Skip to main content

Stress Failure of the Pulmonary Blood–Gas Barrier

  • Chapter
  • First Online:
The Vertebrate Blood-Gas Barrier in Health and Disease
  • 460 Accesses

Abstract

The ultrastructure of the blood–gas barrier was a mystery for many years because this is beyond the resolution of the light microscope. However, when Frank Low published the first electron micrographs of the human blood–gas barrier in 1953, it was immediately clear that a vanishingly small amount of tissue, only 0.2 µm thick, separated the pulmonary capillaries from the alveolar gas. Astonishingly, however, it was 40 years before the fragility of the barrier was recognized. Two selective forces determine the structure of the barrier. First, it must be exceedingly thin to allow adequate transfer of gases across it by diffusion. Even so, under some physiological conditions, humans develop arterial hypoxemia because the diffusion rate of oxygen through the barrier is insufficient. Next, the barrier must be immensely strong to prevent bleeding into the alveoli. However, again this occurs in humans under some physiological conditions, and it is particularly striking in animals such as the Thoroughbred racehorses that are capable of very high aerobic activity. Mechanical failure of the barrier can occur when it is exposed to high stresses. Failure is seen if the capillary transmural pressure is greatly increased, the lung is inflated to very high volumes, or the type IV collagen that is responsible for the strength becomes abnormal in disease. Remodeling of the barrier is seen if the stresses are increased over a period of time. The basic structure of the barrier has been highly conserved throughout the evolution from the lungfishes through the amphibians, reptiles, mammals, and birds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asano H. Pathohistological and electron-microscopical studies of the lung in mitral stenosis with special reference to the correlation between morphological changes and cardiopulmonary dynamics. Jap Circul J. 1964;28(10):801–16.

    Article  CAS  Google Scholar 

  • Bachofen H, Ammann A, Wangensteen D, Weibel ER. Perfusion fixation of lungs for structure-function analysis: credits and limitations. J Appl Physiol Respir Environ Exerc Physiol. 1982;53(2):528–33.

    CAS  PubMed  Google Scholar 

  • Berg JT, Fu Z, Breen EC, Tran HC, Mathieu-Costello O, West JB. High lung inflation increases MRNA levels of ECM components and growth factors in lung parenchyma. J Appl Physiol. 1997;83(1):120–8.

    CAS  PubMed  Google Scholar 

  • Berg JT, Breen EC, Fu Z, Mathieu-Costello O, West JB. Alveolar hypoxia increases gene expression of extracellular matrix proteins and platelet-derived growth factor-b in lung parenchyma. Am J Respir Crit Care Med. 1998;158(6):1920–8.

    Article  CAS  PubMed  Google Scholar 

  • Birks EK, Mathieu-Costello O, Fu Z, Tyler WS, West JB. Comparative aspects of the strength of pulmonary capillaries in rabbit, dog, and horse. Respir Physiol. 1994;97(2):235–46.

    Article  CAS  PubMed  Google Scholar 

  • Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–8.

    Article  Google Scholar 

  • Coalson JJ, Jaques WE, Campbell GS, Thompson WM. Ultrastructure of the alveolar-capillary membrane in congenital and acquired heart disease. Arch Pathol. 1967;83(4):377–91.

    CAS  PubMed  Google Scholar 

  • Crouch EC, Martin GR, Jerome BS, Laurie GW. Basement membranes. In: Crystal RG, West JB, Weibel ER, Barnes PJ, editors. The lung: Scientific foundations. Vol. 1. Philadelphia: Lippincott-Raven; 1997. p. 769–91.

    Google Scholar 

  • Darwin C. On the origin of species by means of natural selection. London: J. Murray; 1859.

    Google Scholar 

  • Dreyfuss D, Basset G, Soler P, Saumon G. Intermittent positive-pressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats. Am Rev Respir Dis. 1985;132(4):880–4.

    CAS  PubMed  Google Scholar 

  • Elliott AR, Fu Z, Tsukimoto K, Prediletto R, Mathieu-Costello O, West JB. Short-term reversibility of ultrastructural changes in pulmonary capillaries caused by stress failure. J Appl Physiol. 1992;73(3):1150–8.

