Skip to main content

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

  • 1677 Accesses

Abstract

As discussed in the previous chapter, one of the remaining technical problems related to mm-Wave CMOS transmitters is the poor average efficiency when transmitting complex amplitude- and phase-modulated signals (e.g., 16-QAM). The cause of this low efficiency is the required back-off from the P 1dB to meet EVM and transmit spectral mask specifications. A conventional PA only provides maximum efficiency near P SAT . For a 6-dB back-off from P 1dB , the output power and PAE of the state-of-the-art PAs remain below 9 dBm and 5 % [1, 2], respectively. Although this issue is well known by the mm-Wave designers, the optimization of mm-Wave TX is still limited to the circuit level (i.e., optimization of the PA and the up-conversion chain). Low-GHz linearization or efficiency enhancement techniques are usually not applied mainly due to the inferior performance of active and passive devices at mm-Wave frequencies and the wideband processing bandwidth required by the mm-Wave system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In Fig. 5.5, \(R_{L} = 2R_{O} = 50\,\Omega\) is assumed which gives more realistic numbers for mm-Wave PAs and also achieves the impedance matching condition.

  2. 2.

    The designs of the I/Q modulator and the PPF of this outphasing TX are similar to the ones in E-band TX. The detailed analysis will be provided in Chap. 6

References

  1. J. Chen, A. Niknejad, A compact 1v 18.6dbm 60GHz power amplifier in 65nm cmos, in 2011 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 432–433 (2011)

    Google Scholar 

  2. T. LaRocca, J.-C. Liu, M.-C. Chang, 60 GHz CMOS amplifiers using transformer-coupling and artificial dielectric differential transmission lines for compact design. IEEE J. Solid State Circuits 44(5), 1425–1435 (2009)

    Article  Google Scholar 

  3. C. Liang, B. Razavi, Transmitter linearization by beamforming. IEEE J. Solid State Circuits 46(9), 1956–1969 (2011)

    Article  Google Scholar 

  4. Y. Li, Z. Li, O. Uyar, Y. Avniel, A. Megretski, V. Stojanovic, High-throughput signal component separator for asymmetric multi-level outphasing power amplifiers. IEEE J. Solid State Circuits 48(2), 369–380 (2013)

    Article  Google Scholar 

  5. D. Zhao, S. Kulkarni, P. Reynaert, A 60-GHz outphasing transmitter in 40-nm cmos. IEEE J. Solid State Circuits 47(12), 3172–3183 (2012)

    Article  Google Scholar 

  6. D. Zhao, P. Reynaert, A 60-GHz dual-mode class ab power amplifier in 40-nm cmos. IEEE J. Solid State Circuits 48, 2323–2337 (2013)

    Article  Google Scholar 

  7. D. Pozar, Microwave Engineering, 3rd edn. (Wiley, New York, 2009)

    Google Scholar 

  8. D. Cox, Linear amplification with nonlinear components. IEEE Trans. Commun. 22(12), 1942–1945 (1974)

    Article  Google Scholar 

  9. A. Birafane, M. El-Asmar, A. Kouki, M. Helaoui, F. Ghannouchi, Analyzing linc systems. IEEE Microw. Mag. 11(5), 59–71 (2010)

    Article  Google Scholar 

  10. A. Pham, C. Sodini, A 5.8GHz, 47% efficiency, linear outphase power amplifier with fully integrated power combiner, in IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, pp. 4–160 (2006)

    Google Scholar 

  11. P. Godoy, D. Perreault, J. Dawson, Outphasing energy recovery amplifier with resistance compression for improved efficiency. IEEE Trans. Microwave Theory Tech. 57(12), 2895–2906 (2009)

    Article  Google Scholar 

  12. F. Raab, Efficiency of outphasing RF power-amplifier systems. IEEE Trans. Commun. 33(10), 1094–1099 (1985)

    Article  Google Scholar 

  13. S. Hamedi-Hagh, C. Salama, Cmos wireless phase-shifted transmitter. IEEE J. Solid State Circuits 39(8), 1241–1252 (2004)

    Article  Google Scholar 

  14. H. Chireix, High power outphasing modulation. Proc. Inst. Radio Eng. 23(11), 1370–1392 (1935)

    Google Scholar 

  15. I. Hakala, D. Choi, L. Gharavi, N. Kajakine, J. Koskela, R. Kaunisto, A 2.14-GHz chireix outphasing transmitter. IEEE Trans. Microwave Theory Tech. 53(6), 2129–2138 (2005)

    Google Scholar 

  16. S. Moloudi, K. Takinami, M. Youssef, M. Mikhemar, A. Abidi, An outphasing power amplifier for a software-defined radio transmitter, in 2008 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC 2008), pp. 568–636 (2008)

    Google Scholar 

  17. H. Xu, Y. Palaskas, A. Ravi, M. Sajadieh, M. El-Tanani, K. Soumyanath, A flip-chip-packaged 25.3 dbm class-d outphasing power amplifier in 32 nm cmos for wlan application. IEEE J. Solid State Circuits 46(7), 1596–1605 (2011)

