Skip to main content

Silicon–Nitrogen Dehydrocoupling

  • Chapter
  • First Online:
Group 2 Mediated Dehydrocoupling

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Silicon–nitrogen coupling is a reaction of significant interest. Compounds containing Si–N bonds are utilised as silylating agents [1], bases [2], ligands and ceramic precursors [3] and furthermore silanes act as protecting groups for amides, and vice versa [4]. Current synthetic routes to these compounds rely on the atom uneconomical aminolysis of chlorosilanes yielding the desired product and HCl, which creates highly acidic reaction conditions, reducing functional group tolerance and acts as a waste stream [5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.A. Roth, Product R&D 11, 134 (1972); Y. Tanabe, M. Murakami, K. Kitaichi, Y. Yoshida, Tetrahedron Lett. 35, 8409 (1994); Y. Tanabe, T. Misaki, M. Kurihara, A. Iida, Y. Nishii, Chem. Commun. 1628 (2002)

    Google Scholar 

  2. A.P. Smith, J.J.S. Lamba, C.L. Fraser, Org. Synth. 78, 82 (2002)

    Article  CAS  Google Scholar 

  3. Y.D. Blum, K.B. Schwartz, R.M. Laine, J. Mat. Sci. 24, 1707 (1989)

    Article  CAS  Google Scholar 

  4. P.G.M. Wuts, W. Greeneodora, T.W. Greene, in Greene’s Protective Groups in Organic Synthesis (2006)

    Google Scholar 

  5. C. Eaborn, in Organosilicon Compounds (Butterworths, London, 1960); R. Fessenden, J.S. Fessenden, Chem. Rev. 61, 361 (1961); V. Passarelli, G. Carta, G. Rossetto, P. Zanella, Dalton Trans. 413 (2003)

    Google Scholar 

  6. H.Q. Liu, J.F. Harrod, Organometallics 11, 822 (1992)

    Article  CAS  Google Scholar 

  7. E. Matarasso-Tchiroukhine, J. Chem. Soc.-Chem. Commun. 681 (1990)

    Google Scholar 

  8. H.Q. Liu, J.F. Harrod, Can. J. Chem. 70, 107 (1992)

    Article  CAS  Google Scholar 

  9. J.A. Reichl, D.H. Berry, in Advances in Organometallic Chemistry, ed. by F.H. Robert West and Anthony (Academic Press, 1998), pp. 197–265

    Google Scholar 

  10. W.D. Wang, R. Eisenberg, Organometallics 10, 2222 (1991)

    Article  CAS  Google Scholar 

  11. Y. Blum, R.M. Laine, Organometallics 5, 2081 (1986)

    Article  CAS  Google Scholar 

  12. K. Takaki, T. Kamata, Y. Miura, T. Shishido, K. Takehira, J. Org. Chem. 64, 3891 (1999); K. Takaki, K. Komeyama, K. Takehira, Tetrahedron 59, 10381 (2003); Y. Chen, H. Song, C. Cui, Angew. Chem.-Int. Ed. 49, 8958 (2010); W. Xie, H. Hu, C. Cui, Angew. Chem.-Int. Ed. 51, 11141 (2012)

    Google Scholar 

  13. J.X. Wang, A.K. Dash, J.C. Berthet, M. Ephritikhine, M.S. Eisen, J. Organomet. Chem. 610, 49 (2000)

    Article  CAS  Google Scholar 

  14. F. Buch, S. Harder, Organometallics 26, 5132 (2007)

    Article  CAS  Google Scholar 

  15. J.F. Dunne, S.R. Neal, J. Engelkemier, A. Ellern, A.D. Sadow, J. Am. Chem. Soc. 133, 16782 (2011)

    Article  CAS  Google Scholar 

  16. A. Xia, M.J. Heeg, C.H. Winter, Organometallics 21, 4718 (2002); M.M. Olmstead, W.J. Grigsby, D.R. Chacon, T. Hascall, P.P. Power, Inorg. Chim. Acta 251, 273; D.R. Armstrong, W. Clegg, R.E. Mulvey, R.B. Rowlings, J. Chem. Soc.-Dalton Trans. 409 (2001); J.R. Lachs, A.G.M. Barrett, M.R. Crimmin, G. Kociok-Köhn, M.S. Hill, M.F. Mahon, P.A. Procopiou, Eur. J. Inorg. Chem. 4173 (2008); A.G.M. Barrett, I.J. Casely, M.R. Crimmin, M.S. Hill, J.R. Lachs, M.F. Mahon, P.A. Procopiou, Inorg. Chem. 48, 4445 (2009)

