Skip to main content

Compression Testing of Micro-Scale Unidirectional Polymer Matrix Composites

  • Conference paper
Fracture, Fatigue, Failure and Damage Evolution, Volume 8

Abstract

This project builds on work done by Lu et al. An experimental study is carried out to characterize the failure behavior of a fiber reinforced polymer matrix composite at the micro-scale using the same test methodology. In order to address the issue of catastrophic failure observed in the previous effort, a physical stop for the indenter that limits maximum displacement to a predetermined value is integrated into the specimen design. Micron-sized specimens of IM7/BMI unidirectional composite with an integrated indenter displacement control were fabricated using Focused Ion Beam (FIB) milling. The specimens were compression tested using a custom built, SEM-based in-situ micro-testing device. During compression, SEM images are acquired continuously between displacement intervals so the deformation phenomena can be observed. Initial results showed that the integrated indenter displacement control prevents complete destruction of the specimen after the onset of failure. Damage observed includes interface failure, broken fibers, and general crushing. Parallel efforts on larger-scale compressive testing are conducted on millimeter-sized specimens using an in situ mechanical test frame located in an X-ray micro computed tomography (μCT) system. Failure response includes longitudinal splitting or brooming and kinking. A quantitative comparison of the compressive strength and modulus obtained from the two size scales specimen shows that there is no indication of a size effect. The experimental results will be used to validate the numerical models of micro-compression behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kyriakides, S., Arseculeratne, R., Perry, E.J., ad Liechti, K.M.: On the compressive failure of fiber reinforced composites. Int. J. Solids Struct. 32(6–7), 689–738 (1995)

    Article  MATH  Google Scholar 

  2. Pimenta, S., Gutkin, R., Pinho, S.T., Robinson, P.: A micromechanical model for kink band formation: Part I—experimental study and numerical modeling. Compos. Sci. Technol. 69, 948–955 (2009)

    Article  Google Scholar 

  3. Pimenta, S., Gutkin, R., Pinho, S.T., Robinson, P.: A micromechanical model for kink band formation: Part II—analytical modeling. Compos. Sci. Technol. 69, 956–964 (2009)

    Article  Google Scholar 

  4. Vogler, T.J., Kyriakides, S.: On the initiation and growth of kink bands in fiber composites: Part I. experiments. Int. J. Solids Struct. 38, 2639–2651 (2001)

    Article  MATH  Google Scholar 

  5. Waas, A.M., Schultheisz, C.R.: Compressive failure of composites, Part I: experimental studies. Prog. Aerosp. Sci. 32(1), 43–78 (1996)

    Article  Google Scholar 

  6. Schultheisz, C.R., Waas, A.M.: Compressive failure of composites, Part I: testing and micromechanical theories. Prog. Aerosp. Sci. 32(1), 1–42 (1996)

    Article  Google Scholar 

  7. Lu, Y.C., Wheeler, R., Tandon, G.P., Schoeppner, G.A.: In-situ micro-compression testing for characterizing failure of unidirectional fiber composites. Proceedings of the American Society for Composites, 28th Technical Conference, State College, 9–11 September 2013

    Google Scholar 

  8. Wang, Y., Soutis, C., Withers, P.: X-ray microtomographic imaging of kink bands in carbon fiber-epoxy composites. Proceedings of the 16th European Conference on Composite Materials, Seville, 22–26 June 2014

    Google Scholar 

  9. CYCOM®5250-4 prepreg system technical data sheet, Argosy International, AECM_00008, 20 March 2012

    Google Scholar 

  10. Sutton, M.A., Li, N., Joy, D.C., Reynolds, A.P., Li, X.: Scanning electron microscopy for quantitative small and large deformation measurements Part I: SEM imaging at magnifications from 200 to 10,000. Exp. Mech. 47, 775–787 (2007). doi:10.1007/s11340-007-942-z

    Article  Google Scholar 

  11. HexTow Carbon Fiber brochure, Hexel Corporation (2013)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Dr. Michael Uchic of the AFRL for his informative technical discussions and suggestion. The authors thank Mr. Arthur Safriet from the University of Dayton Research Institute (UDRI) for his help in designing and fabricating a special aligning jig and supporting fixtures for specimen preparation and testing. Also thanks to Mr. Ron Trejo, Mr. Mike Nickel, Ms. Marlene Houtz from UDRI for their help with autoclave processing and X-ray CT scan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sirina Safriet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Quick, T., Safriet, S., Mollenhauer, D., Ryther, C., Wheeler, R. (2016). Compression Testing of Micro-Scale Unidirectional Polymer Matrix Composites. In: Beese, A., Zehnder, A., Xia, S. (eds) Fracture, Fatigue, Failure and Damage Evolution, Volume 8. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-21611-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21611-9_28

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21610-2

  • Online ISBN: 978-3-319-21611-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics