 225–235

    Google Scholar 

  • Szynkiewicz Z (1975) Microbiology. A handbook for zoo technical students of agricultural colleges. Polish Scientific Publishing – PWN SA, Warsaw, (in Polish), pp. 542–544

    Google Scholar 

  • Tang YS, Cape JN, Sutton MA (2001) Development and types of passive samplers for monitoring atmospheric NO2 and NH3 concentrations. Sci World J 1:513–529. doi:10.1100/tsw.2001.82

    CAS  Google Scholar 

  • Terman GL, Hunt CM (1964) Volatilization losses of nitrogen from surface-applied fertilizers, as measured by crop response. Soil Sci Soc Am Proc 28:667–672

    Google Scholar 

  • Tiggelaar RM, Veenstra TT, Sanders RGP, Berenschot E, Gardeniers H, Elwenspoek M, Prak A, Mateman R, Wissink JM, van der Berg A (2003) Analysis system for the detection of ammonia based on micro machined components modular hybrid versus monolithic integrated approach. Sens Actuators B 92:25–36. doi:10.1016/S0925-4005(03)00127-8

    CAS  Google Scholar 

  • Timmer B, Olthuis W, van den Berg A (2005) Ammonia sensors and their application – a review. Sens Actuators B 107:666–677. doi:10.1016/j.snb.2004.11.054

    CAS  Google Scholar 

  • Tsuboi T, Hirano Y, Shibata Y, Motomizu S (2002) Sensitivity improvement of ammonia determination based on flow-injection indophenol spectrophotometry with manganese(II) ion as a catalyst and analysis of exhaust gas of thermal power plant. Anal Sci 18:1141–1144

    CAS  PubMed  Google Scholar 

  • Valverde C, Wall LG (2003) Ammonium assimilation in root nodules of actinorhizal Discaria trinervis. Regulation of enzyme activities and protein levels by the availability of macronutrients (N, P and C). Plant Soil 254:139–153

    CAS  Google Scholar 

  • Van der Eerden LJM, Dueck TA, Berdowski JJM, Greven H, van Dobben HF (1991) Influence of NH3 and (NH4)2SO4 on heathland vegetation. Acta Bot Neerl 40:281–297

    Google Scholar 

  • Van Hove LWA, Koops AJ, Adema EH, Vredenberg WJ, Pieters GA (1987) Analysis of the uptake of atmospheric ammonia by leaves of Phaseolus vulgaris L. Atmos Environ 21:1759–1763

    Google Scholar 

  • Veenstra TT (2001) MAFIAS – an integrated lab-on-a-chip for the measurement of ammonium. Ph.D. Thesis. University of Twente

    Google Scholar 

  • Velthof G, Barot S, Bloem J, Butterbach-Bahl K, de Vries W, Kros J, Lavelle P, Olesen JE, Oenema O (2011) Nitrogen as a threat to European soil quality. In: Sutton MA, Howard CM, Erisman JW, Billen G, Bleeker A, Grennfelt P, Van Grinsven H, Grizzetti B (eds) Chapter 21. The European Nitrogen Assessment. Sources, effects and policy perspectives. Published in the United States of America by Cambridge University Press, New York, pp. 495–510

    Google Scholar 

  • Vogel AI, Svehla G and Vogel AI (1987) Vogel’s qualitative inorganic analysis, Harlow, Essex, England: Longman Scientific & Technical, 6th edition

    Google Scholar 

  • Von Bobrutzki K, Braban CF, Famulari D, Jones SK, Blackall T, Smith TEL, Blom M, Coe H, Gallagher M, Ghalaieny M, McGillen MR, Percival CJ, Whitehead JD, Ellis R, Murphy J, Mohacsi A, Pogány A, Junninen H, Rantanen S, Sutton MA, Nemitz E (2010) Field inter-comparison of eleven atmospheric ammonia measurement techniques. Atmos Meas Tech 3:91–112. doi:10.5194/amt-3-91-2010

    Google Scholar 

  • Voorburg JH, Kroodsma W (1992) Volatile emissions of housing systems for cattle. Livest Prod Sci 31(1-2):57–70. doi:10.1016/0301-6226(92)90052-6

    Google Scholar 

  • Walker JT, Whitall DR, Robarge W, Paerl HW (2004) Ambient ammonia and ammonium aerosol across a region of variable ammonia emission density. Atmos Environ 38(9):1235–1246. doi:10.1016/j.atmosenv.2003.11.027

    CAS  Google Scholar 

  • Walker J, Spence P, Kimbrough S, Robarge W (2008) Inferential model estimates of ammonia dry deposition in the vicinity of a swine production facility. Atmos Environ 42:3407–3418. doi:10.1016/j.atmosenv.2007.06.004

    CAS  Google Scholar 

  • Watson CJ, Poland P, Miller H, Allen MBD, Garrett MK, Christianson CB (1994) Agronomic assessment and 15N recovery of urea amended with the urease inhibitor nBTPT (N-(n-butyl)thiophosphoric triamide) for temperate grassland. Plant Soil 161(2):167–177. doi:10.1007/BF00046388

    CAS  Google Scholar 

  • Watt SA, Wagner-Riddle C, Edwards G, Vet RJ (2004) Evaluating a flux-gradient approach for flux and deposition velocity of nitrogen dioxide over short-grass surfaces. Atmos Environ 38:2619–2626, doi:10.1016/j.atmosenv.2004.02.021

    CAS  Google Scholar 

  • W-h Li, C-b Zhang, H-b Jiang, G-r Xin, Z-y Yang (2006) Changes in soil microbial community associated with invasion of the exotic weed, Mikania micrantha H.B.K. Plant Soil 281:309–324, doi:10.1007/s11104-005-9641-3

    Google Scholar 

  • Whitehead DC, Lockyer DR (1989) Decomposing grass herbage as a source of ammonia in the atmosphere. Atmos Environ 23:1867–1869

    CAS  Google Scholar 

  • Whitehead DC, Lockyer DR, Rastrick N (1988) The volatilization of ammonia from perennial ryegrass during decomposition, drying and induced senescence. Ann Bot 61(5):567–571

    CAS  Google Scholar 

  • Wichink-Kruit RJ (2010) Surface-atmosphere exchange of ammonia: measurements and modeling over non-fertilized grassland in the Netherlands. Ph.D Thesis, Wageningen University

    Google Scholar 

  • Wilson SM, Serre ML (2007) Use of passive samplers to measure atmospheric ammonia levels in a high-density industrial hog farm area of eastern North Carolina. Atmos Environ 41:6074–6086. doi:10.1016/j.atmosenv.2007.03.004

    CAS  Google Scholar 

  • Yamamoto N, Kabeya N, Onodera M, Takahahi S, Komori Y, Nakazuka E, Shirai T (1988) Seasonal variation of atmospheric ammonia and particulate ammonium concentrations in the urban atmosphere of Yokohama over a 5-year period. Atmos Environ 22:2621–2623. doi:10.1016/0004-6981(88)90498-2

    CAS  Google Scholar 

  • Yamamoto N, Nishiura H, Honjo T, Ishikawa Y, Suzuki K (1995) A long-term study of atmospheric ammonia and particulate ammonium concentrations in Yokohama, Japan. Atmos Environ 29:97–103

    CAS  Google Scholar 

  • Zeglin LH, Kluber LA, Myrold DD (2013) The importance of amino sugar turnover to C and N cycling in organic horizons of old-growth Douglas-fir forest soils colonized by ectomycorrhizal mats. Biogeochemistry 112:679–693. doi:10.1007/s10533-012-9746-8

    CAS  Google Scholar 

Download references

Acknowledgments

The research were funded by the NitroEurope IP EU – VI Framework Program “The nitrogen cycle and its influence on the European greenhouse gas balance”, the contract No. 017841.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beata Kułek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kułek, B. (2015). Nitrogen Transformations in Soils, Agricultural Plants and the Atmosphere. In: Lichtfouse, E. (eds) Sustainable Agriculture Reviews. Sustainable Agriculture Reviews, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-319-21629-4_1

Download citation

Publish with us

Policies and ethics