    Google Scholar 

  17. P.B. Hitchcock, M.F. Lappert, G.A. Lawless, B. Royo, J. Chem. Soc.-Chem. Commun. 1141 (1990); M. Westerhausen, Inorg. Chem. 30, 96 (1991); W. Vargas, U. Englich, K. Ruhlandt-Senge, Inorg. Chem. 41, 5602 (2002); L.T. Wendell, J. Bender, X. He, B.C. Noll, K.W. Henderson, Organometallics 25, 4953 (2006); M.S. Hill, G. Kociok-Köhn, D.J. MacDougall, Inorg. Chem. 50, 5234 (2011)

    Google Scholar 

  18. M. Veith, W. Frank, F. Töllner, H. Lange, J. Organomet. Chem. 326, 315 (1987); C. Pi, L. Wan, Y. Gu, H. Wu, C. Wang, W. Zheng, L. Weng, Z. Chen, X. Yang, L. Wu, Organometallics 28, 5281 (2009); D. Yang, Y. Ding, H. Wu, W. Zheng, Inorg. Chem. 50, 7698 (2011); V.L. Blair, W. Clegg, A.R. Kennedy, Z. Livingstone, L. Russo, E. Hevia, Angew. Chem.-Int. Ed. 50, 9857 (2011)

    Google Scholar 

  19. H. Azizian, C. Eaborn, A. Pidcock, J. Organomet. Chem. 215, 49 (1981)

    Article  CAS  Google Scholar 

  20. M. Arrowsmith, M.R. Crimmin, A.G.M. Barrett, M.S. Hill, G. Kociok-Köhn, P.A. Procopiou, Organometallics 30, 1493 (2011); C. Brinkmann, A.G.M. Barrett, M.S. Hill, P.A. Procopiou, J. Am. Chem. Soc. 134, 2193 (2012); C. Brinkmann, A.G.M. Barrett, M.S. Hill, P.A. Procopiou, S. Reid, Organometallics 31, 7287 (2012)

    Google Scholar 

  21. A.G.M. Barrett, C. Brinkmann, M.R. Crimmin, M.S. Hill, P. Hunt, P.A. Procopiou, J. Am. Chem. Soc. 131, 12906 (2009)

    Article  CAS  Google Scholar 

  22. M. Arrowsmith, M.S. Hill, G. Kociok-Köhn, Organometallics 30, 1291 (2011); B. Liu, T. Roisnel, J.-F. Carpentier, Y. Sarazin, Angew. Chem.-Int. Ed. 51, 4943 (2012)

    Google Scholar 

  23. K. Jones, M.F. Lappert, J. Chem. Soc. (Res) 1944 (1965); I.M. Thomas, Can. J. Chem. 39, 1386 (1961)

    Google Scholar 

  24. W.P. Neumann, B. Schneider, R. Sommer, Justus Liebigs Ann. Chem. 692, 1 (1966)

    Article  CAS  Google Scholar 

  25. U. Schubert, J. Pfeiffer, F. Stöhr, D. Sturmayr, S. Thompson, J. Organomet. Chem. 646, 53 (2002); S.M. Thompson, U. Schubert, Inorg. Chim. Acta 350, 329 (2003); T.N. Mitchell, A. Amamria, H. Killing, D. Rutschow, J. Organomet. Chem. 304, 257 (1986); V.I. Dodero, T.N. Mitchell, J.C. Podestá, Organometallics 22, 856 (2003); H.X. Zhang, F. Guibe, G. Balavoine, J. Org. Chem. 55, 1857 (1990)

    Google Scholar 

  26. A.Z. Voskoboynikov, I.N. Parshina, A.K. Shestakova, K.P. Butin, I.P. Beletskaya, L.G. Kuz’mina, J.A.K. Howard, Organometallics 16, 4041 (1997)

    Article  CAS  Google Scholar 

  27. A. Bourderioux, S. Routier, V. Bénéteau, J.-Y. Mérour, Tetrahedron 63, 9465 (2007); W. Qu, M.-P. Kung, C. Hou, T.E. Benedum, H.F. Kung, J. Med. Chem. 50, 2157 (2007)

    Google Scholar 

  28. M. Trummer, F. Choffat, P. Smith, W. Caseri, Macromol. Rapid Commun. 33, 448 (2012)

    Article  CAS  Google Scholar 

  29. B. Wrackmeyer, in Annual Reports on NMR Spectroscopy, ed. by G.A. Webb (Academic Press, 1999), pp. 203–264

    Google Scholar 

  30. Z. Padělková, A. Havlík, P. Švec, M.S. Nechaev, A. Růžička, J. Organomet. Chem. 695, 2651 (2010)

    Article  Google Scholar 

  31. M.R. Crimmin, A.G.M. Barrett, M.S. Hill, D.J. MacDougall, M.F. Mahon, P.A. Procopiou, Chem.-Eur. J. 14, 11292–11295 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Liptrot .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Liptrot, D.J. (2016). Silicon–Nitrogen Dehydrocoupling. In: Group 2 Mediated Dehydrocoupling. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-21036-0_3

Download citation

Publish with us

Policies and ethics