    CAS  PubMed  Google Scholar 

  • Erickson BK, Erickson HH, Coffman JR. Pulmonary artery and aortic pressure changes during high intensity treadmill exercise in the horse: effect of furosemide and phentolamine. Equine Vet J. 1992;24(3):215–9.

    Article  CAS  PubMed  Google Scholar 

  • Fisher RF, Wakely J. The elastic constants and ultrastructural organization of a basement membrane (lens capsule). Proc R Soc Lond B Biol Sci. 1976;193(1113):335–58.

    Article  CAS  PubMed  Google Scholar 

  • Fishman AP. Pulmonary edema the water-exchanging function of the lung. Circulation. 1972;46(2):390–408.

    Article  CAS  PubMed  Google Scholar 

  • Fu Z, Costello ML, Tsukimoto K, Prediletto R, Elliott AR, Mathieu-Costello O, West JB. High lung volume increases stress failure in pulmonary capillaries. J Appl Physiol. 1992;73(1):123–33.

    CAS  PubMed  Google Scholar 

  • Glazier JB, Hughes JM, Maloney JE, West JB. Measurements of capillary dimensions and blood volume in rapidly frozen lungs. J Appl Physiol. 1969;26(1):65–76.

    CAS  PubMed  Google Scholar 

  • Hackett PH, Bertman J, Rodriguez G, Tenney J. Pulmonary edema fluid protein in high-altitude pulmonary edema. JAMA. 1986;256(1):36-.

    Google Scholar 

  • Haworth SG, Hall SM, Panja M, Patel M. Peripheral pulmonary vascular and airway abnormalities in adolescents with rheumatic mitral stenosis. Int J Cardiol. 1988;18(3):405–16.

    Article  CAS  PubMed  Google Scholar 

  • Hopkins SR, Schoene RB, Henderson WR, Spragg RG, Martin TR, West JB. Intense exercise impairs the integrity of the pulmonary blood–gas barrier in elite athletes. Am J Respir Crit Care Med. 1997;155(3):1090–4.

    Article  CAS  PubMed  Google Scholar 

  • Hopkins SR, Schoene RB, Henderson WR, Spragg RG, West JB. Sustained submaximal exercise does not alter the integrity of the lung blood-gas barrier in elite athletes. J Appl Physiol. 1998;84(4):1185–9.

    CAS  PubMed  Google Scholar 

  • Hultgren HN. High altitude pulmonary edema. In: Hegnauer AH, editor. Biomedicine problems of high terrestrial altitude. New York: Springer; 1969. p. 131–41.

    Google Scholar 

  • Jones JH, Smith BL, Birks EK, Pascoe JR, Hughes TR. Left atrial and pulmonary arterial pressures in exercising horses. FASEB J. 1992;6:A2020.

    Google Scholar 

  • Kay JM, Edwards FR. Ultrastructure of the alveolar-capillary wall in mitral stenosis. J Pathol. 1973;111(4):239–45.

    Article  CAS  PubMed  Google Scholar 

  • Kölliker A. Zur Kenntnis des Baues der Lunge des Menschen. Verb D Physik Med Gesellschaft Würzburg. 1881;16:1–24.

    Google Scholar 

  • Low FN. The pulmonary alveolar epithelium of laboratory mammals and man. Anat Rec. 1953;117(2):241–63.

    Article  CAS  PubMed  Google Scholar 

  • Maina JN. Functional morphology of the vertebrate respiratory systems. Enfield: Science Publishers; 2002.

    Google Scholar 

  • Maina JN, Jimoh SA. Structural failures of the blood-gas barrier and the epithelial-epithelial cell connections in the different vascular regions of the lung of the domestic fowl, gallus gallus variant domesticus, at rest and during exercise. Biol Open. 2013;2(3):267–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maina JN, West JB. Thin and strong! The bioengineering dilemma in the structural and functional design of the blood-gas barrier. Physiol Rev. 2005;85(3):811–44.

    Article  CAS  PubMed  Google Scholar 

  • McKechnie JK, Leary WP, Noakes TD, Kallmeyer JC, MacSearraigh ET, Olivier LR. Acute pulmonary oedema in two athletes during a 90-km running race. S Afr Med J. 1979;56(7):261–5.

    CAS  PubMed  Google Scholar 

  • Parker JC, Breen EC, West JB. High vascular and airway pressures increase interstitial protein mRNA expression in isolated rat lungs. J Appl Physiol. 1997;83(5):1697–705.

    CAS  PubMed  Google Scholar 

  • Pascoe JR, Ferraro GL, Cannon JH, Arthur RM, Wheat JD. Exercise-induced pulmonary hemorrhage in racing thoroughbreds: a preliminary study. Am J Vet Res. 1981;42(5):703–7.

    CAS  PubMed  Google Scholar 

  • Pattle RE. Properties, function and origin of the alveolar lining layer. Nature. 1955;175(4469):1125–6.

    Article  CAS  PubMed  Google Scholar 

  • Policard A Les nouvelles idées sur la disposition de la surface respiratoire pulmonaire. Presse Méd. 1929;37:1293–5.

    Google Scholar 

  • Poole DC, Erickson HH. Highly athletic terrestrial mammals: horses and dogs. Compr Physiol. 2011;1(1):1–37.

    PubMed  Google Scholar 

  • Schoene RB, Hackett PH, Henderson WR, Sage EH, Chow M, Roach RC, et al. High-altitude pulmonary edema. Characteristics of lung lavage fluid. JAMA. 1986;256(1):63–9.

    Article  CAS  PubMed  Google Scholar 

  • Schoene RB, Swenson ER, Hultgren HN. High-altitude pulmonary edema. In: Hornbein TF, Schoene RB, editors. High altitude: an exploration of human adaptation. New York: Marcel Dekker; 2001.

    Google Scholar 

  • Skalak R, Chien S. Handbook of bioengineering. New York: McGraw-Hill; 1987.

    Google Scholar 

  • Sprung CL, Rackow EC, Fein IA, Jacob AI, Isikoff SK. The spectrum of pulmonary edema: differentiation of cardiogenic, intermediate, and noncardiogenic forms of pulmonary edema. Am Rev Respir Dis. 1981;124(6):718–22.

    CAS  PubMed  Google Scholar 

  • Staub NC. The pathophysiology of pulmonary edema. Human Pathol. 1970;1(3):419–32.

    Article  CAS  Google Scholar 

  • Stenmark KR, Mecham RP. Cellular and molecular mechanisms of pulmonary vascular remodeling. Annu Rev Physiol. 1997;59(1):89–144.

    Article  CAS  PubMed  Google Scholar 

  • Swayne GT, Smaje LH, Bergel DH. Distensibility of single capillaries and venules in the rat and frog mesentery. Int J Microcirc Clin Exp. 1989;8(1):25–42.

    CAS  PubMed  Google Scholar 

  • Takami H, Burbelo PD, Fukuda K, Chang HS, Phillips SL, Yamada Y. Molecular organization and gene regulation of type IV collagen. Contrib Nephrol. 1994;107:36.

    Article  CAS  PubMed  Google Scholar 

  • Tozzi CA, Poiani GJ, Harangozo AM, Boyd CD, Riley DJ. Pressure-induced connective tissue synthesis in pulmonary artery segments is dependent on intact endothelium. J Clin Invest. 1989;84(3):1005–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tsukimoto K, Mathieu-Costello O, Prediletto R, Elliott AR, West JB. Ultrastructural appearances of pulmonary capillaries at high transmural pressures. J Appl Physiol. 1991;71(2):573–82.

    CAS  PubMed  Google Scholar 

  • Vaccaro CA, Brody JS. Structural features of alveolar wall basement membrane in the adult rat lung. J Cell Biol. 1981;91(2 Pt 1):427–37.

    Article  CAS  PubMed  Google Scholar 

  • Wagner PD, Gale GE, Moon RE, Torre-Bueno JR, Stolp BW, Saltzman HA. Pulmonary gas exchange in humans exercising at sea level and simulated altitude. J Appl Physiol. 1986;61(1):260–70.

    CAS  PubMed  Google Scholar 

  • Wagner PD, Sutton JR, Reeves JT, Cymerman A, Groves BM, Malconian MK. Operation Everest II: pulmonary gas exchange during a simulated ascent of Mt. Everest. J Appl Physiol. 1987;63(6):2348–59.

    CAS  PubMed  Google Scholar 

  • Watson RR, Fu Z, West JB. Minimal distensibility of pulmonary capillaries in avian lungs compared with mammalian lungs. Respir Physiol Neurobiol. 2008;160(2):208–14.

    Article  PubMed Central  PubMed  Google Scholar 

  • Weibel ER. Morphometry of the human lung. Berlin: Springer; 1963.

    Book  Google Scholar 

  • Weibel ER. Morphological basis of alveolar-capillary gas exchange. Physiol Rev. 1973;53(2):419–95.

    CAS  PubMed  Google Scholar 

  • Weibel ER. The pathway for oxygen: structure and function in the mammalian respiratory system. Cambridge: Harvard University Press; 1984.

    Google Scholar 

  • Weibel ER. The structural basis of lung function. In: West JB, editor. Respiratory physiology: people and ideas. Oxford: Oxford University Press; 1996.

    Google Scholar 

  • Weidner WJ, Kinnison JR. Effect of hydrostatic pulmonary edema on the interparabronchial septum of the chicken lung. Poult Sci. 2002;81(10):1563–6.

    Article  CAS  PubMed  Google Scholar 

  • Weiler-Ravell D, Shupak A, Goldenberg I, Halpern P, Shoshani O, Hirschhorn G, Margulis A. Pulmonary oedema and haemoptysis induced by strenuous swimming. BMJ. 1995;311(7001):361–2.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Welling LW, Grantham JJ. Physical properties of isolated perfused renal tubules and tubular basement membranes. J Clin Invest. 1972;51(5):1063–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • West JB. Thoughts on the pulmonary blood-gas barrier. Am J Physiol Lung Cell Mol Physiol. 2003;285(3):L501–13.

    Article  CAS  PubMed  Google Scholar 

  • West JB. Comparative physiology of the pulmonary blood-gas barrier: the unique avian solution. Am J Physiol Regul Integr Comp Physiol. 2009;297(6):R1625–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • West JB. Fragility of pulmonary capillaries. J Appl Physiol. 2013;115(1):1–15.

    Article  PubMed  Google Scholar 

  • West JB, Mathieu-Costello O. Strength of the pulmonary blood-gas barrier. Respir Physiol. 1992;88(1):141–8.

    Article  CAS  PubMed  Google Scholar 

  • West JB, Tsukimoto K, Mathieu-Costello O, Prediletto R. Stress failure in pulmonary capillaries. J Appl Physiol. 1991;70(4):1731–42.

    CAS  PubMed  Google Scholar 

  • West JB, Mathieu-Costello O, Jones JH, Birks EK, Logemann RB, Pascoe JR, Tyler WS. Stress failure of pulmonary capillaries in racehorses with exercise-induced pulmonary hemorrhage. J Appl Physiol. 1993;75(3):1097–109.

    CAS  PubMed  Google Scholar 

  • West JB, Watson RR, Fu Z. The human lung: did evolution get it wrong? Eur Respir J. 2007;29(1):11–7.

    Article  CAS  PubMed  Google Scholar 

  • Whitwell KE, Greet TR. Collection and evaluation of tracheobronchial washes in the horse. Equine Vet J. 1984;16(6):499–508.

    Article  CAS  PubMed  Google Scholar 

  • Wieslander J, Heinegård D. The involvement of type IV collagen in Goodpasture’s syndrome. Ann NY Acad Sci. 1985;460(1):363–74.

    Article  CAS  PubMed  Google Scholar 

  • Wood P. An appreciation of mitral stenosis—I. Br Med J. 1954a;1:1051–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wood P. An appreciation of mitral stenosis—II. Br Med J. 1954b;1:1113–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John B. West MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

West, J. (2015). Stress Failure of the Pulmonary Blood–Gas Barrier. In: Makanya, A. (eds) The Vertebrate Blood-Gas Barrier in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-18392-3_7

Download citation

Publish with us

Policies and ethics