    Google Scholar 

  18. S.C. Cripps, RF Power Amplifiers for Wireless Communications, 2nd edn. (Artech House Inc, Norwood, 2006)

    Google Scholar 

  19. I. Sarkas, A. Balteanu, E. Dacquay, A. Tomkins, S. Voinigescu, A 45nm soi cmos class-d mm-wave pa with > 10vpp differential swing, in 2012 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 88–90 (2012)

    Google Scholar 

  20. K. Okada, K. Kondou, M. Miyahara, M. Shinagawa, H. Asada, R. Minami, T. Yamaguchi, A. Musa, Y. Tsukui, Y. Asakura, S. Tamonoki, H. Yamagishi, Y. Hino, T. Sato, H. Sakaguchi, N. Shimasaki, T. Ito, Y. Takeuchi, N. Li, Q. Bu, R. Murakami, K. Bunsen, K. Matsushita, M. Noda, A. Matsuzawa, Full four-channel 6.3-gb/s 60-GHz cmos transceiver with low-power analog and digital baseband circuitry. IEEE J. Solid State Circuits 48(1), 46–65 (2013)

    Google Scholar 

  21. M. Gustavsson, J.J. Wikner, N.N. Tan, CMOS Data Converters for Communications (Kluwer Academic, Norwell, 2000)

    Google Scholar 

  22. L. Panseri, L. Romano, S. Levantino, C. Samori, A. Lacaita, Low-power signal component separator for a 64-qam 802.11 linc transmitter. IEEE J. Solid State Circuits 43(5), 1274–1286 (2008)

    Google Scholar 

  23. X. Zhang, L. Larson, P. Asbeck, P. Nanawa, Gain/phase imbalance-minimization techniques for linc transmitters. IEEE Trans. Microwave Theory Tech. 49(12), 2507–2516 (2001)

    Article  Google Scholar 

  24. T.-S. Chu, J. Roderick, H. Hashemi, An integrated ultra-wideband timed array receiver in 0.13 um cmos using a path-sharing true time delay architecture. IEEE J. Solid State Circuits 42(12), 2834–2850 (2007)

    Google Scholar 

  25. S. Kulkarni, D. Zhao, P. Reynaert, Design of an optimal layout polyphase filter for millimeter-wave quadrature lo generation. IEEE Trans. Circuits Syst. II Express Briefs 60(4), 202–206 (2013)

    Article  Google Scholar 

  26. W. Chan, J. Long, A 58–65 GHz neutralized cmos power amplifier with pae above 10% at 1-v supply. IEEE J. Solid State Circuits 45(3), 554–564 (2010)

    Article  MathSciNet  Google Scholar 

  27. V. Vidojkovic, G. Mangraviti, K. Khalaf, V. Szortyka, K. Vaesen, W. Van Thillo, B. Parvais, M. Libois, S. Thijs, J. Long, C. Soens, P. Wambacq, A low-power 57-to-66GHz transceiver in 40nm lp cmos with -17db evm at 7gb/s, in 2012 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 268–270, February 2012

    Google Scholar 

  28. G. Brenna, D. Tschopp, J. Rogin, I. Kouchev, Q. Huang, A 2-GHz carrier leakage calibrated direct-conversion wcdma transmitter in 0.13-μm cmos. IEEE J. Solid State Circuits 39, 1253–1262 (2004)

    Google Scholar 

  29. M. Boers, A 60GHz transformer coupled amplifier in 65nm digital cmos, in 2010 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), pp. 343–346, May 2010

    Google Scholar 

  30. K. Okada, N. Li, K. Matsushita, K. Bunsen, R. Murakami, A. Musa, T. Sato, H. Asada, N. Takayama, S. Ito, W. Chaivipas, R. Minami, T. Yamaguchi, Y. Takeuchi, H. Yamagishi, M. Noda, A. Matsuzawa, A 60-GHz 16qam/8psk/qpsk/bpsk direct-conversion transceiver for ieee802.15.3c. IEEE J. Solid State Circuits 46, 2988–3004 (2011)

    Google Scholar 

  31. A. Siligaris, O. Richard, B. Martineau, C. Mounet, F. Chaix, R. Ferragut, C. Dehos, J. Lanteri, L. Dussopt, S. Yamamoto, R. Pilard, P. Busson, A. Cathelin, D. Belot, P. Vincent, A 65-nm cmos fully integrated transceiver module for 60-GHz wireless hd applications. IEEE J. Solid State Circuits 46, 3005–3017 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhao, D., Reynaert, P. (2015). mm-Wave Outphasing Transmitter. In: CMOS 60-GHz and E-band Power Amplifiers and Transmitters. Analog Circuits and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-18839-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18839-3_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18838-6

  • Online ISBN: 978-3-319-18839-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics