Skip to main content

Nitrogen-Containing Constituents of Black Cohosh: Chemistry, Structure Elucidation, and Biological Activities

  • Chapter
The Formation, Structure and Activity of Phytochemicals

Abstract

The roots/rhizomes of black cohosh (Actaea racemosa L. syn. Cimicifuga racemosa [L]. Nutt., Ranunculaceae) have been used traditionally by Native Americans to treat colds, rheumatism, and a variety of conditions related to women’s health. In recent years black cohosh preparations have become popular dietary supplements among women seeking alternative treatments for menopausal complaints. The popularity of the plant has led to extensive phytochemical and biological investigations, including several clinical trials. Most of the phytochemical and biological research has focused on two abundant classes of compounds: the triterpene glycosides and phenolic acids. A third group of phytoconstituents that has received far less attention consists of the alkaloids and related compounds that contain nitrogen. This chapter summarizes the current state of knowledge of the chemistry and biological activities associated with this group of constituents and provides some perspective on their significance for future research on this interesting plant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McKenna DJ, Jones K, Humphrey S, Hughes K (2001) Black cohosh: efficacy, safety, and use in clinical and preclinical applications. Altern Ther Health Med 7:93–100

    CAS  PubMed  Google Scholar 

  2. Borrelli F, Ernst E (2008) Black cohosh (Cimicifuga racemosa) for menopausal symptoms: a systematic review of its efficacy. Pharmacol Res 58:8–14

    Article  PubMed  Google Scholar 

  3. Mahady GB, Parrot J, Lee C, Yun GS, Dan A (2003) Botanical dietary supplement use in peri- and postmenopausal women. Menopause 10:65–72

    PubMed  Google Scholar 

  4. Lindstrom A, Ooyen C, Lynch ME, Blumenthal M (2013) Supplement sales increase 5.5% in 2012. HerbalGram 99:60–65

    Google Scholar 

  5. Osmers R, Friede M, Liske E, Schnitker J, Freudenstein J, Henneicke-von Zepelin HH (2005) Efficacy and safety of isopropanolic black cohosh extract for climacteric symptoms. Obstet Gynecol 105:1074–1083

    Article  PubMed  Google Scholar 

  6. Wuttke W, Seidlova-Wuttke D, Gorkow C (2003) The Cimicifuga preparation BNO 1055 vs. conjugated estrogens in a double-blind placebo-controlled study: effects on menopause symptoms and bone markers. Maturitas 44(Suppl 1):S67–S77

    Article  PubMed  Google Scholar 

  7. Frei-Kleiner S, Schaffner W, Rahlfs VW, Bodmer C, Birkhäuser M (2005) Cimicifuga racemosa dried ethanolic extract in menopausal disorders: a double-blind placebo-controlled clinical trial. Maturitas 51:397–404

    Article  CAS  PubMed  Google Scholar 

  8. Kronenberg F, Fugh-Berman A (2002) Complementary and alternative medicine for menopausal symptoms: a review of randomized, controlled trials. Ann Intern Med 137:805–813

    Article  PubMed  Google Scholar 

  9. Jacobson JS, Troxel AB, Evans J, Klaus L, Vahdat L, Kinne D, Lo KM, Moore A, Rosenman PJ, Kaufman EL, Neugut AI, Grann VR (2001) Randomized trial of black cohosh for the treatment of hot flashes among women with a history of breast cancer. J Clin Oncol 19:2739–2745

    CAS  PubMed  Google Scholar 

  10. Newton KM, Reed SD, LaCroix AZ, Grothaus LC, Ehrlich K, Guiltinan J (2006) Treatment of vasomotor symptoms of menopause with black cohosh, multibotanicals, soy, hormone therapy, or placebo: a randomized trial. Ann Intern Med 145:869–879

    Article  PubMed  Google Scholar 

  11. Liske E, Hanggi W, Henneicke-von Zepelin HH, Boblitz N, Wüstenberg P, Rahlfs VW (2002) Physiological investigation of a unique extract of black cohosh (Cimicifugae racemosae rhizoma): a 6-month clinical study demonstrates no systemic estrogenic effect. J Womens Health Gend Based Med 11:163–174

    Article  CAS  PubMed  Google Scholar 

  12. Geller SE, Shulman LP, van Breemen RB, Banuvar S, Zhou Y, Epstein G, Hedayat S, Nikolic D, Krause EC, Piersen CE, Bolton JL, Pauli GF, Farnsworth NR (2009) Safety and efficacy of black cohosh and red clover for the management of vasomotor symptoms: a randomized controlled trial. Menopause 16:1156–1166

    Article  PubMed Central  PubMed  Google Scholar 

  13. Whiting PW, Clouston A, Kerlin P (2002) Black cohosh and other herbal remedies associated with acute hepatitis. Med J Aust 177:440–443

    PubMed  Google Scholar 

  14. Mahady GB, Low Dog T, Barrett ML, Chavez ML, Gardiner P, Ko R, Marles RJ, Pellicore LS, Giancaspro GI, Sarma DN (2008) United States Pharmacopeia review of the black cohosh case reports of hepatotoxicity. Menopause 15:628–638

    Article  PubMed  Google Scholar 

  15. Naser B, Schnitker J, Minkin MJ, de Arriba SG, Nolte KU, Osmers R (2011) Suspected black cohosh hepatotoxicity: no evidence by meta-analysis of randomized controlled clinical trials for isopropanolic black cohosh extract. Menopause 18:366–375

    Article  PubMed  Google Scholar 

  16. Teschke R, Bahre R, Genthner A, Fuchs J, Schmidt-Taenzer W, Wolff A (2009) Suspected black cohosh hepatotoxicity–challenges and pitfalls of causality assessment. Maturitas 63:302–314

    Article  CAS  PubMed  Google Scholar 

  17. Teschke R (2008) Questions regarding causality in presumed black cohosh hepatotoxicity. Del Med J 80:233–234, author reply 235

    PubMed  Google Scholar 

  18. Teschke R (2010) Black cohosh and suspected hepatotoxicity: inconsistencies, confounding variables, and prospective use of a diagnostic causality algorithm. A critical review. Menopause 17:426–440

    Article  PubMed  Google Scholar 

  19. Lude S, Torok M, Dieterle S, Knapp AC, Kaeufeler R, Jaggi R, Spornitz U, Krahenbuhl S (2007) Hepatic effects of Cimicifuga racemosa extract in vivo and in vitro. Cell Mol Life Sci 64:2848–2857

    Google Scholar 

  20. Huang Y, Jiang B, Nuntanakorn P, Kennelly EJ, Shord S, Lawal TO, Mahady GB (2010) Fukinolic acid derivatives and triterpene glycosides from black cohosh inhibit CYP isozymes, but are not cytotoxic to Hep-G2 cells in vitro. Curr Drug Saf 5:118–124

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Fabricant DS, Farnsworth NR (2005) Black cohosh (Cimicifuga racemosa). In: Coates PM, Blackman MR, Cragg GM, Levine M, Moss J, White JD (eds) Encyclopedia of dietary supplements. Marcell Dekker, New York, pp 41–54

    Google Scholar 

  22. Li JX, Yu ZY (2006) Cimicifugae rhizoma: from origins, bioactive constituents to clinical outcomes. Curr Med Chem 13:2927–2951

    Article  CAS  PubMed  Google Scholar 

  23. Avula B, Wang YH, Smillie TJ, Khan IA (2009) Quantitative determination of triterpenoids and formononetin in rhizomes of black cohosh (Actaea racemosa) and dietary supplements by using UPLC-UV/ELS detection and identification by UPLC-MS. Planta Med 75:381–386

    Article  CAS  PubMed  Google Scholar 

  24. Cicek SS, Aberham A, Ganzera M, Stuppner H (2011) Quantitative analysis of cycloartane glycosides in black cohosh rhizomes and dietary supplements by RRLC-ELSD and RRLC-qTOF-MS. Anal Bioanal Chem 400:2597–2605

    Article  CAS  PubMed  Google Scholar 

  25. He K, Pauli GF, Zheng B, Wang H, Bai N, Peng T, Roller M, Zheng Q (2006) Cimicifuga species identification by high performance liquid chromatography-photodiode array/mass spectrometric/evaporative light scattering detection for quality control of black cohosh products. J Chromatogr A 1112:241–254

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Qiu F, Imai A, McAlpine JB, Lankin DC, Burton I, Karakach T, Farnsworth NR, Chen SN, Pauli GF (2012) Dereplication, residual complexity, and rational naming: the case of the Actaea triterpenes. J Nat Prod 75:432–443

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Qiu F, McAlpine JB, Krause EC, Chen S, Pauli GF (2014) Pharmacognosy of black cohosh: phytochemical and biological profile of a widely used botanical. In: Kinghorn A, Falk H, Kobayashi J (eds) Progress in the chemistry of organic natural products. Springer, New York/Vienna

    Google Scholar 

  28. Godecke T, Nikolic D, Lankin DC, Chen SN, Powell SL, Dietz B, Bolton JL, van Breemen RB, Farnsworth NR, Pauli GF (2009) Phytochemistry of cimicifugic acids and associated bases in Cimicifuga racemosa root extracts. Phytochem Anal 20:120–133

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Kruse SO, Löhning A, Pauli GF, Winterhoff H, Nahrstedt A (1999) Fukiic and piscidic acid esters from the rhizome of Cimicifuga racemosa and the in vitro estrogenic activity of fukinolic acid. Planta Med 65:763–764

    Article  CAS  PubMed  Google Scholar 

  30. Cordell GA, Quinn-Beattie ML, Farnsworth NR (2001) The potential of alkaloids in drug discovery. Phytother Res 15:183–205

    Article  CAS  PubMed  Google Scholar 

  31. Finnemore H (1909) Constituents of rhizome of Cimicifuga racemosa. Pharm J 83:145

    CAS  Google Scholar 

  32. Crum JD, Cassady JM, Olmstead PM, Picha NJ (1965) The chemistry of alkaloids. I. The screening of some native Ohio plants. Proc West Va Acad Sci 37:143–147

    CAS  Google Scholar 

  33. Dan C, Zhou Y, Ye D, Peng S, Ding L, Gross ML, Qiu SX (2007) Cimicifugadine from Cimicifuga foetida, a new class of triterpene alklaoids with novel reactivity. Org Lett 9:1813–1816

    Article  CAS  PubMed  Google Scholar 

  34. Gao JC, Zhang JC, Chen Y, Yang MS, Xiao PG (2007) Study on chemical constituents from rhizomes of Actaea asiatica. Zhongguo Zhong Yao Za Zhi 32:2256–2258

    CAS  PubMed  Google Scholar 

  35. Gao JC, Zhang JC, Zhu GY, Yang MS, Xiao PG (2007) Chromones and indolinone alkaloids from Actaea asiatica Hara. Biochem Syst Ecol 35:467–469

    Article  CAS  Google Scholar 

  36. Fabricant DS, Nikolic D, Lankin DC, Chen SN, Jaki BU, Krunic A, van Breemen RB, Fong HH, Farnsworth NR, Pauli GF (2005) Cimipronidine, a cyclic guanidine alkaloid from Cimicifuga racemosa. J Nat Prod 68:1266–1270

    Article  CAS  PubMed  Google Scholar 

  37. Godecke T, Lankin DC, Nikolic D, Chen SN, van Breemen RB, Farnsworth NR, Pauli GF (2009) Guanidine alkaloids and Pictet-Spengler adducts from black cohosh (Cimicifuga racemosa). J Nat Prod 72:433–437

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Powell SL, Gödecke T, Nikolic D, Chen SN, Ahn S, Dietz B, Farnsworth NR, van Breemen RB, Lankin DC, Pauli GF, Bolton JL (2008) In vitro serotonergic activity of black cohosh and identification of N(omega)-methylserotonin as a potential active constituent. J Agric Food Chem 56:11718–11726

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Nikolic D, Gödecke T, Chen SN, White J, Lankin DC, Pauli GF, van Breemen RB (2012) Mass spectrometric dereplication of nitrogen-containing constituents of black cohosh (Cimicifuga racemosa L.). Fitoterapia 83:441–460

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Kind T, Fiehn O (2006) Metabolomic database annotations via query of elemental compositions: mass accuracy is insufficient even at less than 1 ppm. BMC Bioinformatics 7:234

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Kind T, Fiehn O (2007) Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinformatics 8:105

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Bristow AW, Webb KS, Lubben AT, Halket J (2004) Reproducible product-ion tandem mass spectra on various liquid chromatography/mass spectrometry instruments for the development of spectral libraries. Rapid Commun Mass Spectrom 18:1447–1454

    Article  CAS  PubMed  Google Scholar 

  43. Cech NB, Kate Y (2013) Mass spectrometry for natural products research: challenges, pitfalls, and opportunities. LCGC North America 31:938–947

    CAS  Google Scholar 

  44. Schymanski EL, Jeon J, Gulde R, Fenner K, Ruff M, Singer HP, Hollender J (2014) Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ Sci Technol 48(4):2097–2098

    Article  CAS  PubMed  Google Scholar 

  45. Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, Fan TW, Fiehn O, Goodacre R, Griffin JL, Hankemeier T, Hardy N, Harnly J, Higashi R, Kopka J, Lane AN, Lindon JC, Marriott P, Nicholls AW, Reily MD, Thaden JJ, Viant MR (2007) Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 3:211–221

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Biemann K (2002) Four decades of structure determination by mass spectrometry: from alkaloids to heparin. J Am Soc Mass Spectrom 13:1254–1272

    Article  CAS  PubMed  Google Scholar 

  47. Biemann K, Grossert JS, Hugo JM, Occolowitz J, Warren FL (1965) The indole alkaloids. IV. The structure of henningsamine. J Chem Soc 46:2814–2818

    Article  CAS  PubMed  Google Scholar 

  48. Dookeran N, Yalcin T, Harrison A (1996) Fragmentation reactions of protonated alfa-amino acids. J Mass Spectrom 31:500–508

    Article  CAS  Google Scholar 

  49. Csonka IP, Paizs B, Suhai S (2004) Modeling of the gas-phase ion chemistry of protonated arginine. J Mass Spectrom 39:1025–1035

    Article  CAS  PubMed  Google Scholar 

  50. Shek PY, Zhao J, Ke Y, Siu KW, Hopkinson AC (2006) Fragmentations of protonated arginine, lysine and their methylated derivatives: concomitant losses of carbon monoxide or carbon dioxide and an amine. J Phys Chem A 110:8282–8296

    Article  CAS  PubMed  Google Scholar 

  51. Stewart JA, Dobson JE (1965) Trypsin-catalyzed hydrolysis of N-benzoyl-L-arginine ethyl ester at low pH. Biochemistry 4:1086–1091

    Article  CAS  PubMed  Google Scholar 

  52. Fasehun OA, Gross SS, Rubin LE, Jaffe EA, Griffith OW, Levi R (1990) L-arginine, but not N alpha-benzoyl-L-arginine ethyl ester, is a precursor of endothelium-derived relaxing factor. J Pharmacol Exp Ther 255:1348–1353

    CAS  PubMed  Google Scholar 

  53. Spiering MJ, Urban LA, Nuss DL, Gopalan V, Stoltzfus A, Eisenstein E (2011) Gene identification in black cohosh (Actaea racemosa L.): expressed sequence tag profiling and genetic screening yields candidate genes for production of bioactive secondary metabolites. Plant Cell Rep 30:613–629

    Article  CAS  PubMed  Google Scholar 

  54. Riggin RM, Kissinger PT (1976) Letter: identification of salsolinol as a phenolic component in powdered cocoa and cocoa-based products. J Agric Food Chem 24:900

    Article  CAS  PubMed  Google Scholar 

  55. Riggin RM, McCarthy MJ, Kissinger PT (1976) Identification of salsolinol as a major dopamine metabolite in the banana. J Agric Food Chem 24:189–191

    Article  CAS  PubMed  Google Scholar 

  56. Duncan MW, Smythe GA, Nicholson MV, Clezy PS (1984) Comparison of high-performance liquid chromatography with electrochemical detection and gas chromatography-mass fragmentography for the assay of salsolinol, dopamine and dopamine metabolites in food and beverage samples. J Chromatogr 336:199–209

    Article  CAS  PubMed  Google Scholar 

  57. Dostert P, Benedetti MS, Bellotti V, Allievi C, Dordain G (1990) Biosynthesis of salsolinol, a tetrahydroisoquinoline alkaloid, in healthy subjects. J Neural Transm Gen Sect 81:215–223

    Article  CAS  PubMed  Google Scholar 

  58. Mravec B (2006) Salsolinol, a derivate of dopamine, is a possible modulator of catecholaminergic transmission: a review of recent developments. Physiol Res 55:353–364

    CAS  PubMed  Google Scholar 

  59. Lee J, Ramchandani VA, Hamazaki K, Engleman EA, McBride WJ, Li TK, Kim HY (2010) A critical evaluation of influence of ethanol and diet on salsolinol enantiomers in humans and rats. Alcohol Clin Exp Res 34:242–250

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Melzig MF, Putscher I, Henklein P, Haber H (2000) In vitro pharmacological activity of the tetrahydroisoquinoline salsolinol present in products from Theobroma cacao L. like cocoa and chocolate. J Ethnopharmacol 73:153–159

    Article  CAS  PubMed  Google Scholar 

  61. Jarry H, Metten M, Spengler B, Christoffel V, Wuttke W (2003) In vitro effects of the Cimicifuga racemosa extract BNO 1055. Maturitas 44(Suppl 1):S31–S38

    Article  PubMed  Google Scholar 

  62. Musshoff F, Lachenmeier DW, Kroener L, Schmidt P, Dettmeyer R, Madea B (2003) Simultaneous gas chromatographic-mass spectrometric determination of dopamine, norsalsolinol and salsolinol enantiomers in brain samples of a large human collective. Cell Mol Biol 49:837–849

    CAS  PubMed  Google Scholar 

  63. Musshoff F, Daldrup T, Bonte W, Leitner A, Lesch OM (1997) Salsolinol and norsalsolinol in human urine samples. Pharmacol Biochem Behav 58:545–550

    Article  CAS  PubMed  Google Scholar 

  64. Facchini PJ (2001) Alkaloids biosynthesis in plants: biochemistry, cell biology, molecular regulation, and metabolic engineering applications. Annu Rev Plant Physiol Plant Mol Biol 52:29–66

    Article  CAS  PubMed  Google Scholar 

  65. Schmidt J, Raith K, Boettcher C, Zenk MH (2005) Analysis of benzylisoquinoline-type alkaloids by electrospray tandem mass spectrometry and atmospheric pressure photoionization. Eur J Mass Spectrom (Chichester, Eng) 11:325–333

    Article  CAS  Google Scholar 

  66. Schmidt J, Boettcher C, Kuhnt C, Kutchan TM, Zenk MH (2007) Poppy alkaloid profiling by electrospray tandem mass spectrometry and electrospray FT-ICR mass spectrometry after [ring-13C6]-tyramine feeding. Phytochemistry 68:189–202

    Article  CAS  PubMed  Google Scholar 

  67. Zhu W, Cadet P, Baggerman G, Mantione KJ, Stefano GB (2005) Human white blood cells synthesize morphine: CYP2D6 modulation. J Immunol 175:7357–7362

    Article  CAS  PubMed  Google Scholar 

  68. Zhu W, Mantione KJ, Stefano GB (2004) Reticuline exposure to invertebrate ganglia increases endogenous morphine levels. Neuro Endocrinol Lett 25:323–330

    CAS  PubMed  Google Scholar 

  69. Grobe N, Zhang B, Fisinger U, Kutchan TM, Zenk MH, Guengerich FP (2009) Mammalian cytochrome P450 enzymes catalyze the phenol-coupling step in endogenous morphine biosynthesis. J Biol Chem 284:24425–24431

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Neri C, Ghelardini C, Sotak B, Palmiter RD, Guarna M, Stefano G, Bianchi E (2008) Dopamine is necessary to endogenous morphine formation in mammalian brain in vivo. J Neurochem 106:2337–2344

    Article  CAS  PubMed  Google Scholar 

  71. Banning JW, Uretsky NJ, Patil PN, Beal JL (1980) Reticuline: a dopamine receptor blocker. Life Sci 26:2083–2091

    Article  CAS  PubMed  Google Scholar 

  72. Nikolaev VO, Böttcher C, Dees C, Bunemann M, Lohse MJ, Zenk MH (2007) Live cell monitoring of mu-opioid receptor-mediated G-protein activation reveals strong biological activity of close morphine biosynthetic precursors. J Biol Chem 282:27126–27132

    Article  CAS  PubMed  Google Scholar 

  73. Stevigny C, Jiwan JL, Rozenberg R, de Hoffmann E, Quetin-Leclercq J (2004) Key fragmentation patterns of aporphine alkaloids by electrospray ionization with multistage mass spectrometry. Rapid Commun Mass Spectrom 18:523–528

    Article  CAS  PubMed  Google Scholar 

  74. Zhang Y, Shi Q, Shi P, Zhang W, Cheng Y (2006) Characterization of isoquinoline alkaloids, diterpenoids and steroids in the Chinese herb Jin-Guo-Lan (Tinospora sagittata and Tinospora capillipes) by high-performance liquid chromatography/electrospray ionization with multistage mass spectrometry. Rapid Commun Mass Spectrom 20:2328–2342

    Article  CAS  PubMed  Google Scholar 

  75. Chen KS, Ko FN, Teng CM, Wu YC (1996) Antiplatelet and vasorelaxing actions of some aporphinoids. Planta Med 62:133–136

    Article  CAS  PubMed  Google Scholar 

  76. Zhao Q, Zhao Y, Wang K (2006) Antinociceptive and free radical scavenging activities of alkaloids isolated from Lindera angustifolia Chen. J Ethnopharmacol 106:408–413

    Article  CAS  PubMed  Google Scholar 

  77. Zetler G (1988) Neuroleptic-like, anticonvulsant and antinociceptive effects of aporphine alkaloids: bulbocapnine, corytuberine, boldine and glaucine. Arch Int Pharmacodyn Ther 296:255–281

    CAS  PubMed  Google Scholar 

  78. Zhang A, Zhang Y, Branfman AR, Baldessarini RJ, Neumeyer JL (2007) Advances in development of dopaminergic aporphinoids. J Med Chem 50:171–181

    Article  CAS  PubMed  Google Scholar 

  79. Leopoldo M, Lacivita E, Berardi F, Perrone R, Hedlund PB (2011) Serotonin 5-HT7 receptor agents: structure-activity relationships and potential therapeutic applications in central nervous system disorders. Pharmacol Ther 129:120–148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Cannon JG, Flaherty PT, Ozkutlu U, Long JP (1995) A-ring ortho-disubstituted aporphine derivatives as potential agonists or antagonists at serotonergic 5-HT1A receptors. J Med Chem 38:1841–1845

    Article  CAS  PubMed  Google Scholar 

  81. Gafner S, Dietz BM, McPhail KL, Scott IM, Glinski JA, Russell FE, McCollom MM, Budzinski JW, Foster BC, Bergeron C, Rhyu MR, Bolton JL (2006) Alkaloids from Eschscholzia californica and their capacity to inhibit binding of [3H]8-Hydroxy-2-(di-N-propylamino)tetralin to 5-HT1A receptors in vitro. J Nat Prod 69:432–435

    Article  CAS  PubMed  Google Scholar 

  82. Dela Pena IJ, Lee HL, Yoon SY, Dela Pena JB, Kim HK, Hong EY, Cheong JH (2013) The ethanol extract of Cirsium japonicum increased chloride ion influx through stimulating GABA(A) receptor in human neuroblastoma cells and exhibited anxiolytic-like effects in mice. Drug Discov Ther 7:18–23

    Article  CAS  PubMed  Google Scholar 

  83. Cassels BK, Asencio M (2008) Monoaminergic, ion channel and enzyme inhibitory activities of natural aporhines, their analogues and derivatives. Nat Prod Commun 3:643–653

    CAS  Google Scholar 

  84. Iturriaga-Vasquez P, Perez EG, Slater EY, Bermudez I, Cassels BK (2007) Aporphine metho salts as neuronal nicotinic acetylcholine receptor blockers. Bioorg Med Chem 15:3368–3372

    Article  CAS  PubMed  Google Scholar 

  85. Vacek J, Walterova D, Vrublova E, Simanek V (2010) The chemical and biological properties of protopine and allocryptopine. Heterocycles 81:1773–1789

    Article  CAS  Google Scholar 

  86. Xu LF, Chu WJ, Qing XY, Li S, Wang XS, Qing GW, Fei J, Guo LH (2006) Protopine inhibits serotonin transporter and noradrenaline transporter and has the antidepressant-like effect in mice models. Neuropharmacology 50:934–940

    Article  CAS  PubMed  Google Scholar 

  87. Ustunes L, Laekeman GM, Gozler B, Vlietinck AJ, Ozer A, Herman AG (1988) In vitro study of the anticholinergic and antihistaminic activities of protopine and some derivatives. J Nat Prod 51:1021–1022

    Article  CAS  PubMed  Google Scholar 

  88. Xu Q, Jin RL, Wu YY (1993) Opioid, calcium, and adrenergic receptor involvement in protopine analgesia. Zhongguo Yao Li Xue Bao 14:495–500

    CAS  PubMed  Google Scholar 

  89. Gurley B, Hubbard MA, Williams DK, Thaden J, Tong Y, Gentry WB, Breen P, Carrier DJ, Cheboyina S (2006) Assessing the clinical significance of botanical supplementation on human cytochrome P450 3A activity: comparison of a milk thistle and black cohosh product to rifampin and clarithromycin. J Clin Pharmacol 46:201–213

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Rhyu MR, Lu J, Webster DE, Fabricant DS, Farnsworth NR, Wang ZJ (2006) Black cohosh (Actaea racemosa, Cimicifuga racemosa) behaves as a mixed competitive ligand and partial agonist at the human mu opiate receptor. J Agric Food Chem 54:9852–9857

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Li J, Gödecke T, Chen SN, Imai A, Lankin DC, Farnsworth NR, Pauli GF, van Breemen RB, Nikolic D (2011) In vitro metabolic interactions between black cohosh (Cimicifuga racemosa) and tamoxifen via inhibition of cytochromes P450 2D6 and 3A4. Xenobiotica

    Google Scholar 

  92. Herraiz T, Galisteo J (2003) Tetrahydro-beta-carboline alkaloids occur in fruits and fruit juices. Activity as antioxidants and radical scavengers. J Agric Food Chem 51:7156–7161

    Article  CAS  PubMed  Google Scholar 

  93. Herraiz T (2000) Tetrahydro-beta-carboline-3-carboxylic acid compounds in fish and meat: possible precursors of co-mutagenic beta-carbolines norharman and harman in cooked foods. Food Addit Contam 17:859–866

    Article  CAS  PubMed  Google Scholar 

  94. Herraiz T (1999) 1-Methyl-1,2,3,4-tetrahydro-beta-carboline-3-carboxylic acid and 1,2, 3,4-tetrahydro-beta-carboline-3-carboxylic acid in fruits. J Agric Food Chem 47:4883–4887

    Article  CAS  PubMed  Google Scholar 

  95. Herraiz T (2000) Tetrahydro-beta-carbolines, potential neuroactive alkaloids, in chocolate and cocoa. J Agric Food Chem 48:4900–4904

    Article  CAS  PubMed  Google Scholar 

  96. Matsubara K, Fukushima S, Akane A, Hama K, Fukui Y (1986) Tetrahydro-beta-carbolines in human urine and rat brain—no evidence of formation by alcohol drinking. Alcohol Alcohol 21:339–345

    CAS  PubMed  Google Scholar 

  97. Herraiz T, Chaparro C (2006) Analysis of monoamine oxidase enzymatic activity by reversed-phase high performance liquid chromatography and inhibition by beta-carboline alkaloids occurring in foods and plants. J Chromatogr A 1120:237–243

    Article  CAS  PubMed  Google Scholar 

  98. Adachi J, Yamamoto K, Ogawa Y, Ueno Y, Mizoi Y, Tatsuno Y (1991) Endogenous formation of 1-methyl-1,2,3,4-tetrahydro-beta-carboline-3-carboxylic acid in man as the possible causative substance of eosinophilia-myalgia syndrome associated with ingestion of L-tryptophan. Arch Toxicol 65:505–509

    Article  CAS  PubMed  Google Scholar 

  99. Ogawa Y, Adachi J, Tatsuno Y (1993) Accumulation of 1-methyl-tetrahydro-beta-carboline-3-carboxylic acid in blood and organs of rat. A possible causative substance of eosinophilia-myalgia syndrome associated with ingestion of L-tryptophan. Arch Toxicol 67:290–293

    Article  CAS  PubMed  Google Scholar 

  100. Burdette JE, Liu J, Chen SN, Fabricant DS, Piersen CE, Barker EL, Pezzuto JM, Mesecar A, van Breemen RB, Farnsworth NR, Bolton JL (2003) Black cohosh acts as a mixed competitive ligand and partial agonist of the serotonin receptor. J Agric Food Chem 51:5661–5670

    Google Scholar 

  101. Bhargava KP, Kishor K, Pant MC, Saxena PR (1965) Identification of tryptamine derivatives in Ranunculus sceleratus L. Br J Pharmacol Chemother 25:743–750

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Servillo L, Giovane A, Balestrieri ML, Casale R, Cautela D, Castaldo D (2013) Citrus genus plants contain N-methylated tryptamine derivatives and their 5-hydroxylated forms. J Agric Food Chem 61:5156–5162

    Article  CAS  PubMed  Google Scholar 

  103. Yanase E, Ohno M, Harakawa H, Nakatsuka S (2010) Isolation of N, N-dimethyl and N-methylserotonin 5-O-β-glucosides from immature Zanthoxylum piperitum seeds. Biosci Biotechnol Biochem 74:1951–1952

    Google Scholar 

  104. Chang AS, Chang SM, Starnes DM (1993) Structure-activity relationships of serotonin transport: relevance to nontricyclic antidepressant interactions. Eur J Pharmacol 247:239–248

    Article  CAS  PubMed  Google Scholar 

  105. Nikolic D, Li J, van Breemen RB (2014) Metabolism of Nω-methylserotonin, a serotonergic constituent of black cohosh (Cimicifuga racemosa, L. Nutt.), by human liver microsomes. Biomed Chromatogr 28(12):1647–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Somei M, Teranishi S, Yamada K, Yamada F (2001) The chemistry of indoles. CVII. A novel synthesis of 3,4,5,6-tetrahydro-7-hydroxy-1H-azepino[5,4,3-cd]indoles and a new finding on Pictet-Spengler reaction. Chem Pharm Bull (Tokyo) 49:1159–1165

    Article  CAS  Google Scholar 

  107. Bjorklund A, Falck B, Lindvall O, Svensson LA (1973) New aspects on reaction mechanisms in the formaldehyde histofluorescence method for monoamines. J Histochem Cytochem 21:17–25

    Article  CAS  PubMed  Google Scholar 

  108. Boonen J, Bronselaer A, Nielandt J, Veryser L, De Tre G, De Spiegeleer B (2012) Alkamid database: chemistry, occurrence and functionality of plant N-alkylamides. J Ethnopharmacol 142:563–590

    Article  CAS  PubMed  Google Scholar 

  109. Rios MY (2012) Natural alkamides: pharmacology, chemistry and distribution. In: Vallisuta O (ed) Drug discovery research in pharmacognosy. InTech, Rijeka, pp 107–144, www.intechopen.com

    Google Scholar 

  110. Kuhnert N, Jaiswal R, Matei MF, Sovdat T, Deshpande S (2010) How to distinguish between feruloyl quinic acids and isoferuloyl quinic acids by liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 24:1575–1582

    Article  CAS  PubMed  Google Scholar 

  111. Yim S, Kim H, Jeong N, Pak K, Lee Y, Cho S, Lee I (2012) Structure-guided identification of noel phenolic and phenolic amide allosides from the rhizomes of Cimicifuga heracleifolia. Bull Korean Chem Soc 33:1253–1258

    Article  CAS  Google Scholar 

  112. Li C, Chen D, Xiao P, Hong S, Ma L (1994) Chemical constituents of traditional Chinese drug “Sheng-ma” (Cimicifuga dahurica). Acta Pharm Sin 52:296–300

    CAS  Google Scholar 

  113. Cuyckens F, Claeys M (2004) Mass spectrometry in the structural analysis of flavonoids. J Mass Spectrom 39:1–15

    Article  CAS  PubMed  Google Scholar 

  114. Yang Z, Nakabayashi R, Okazaki Y, Mori T, Takamatsu S, Kitanaka S, Kikuchi J, Saito K (2014) Toward better annotation in plant metabolomics: isolation and structure elucidation of 36 specialized metabolites from (rice) by using MS/MS and NMR analyses. Metabolomics 10:543–555

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  115. Lin LZ, He XG, Lindenmaier M, Nolan G, Yang J, Cleary M, Qiu SX, Cordell GA (2000) Liquid chromatography-electrospray ionization mass spectrometry study of the flavonoids of the roots of Astragalus mongholicus and A. membranaceus. J Chromatogr A 876:87–95

    Article  CAS  PubMed  Google Scholar 

  116. Clifford M (2000) Chlorogenic acids and other cinnamates-nature, occurrence, dietary burden, absorption and metabolism. J Sci Food Agric 80:1033–1043

    Article  CAS  Google Scholar 

  117. Clifford M, Knight S (2004) The cinnamoyl-amino acid conjugates from green Robusta coffee beans. Food Chem 87:457–463

    Article  CAS  Google Scholar 

  118. Shahidi F, Chandrasekara A (2010) Hydroxycinnamates and their in vitro and in vivo antioxidant activities. Phytochem Rev 9:147–170

    Article  CAS  Google Scholar 

  119. Böttcher C, von Roepenack-Lahaye E, Schmidt J, Clemens S, Scheel D (2009) Analysis of phenolic choline esters from seeds of Arabidopsis thaliana and Brassica napus by capillary liquid chromatography/electrospray- tandem mass spectrometry. J Mass Spectrom 44:466–476

    Article  PubMed  CAS  Google Scholar 

  120. Ormerod WE (1953) Hydrolysis of benzoylcholine derivatives by cholinesterase in serum. Biochem J 54:701–704

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  121. Akcasu A, Sinha YK, West GB (1952) The pharmacology of benzoylcholine. Br J Pharmacol Chemother 7:331–337

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  122. Stennert A, Maier HG (1994) Trigonelline in coffee. II. Content of green, roasted and instant coffee. Z Lebensm Unters Forsch 199:198–200

    Article  CAS  PubMed  Google Scholar 

  123. Zhou J, Chan L, Zhou S (2012) Trigonelline: a plant alkaloid with therapeutic potential for diabetes and central nervous system disease. Curr Med Chem 19:3523–3531

    Article  CAS  PubMed  Google Scholar 

  124. Allred KF, Yackley KM, Vanamala J, Allred CD (2009) Trigonelline is a novel phytoestrogen in coffee beans. J Nutr 139:1833–1838

    Article  CAS  PubMed  Google Scholar 

  125. Liu J, Burdette JE, Xu H, Gu C, van Breemen RB, Bhat KP, Booth N, Constantinou AI, Pezzuto JM, Fong HH, Farnsworth NR, Bolton JL (2001) Evaluation of estrogenic activity of plant extracts for the potential treatment of menopausal symptoms. J Agric Food Chem 49:2472–2479

    Article  CAS  PubMed  Google Scholar 

  126. Overk CR, Yao P, Chen S, Deng S, Imai A, Main M, Schinkovitz A, Farnsworth NR, Pauli GF, Bolton JL (2008) High-content screening and mechanism-based evaluation of estrogenic botanical extracts. Comb Chem High Throughput Screen 11:283–293

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  127. Ruhlen RL, Haubner J, Tracy JK, Zhu W, Ehya H, Lamberson WR, Rottinghaus GE, Sauter ER (2007) Black cohosh does not exert an estrogenic effect on the breast. Nutr Cancer 59:269–277

    Article  CAS  PubMed  Google Scholar 

  128. Ruhlen RL, Sun GY, Sauter ER (2008) Black cohosh: insights into its mechanism(s) of action. Integr Med Insights 3:21–32

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Fitch RW, Sturgeon GD, Patel SR, Spande TF, Garraffo HM, Daly JW, Blaauw RH (2009) Epiquinamide: a poison that wasn’t from a frog that was. J Nat Prod 72:243–247

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  130. Matsuda H, Suzuki Y (1984) gamma-Guanidinobutyraldehyde Dehydrogenase of Vicia faba Leaves. Plant Physiol 76:654–657

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dejan Nikolić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nikolić, D., Lankin, D.C., Cisowska, T., Chen, SN., Pauli, G.F., van Breemen, R.B. (2015). Nitrogen-Containing Constituents of Black Cohosh: Chemistry, Structure Elucidation, and Biological Activities. In: Jetter, R. (eds) The Formation, Structure and Activity of Phytochemicals. Recent Advances in Phytochemistry, vol 45. Springer, Cham. https://doi.org/10.1007/978-3-319-20397-3_2

Download citation

Publish with us

Policies and ethics