Skip to main content

A Statistical/Computational/Experimental Approach to Study the Microstructural Morphology of Damage

  • Conference paper
Fracture, Fatigue, Failure and Damage Evolution, Volume 8

Abstract

The fractural behavior of multi-phase materials is not well understood. Therefore, a statistic study of micro-failures is conducted to deepen our insights on the failure mechanisms. We systematically studied the influence of the morphology of dual phase (DP) steel on the fracture behavior at the onset in two ways: (i) in a numerical setting by statistically averaging over the micro-structural arrangements around the damage sites in no less than 400 randomly-generated idealized microstructural models loaded in pure shear; and (ii) in an experimental setting by statistically averaging, similar to the numerical simulations, over the damage sites found in a large collection of large field-of-view SEM images of DP steel deformed in uniaxial tension, where deliberately-overexposed backscattered electron images sharply mark the damage location, while simultaneously-recorded secondary electron images are used to identify the material phases. The numerical and experimental analyses were validated and tested for accuracy. Application of both techniques to DP showed a similar single topological feature to be most sensitive to damage: a small region of soft matrix material with hard inclusion particles on opposing sides. These results are representative for and yield insight in damage evolution in a wide variety of multi-phase materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Geus, T.W.J., Peerlings, R.H.J., Geers, M.G.D.: Microstructural topology effects on the onset of ductile failure in multi-phase materials: A systematic computational approach. Int. J. Solids Struct. 67–68, 326–339 (2015)

    Google Scholar 

  2. Kadkhodapour, J., et al.: Mechanisms of void formation during tensile testing in dual-phase steel. Acta Mater. 59, 2575 (2011)

    Article  Google Scholar 

  3. Tasan, C.C., Hoefnagels, J.P.M., Geers, M.G.D.: Microstructural banding effects clarified through micrographic digital image correlation. Scr. Mater. 62, 835–838 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. M. Hoefnagels .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Hoefnagels, J.P.M., Du, C., de Geus, T.W.J., Peerlings, R.H.J., Geers, M.G.D. (2016). A Statistical/Computational/Experimental Approach to Study the Microstructural Morphology of Damage. In: Beese, A., Zehnder, A., Xia, S. (eds) Fracture, Fatigue, Failure and Damage Evolution, Volume 8. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-21611-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21611-9_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21610-2

  • Online ISBN: 978-3-319-21611-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics