Skip to main content

Stereological Studies on Transient Gas Exchangers with Emphasis on the Structure and Function of the Human Placenta in Normal and Compromised Pregnancies

  • Chapter
  • First Online:
The Vertebrate Blood-Gas Barrier in Health and Disease
  • 447 Accesses

Abstract

The avian egg and mammalian placenta are transient structures which are discarded after hatching or parturition but, during their lifespan, must adapt to the changing needs of the growing embryo/fetus. The embryo/fetus exerts demands on its environment whether it be the impersonal one in which an egg is laid or the nurturing one within the body of the mother. In the case of the avian egg, nutrients are obtained internally but respiratory oxygen (O2) must be obtained from the environment. In eutherian mammals, nutrients and O2 are obtained from the mother via the placenta. The capacity of the egg and placenta to transfer O2 to the embryo/fetus is expressed as a diffusive conductance (DO2 in the units cm3O2 min−1 kPa−1). For these and other gas exchangers, a morphometric estimate of DO2 can be obtained by combining stereological estimates of relevant microstructural quantities (vascular volumes, exchange surface areas and harmonic mean diffusion distances) with physiological data (O2–haemoglobin reaction rates and Krogh’s permeability coefficients). Here, the avian egg and human placenta are taken as models for gas exchangers, and their structures and functional capacities are compared. Particular focus is accorded to the human haemochorial placenta and its ability to serve the growing needs of the fetus is illustrated using results from normal and compromised pregnancies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ansari T, Fenlon S, Pasha S, O’Neill B, Gillan JE, Green CJ, Sibbons PD. Morphometric assessment of the oxygen diffusion conductance in placentae from pregnancies complicated by intra-uterine growth restriction. Placenta. 2003;24:618–26.

    Article  CAS  PubMed  Google Scholar 

  • Bartels H. The diffusion capacity of the placenta. In: Neuberger A, Tatum EL, editors. Frontiers of biology, Vol 17, Prenatal respiration. London: North-Holland; 1970. pp. 61–7.

    Google Scholar 

  • Benirschke K, Burton GJ, Baergen RN. Pathology of the human placenta. 6th ed. Heidelberg: Springer; 2012.

    Book  Google Scholar 

  • Bissonnette JM, Metcalfe J. Gas exchange of the fertile hen’s egg: components of resistance. Respir Physiol. 1978;1:209–18.

    Article  Google Scholar 

  • Bissonnette JM, Longo LD, Novy MJ, Murata Y, Martin CB. Placental diffusing capacity and its relation to fetal growth. J Dev Physiol. 1979;1:351–9.

    CAS  PubMed  Google Scholar 

  • Burton GJ. Oxygen, the Janus gas; its effects on human placental development and function. J Anat. 2009;215:27–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Burton GJ, Feneley MR. Capillary volume fraction is the principal determinant of villous membrane thickness in the human placenta at term. J Dev Physiol. 1992;17:39–45.

    CAS  PubMed  Google Scholar 

  • Bush PG, Mayhew TM, Abramovich DR, Aggett PJ, Burke MD, Page KR. Maternal cigarette smoking and oxygen diffusion across the placenta. Placenta. 2000;21:824–33.

    Article  CAS  PubMed  Google Scholar 

  • Castellucci M, Kosanke G, Verdenelli F, Huppertz B, Kaufmann P. Villous sprouting: fundamental mechanisms of human placental development. Human Reprod. 2000;6:485–94.

    Article  CAS  Google Scholar 

  • Charnock-Jones DB, Kaufmann P, Mayhew TM. Aspects of human fetoplacental vasculogenesis and angiogenesis. I. Molecular regulation. Placenta. 2004;25:103–13.

    Article  CAS  PubMed  Google Scholar 

  • Coan PM, Ferguson-Smith AC, Burton GJ. Developmental dynamics of the definitive mouse placenta assessed by stereology. Biol Reprod. 2004;70:1806–13.

    Article  CAS  PubMed  Google Scholar 

  • Egbor M, Ansari T, Morris N, Green CJ, Sibbons PD. Pre-eclampsia and fetal growth restriction: How morphometrically different is the placenta? Placenta. 2006;27:727–34.

    Article  CAS  PubMed  Google Scholar 

  • Enders AC, Carter AM. What can comparative studies of placental structure tell us?—a review. Placenta 25, suppl. A. Troph Res. 2004;18:S3–S9.

    Google Scholar 

  • Forster RE. Some principles governing maternal-foetal transfer in the placenta. In: Comline KS, Cross KW, Dawes GS, Nathanielsz PW, editors. Foetal and neonatal physiology, proceedings of the Sir Joseph Barcroft Centenary Symposium. Cambridge: Cambridge University Press; 1973. pp. 223–37.

    Google Scholar 

  • Gehr P, Bachofen M, Weibel ER. The normal human lung: ultrastructure and morphometric estimation of diffusion capacity. Respir Physiol. 1978;32:121–40.

    Article  CAS  PubMed  Google Scholar 

  • Gundersen HJG, Jensen EB. The efficiency of systematic sampling in stereology and its prediction. J Microsc. 1987;147:229–63.

    Article  CAS  PubMed  Google Scholar 

  • Gundersen HJG, Jensen EB, Østerby R. Distribution of membrane thickness determined by lineal analysis. J Microsc. 1978;113:27–43.

    Article  CAS  PubMed  Google Scholar 

  • Holland RAB, van Hezewijk W, Zubzanda J. Velocity of oxygen uptake by partly saturated adult and fetal human red cells. Respir Physiol. 1977;29:303–14.

    Article  CAS  PubMed  Google Scholar 

  • Howard CV, Reed MG. Unbiased stereology. Three-dimensional measurement in microscopy. 2nd ed. Abingdon: Garland Science/Bios Scientific; 2005.

    Google Scholar 

  • Jackson MR, Joy CF, Mayhew TM, Haas JD. Stereological studies on the true thickness of the villous membrane in human term placentae: a study of placentae from high-altitude pregnancies. Placenta. 1985;6:249–58.

    Article  CAS  PubMed  Google Scholar 

  • Jackson MR, Mayhew TM, Haas JD. On the factors which contribute to thinning of the villous membrane in human placentae at high altitude. II. An increase in the degree of peripheralization of fetal capillaries. Placenta. 1988;9:9–18.

    Article  CAS  PubMed  Google Scholar 

  • Jackson MR, Joy CF, Mayhew TM, Boyd PA. Quantitative description of the elaboration and maturation of villi from 10 weeks of gestation to term. Placenta. 1992;13:357–70.

    Article  CAS  PubMed  Google Scholar 

  • Jauniaux E, Hempstock J, Greenwold N, Burton GJ. Trophoblastic oxidative stress in relation to temporal and regional differences in maternal placental blood flow in normal and abnormal early pregnancies. Am J Pathol. 2003;162:115–25.

    Article  PubMed Central  PubMed  Google Scholar 

  • Jensen EB, Gundersen HJG, Østerby R. Determination of membrane thickness distribution from orthogonal intercepts. J Microsc. 1979;115:19–33.

    Article  CAS  PubMed  Google Scholar 

  • Jirkovska M, Kubinova L, Janacek J, Moracova M, Krejci V, Karen P. Topological properties and spatial organization of villous capillaries in normal and diabetic placentas. J Vasc Res. 2002;39:268–78.

    Article  PubMed  Google Scholar 

  • Jirkovska M, Janacek J, Kalab J, Kubinova L. Three-dimensional arrangement of the capillary bed and its relationship to microrheology in the terminal villi of normal term placenta. Placenta. 2008;29:892–7.

    Article  CAS  PubMed  Google Scholar 

  • Karimu AL, Burton GJ. Compliance of the human placental villous membrane at term; the concept of the feto-placental unit as an autoregulating gas exchange system. Troph Res. 1994a;8:541–58.

    Google Scholar 

  • Karimu AL, Burton GJ. The significance of changes in fetal perfusion pressure to factors controlling angiogenesis in the human term placenta. J Reprod Fertil. 1994b;102:447–50.

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann P, Mayhew TM, Charnock-Jones DS. Aspects of human fetoplacental vasculogenesis and angiogenesis. II. Changes during normal pregnancy. Placenta. 2004;25:114–26.

    Article  CAS  PubMed  Google Scholar 

  • Laga EM, Driscoll SG, Munro HN. Quantitative studies of human placenta. I. Morphometry. Biol Neonate. 1973;23:231–59.

    Article  CAS  PubMed  Google Scholar 

  • Lisman BAM, van den Hoff MJB, Boer K, Bleker OP, van Groningen K, Exalto N. The architecture of first trimester chorionic villous vascularisation: a confocal scanning microscopical study. Human Reprod. 2007;8:2254–60.

    Article  Google Scholar 

  • Mayhew TM. Fetoplacental angiogenesis during gestation is biphasic, longitudinal and occurs by proliferation and remodelling of vascular endothelial cells. Placenta. 2002;23:742–50.

    Article  PubMed  Google Scholar 

  • Mayhew TM. Stereology and the placenta: where’s the point?—a review. Placenta. 2006a; 27 (suppl. A):S17–S25. (Troph Res)

    Google Scholar 

  • Mayhew TM. Allometric studies on growth and development of the human placenta: growth of tissue compartments and diffusive conductances in relation to placental volume and fetal mass. J Anat. 2006b;208:785–94.

    Article  PubMed Central  PubMed  Google Scholar 

  • Mayhew TM. Taking tissue samples from the placenta: an illustration of principles and strategies. Placenta. 2008;29:1–14.

    Article  CAS  PubMed  Google Scholar 

  • Mayhew TM. Estimating oxygen diffusive conductances of gas-exchange systems: a stereological approach illustrated with the human placenta. Ann Anat. 2014;196:34–40.

    Article  PubMed  Google Scholar 

  • Mayhew TM, Joy CF, Haas JD. Structure-function correlation in the human placenta: the morphometric diffusing capacity for oxygen at full term. J Anat. 1984;139:691–708.

    PubMed Central  PubMed  Google Scholar 

  • Mayhew TM, Jackson MR, Haas JD. Microscopical morphology of the human placenta and its effects on oxygen diffusion: a morphometric model. Placenta. 1986;7:121–31.

    Article  CAS  PubMed  Google Scholar 

  • Mayhew TM, Jackson MR, Haas JD. Oxygen diffusive conductances of human placentae from term pregnancies at low and high altitudes. Placenta. 1990;11:493–503.

    Article  CAS  PubMed  Google Scholar 

  • Mayhew TM, Jackson MR, Boyd PA. Changes in oxygen diffusive conductances of human placentae during gestation (10–41 weeks) are commensurate with the gain in fetal weight. Placenta. 1993a;14:51–61.

    Article  CAS  PubMed  Google Scholar 

  • Mayhew TM, Sørensen FB, Klebe JG, Jackson MR. Oxygen diffusive conductance in placentae from control and diabetic women. Diabetologia. 1993b;36:955–60.

    Article  CAS  PubMed  Google Scholar 

  • Mayhew TM, Wadrop E, Simpson RA. Proliferative versus hypertrophic growth in tissue subcompartments of human placental villi during gestation. J Anat. 1994;184:535–43.

    PubMed Central  PubMed  Google Scholar 

  • Mayhew TM, Ohadike C, Baker PN, Crocker IP, Mitchell C, Ong SS. Stereological investigation of placental morphology in pregnancies complicated by pre-eclampsia with and without intrauterine growth restriction. Placenta. 2003;24:219–26.

    Article  CAS  PubMed  Google Scholar 

  • Mayhew TM, Wijesekara J, Baker PN, Ong SS. Morphometric evidence that villous development and fetoplacental angiogenesis are compromised by intrauterine growth restriction but not by pre-eclampsia. Placenta. 2004;25:829–33.

    Article  CAS  PubMed  Google Scholar 

  • Mayhew TM, Manwani R, Ohadike C, Wijesekara J, Baker PN. The placenta in pre-eclampsia and intrauterine growth restriction: studies on exchange surface areas, diffusion distances and villous membrane diffusive conductances. Placenta. 2007;28:233–8.

    Article  CAS  PubMed  Google Scholar 

  • Metcalfe J, Bartels H, Moll W. Gas exchange in the pregnant uterus. Physiol Rev. 1967;47:782–838.

    CAS  PubMed  Google Scholar 

  • Piiper J, Tazawa H, Ar A, Rahn H. Analysis of chorioallantoic gas exchange in the chick embryo. Respir Physiol. 1980;39:273–84.

    Article  CAS  PubMed  Google Scholar 

  • Power GG. Solubility of O2 and CO in blood and pulmonary and placental tissue. J Appl Physiol. 1968;24:468–74.

    CAS  PubMed  Google Scholar 

  • Rahn H, Paganelli CV, Ar A. Pores and gas exchange of avian eggs: a review. J Exp Zool. 1987;1:165–72.

    CAS  Google Scholar 

  • Reizis A, Hammel I, Ar A. Regional and developmental variations of blood vessel morphometry in the chick embryo chorioallantoic membrane. J Exp Biol. 2005;208:2483–8.

    Article  PubMed  Google Scholar 

  • Reshetnikova OS, Burton GJ, Milovanov AP. Effects of hypobaric hypoxia on the fetoplacental unit; the morphometric diffusing capacity of the villous membrane at high altitude. Am J Obstet Gynecol. 1994;171:1560–5.

    Article  CAS  PubMed  Google Scholar 

  • Reshetnikova OS, Burton GJ, Teleshova OV. Placental histomorphometry and morphometric diffusing capacity of the villous membrane in pregnancies complicated by maternal iron-deficiency anemia. Am J Obstet Gynecol. 1995;173:724–7.

    Article  CAS  PubMed  Google Scholar 

  • Roberts VHJ, Räsänen JP, Novy MJ, Frias A, Louey S, Morgan TK, Thornburg KL, Spindel ER, Grigsby PL. Restriction of placental vasculature in a non-human primate: a unique model to study placental plasticity. Placenta. 2012;33:736.

    Article  Google Scholar 

  • Rodesch F, Simon P, Donner C, Jauniaux E. Oxygen measurements in endometrial and trophoblastic tissues during early pregnancy. Obstet Gynecol. 1992;80:283–5.

    CAS  PubMed  Google Scholar 

  • Roughton FJW, Forster RE. Relative importance of diffusion and chemical reaction rates in determining rate of exchange of gases in the human lung, with special reference to true diffusing capacity of pulmonary membrane and volume of blood in the lung capillaries. J Appl Physiol. 1957;11:290–302.

    CAS  PubMed  Google Scholar 

  • Samson JE, Mari G, Dick EJ, Hubbard GB, Ferry RJ, Schlabritz-Loutsevitch NE. The morphometry of materno-fetal oxygen exchange barrier in a baboon model of obesity. Placenta. 2011;32:845–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schneider H. Oxygenation of the placental-fetal unit in humans. Respir Physiol Neurobiol. 2011;178:51–8.

    Article  PubMed  Google Scholar 

  • Smith AD, Gilbert RD, Lammers RJ, Longo LD. Placental exchange area in guinea pigs following long-term maternal exercise: a stereological analysis. J Dev Physiol. 1983;5:11–21.

    CAS  PubMed  Google Scholar 

  • Soothill PW, Nicolaides KH, Rodeck CH, Campbell S. Effects of gestational age on fetal and intervillous blood gas and acid-base values in human pregnancy. Fetal Ther. 1986;1:168–75.

    Article  CAS  PubMed  Google Scholar 

  • Staub NC, Bishop JM, Forster RE. Importance of diffusion and chemical reaction rates in O2 uptake in the lung. J Appl Physiol. 1962;17:21–7.

    CAS  PubMed  Google Scholar 

  • Tazawa H, Mochizuki M. Estimation of contact time and diffusing capacity for oxygen in the chorioallantoic vascular plexus. Respir Physiol. 1976;28:119–28.

    Article  CAS  PubMed  Google Scholar 

  • Teasdale F. Idiopathic intrauterine growth retardation: histomorphometry of the human placenta. Placenta. 1984;5:83–92.

    Article  CAS  PubMed  Google Scholar 

  • Teasdale F. Histomorphometry of the human placenta in maternal preeclampsia. Am J Obstet Gynecol. 1985;152:25–31.

    Article  CAS  PubMed  Google Scholar 

  • Teasdale F. Histomorphometry of the human placenta in pre-eclampsia associated with severe intrauterine growth retardation. Placenta. 1987;8:119–28.

    Article  CAS  PubMed  Google Scholar 

  • Tuuli MG, Longtine MS, Nelson DM. Review: oxygen and trophoblast biology—a source of controversy. Placenta suppl A. 2011;32:S109–S118.

    Google Scholar 

  • Veras MM, Damaceno-Rodrigues NR, Caldini EG, Ribeiro AACM, Mayhew TM, Saldiva PHN, Dolhnikoff M. Particulate urban air pollution affects the functional morphology of mouse placenta. Biol Reprod. 2008;79:578–84.

    Article  CAS  PubMed  Google Scholar 

  • Veras MM, Costa NSX, Mayhew TM. Best practice for quantifying the microscopic structure of mouse placenta: the stereological approach. In: Croy A, Yamada AT, DeMayo FJ, Adamson SL, editors. The guide to investigation of mouse pregnancy. London: Academic Press; Elsevier Inc; 2014. pp. 545–56.

    Chapter  Google Scholar 

  • Wangensteen D, Weibel ER. Morphometric evaluation of chorioallantoic oxygen transport in the chick embryo. Respir Physiol. 1982;47:1–20.

    Article  CAS  PubMed  Google Scholar 

  • Weibel ER. Morphometric estimation of pulmonary diffusion capacity. I. Model and method. Respir Physiol. 1970;11:54–75.

    Article  PubMed  Google Scholar 

  • Weibel ER. The pathway for oxygen. Structure and function in the mammalian respiratory system. Cambridge: Harvard University Press; 1984.

    Google Scholar 

  • Yin TT, Loughna P, Ong SS, Padfield J, Mayhew TM. No correlation between ultrasound placental grading at 31–34 weeks of gestation and a surrogate estimate of organ function at term obtained by stereological analysis. Placenta. 2009;30:726–30.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Over the past three decades, I have been grateful for research awards from various funding agencies and for collaborations with, and contributions from, many colleagues and students who have shared an interest in the placenta.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terry M. Mayhew .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mayhew, T. (2015). Stereological Studies on Transient Gas Exchangers with Emphasis on the Structure and Function of the Human Placenta in Normal and Compromised Pregnancies. In: Makanya, A. (eds) The Vertebrate Blood-Gas Barrier in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-18392-3_10

Download citation

Publish with us

Policies and ethics